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Purpose. Mesenchymal-epithelial transition (MET), a reverse biological process to epithelial-mesenchymal transition (EMT), is
involved in tumor metastasis and invasion. However, the role of MET-related genes (MRGs) in hepatocellular carcinoma (HCC)
prognosis remains unclear.Methods. In this research, we obtained MRGs data and clinical information from public databases. In
the TCGA dataset, a prognostic signature for HCC was constructed by the least absolute shrinkage and selection operator
(LASSO) method and externally verified using the ICGC dataset. Results. -ere were 148 differentially expressed MRGs
(DEMRGs), out of which 37 MRGs were found associated with overall survival (OS) in the univariate Cox analysis. A novel
signature integrating of 5 MRGs was constructed, which split patients into high- and low-risk groups. Kaplan–Meier analysis
revealed that high-risk patients had unfavorable OS than those low-risk counterparts. Receiver operating characteristic curve
(ROC) showed great performance of this signature in predictive ability. Multivariate Cox analysis confirmed that this signature
could independently predict HCC prognosis. -e analysis of immune cell infiltration demonstrated that immune status varied
differently between high- and low-risk groups. -e analysis of clinicopathological characteristics suggested that tumor grade,
clinical stage, and T stage were different between risk groups. -e analysis between this signature and chemotherapeutic efficacy
and immunosuppressive molecules indicated that this signature could serve as a promising predictor. Conclusions. In conclusion,
we constructed and verified a novel signature from the perspective of MET, which was significantly associated with HCC
prognosis, clinicopathological features, immune status, chemotherapeutic efficacy, and immunosuppressive biomarkers.

1. Introduction

Hepatocellular carcinoma (HCC) is the most pervasive type
of primary liver cancer [1], and its incidence and fatality rate
are the fourth and second among all types of malignant
tumors [2, 3]. Currently, many well-known risk factors
could contribute to HCC development, such as chronic
infection with hepatitis B and C viruses, nonalcoholic

steatohepatitis, alcohol intake, and ingestion of fungal toxins
such as aflatoxin B1. Although a tremendous progress has
been made in medical, locoregional, and surgical therapies,
unfavorable prognosis is still a serious problem for HCC [4].
Besides, the recurrence and metastasis of tumor and drug
resistance lead to an unfavorable 5-year overall survival (OS)
rate.-us, it is urgently required to identify novel prognostic
predictors for HCC.
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Mesenchymal-epithelial transition (MET) refers to a
biological process in which the epithelial-mesenchymal
transition (EMT) cells revert to epithelial phenotype to
successfully colonize an organ and cause secondary lesions
[5]. During the MET process, EMT cells lose their motile
properties, adopt an apicobasal polarization, and reexpress
the junctional complexes [6]. It has been established that the
sequential EMT-MET process is required for cancer cells to
relocate into the distant metastasis site, resulting in poor
survival outcome [7]. -us, both EMT- and MET-related
genes could serve as promising predictors for patients’
prognosis. Chen and Zhao constructed and verified a
prognostic expression signature for HCC from the per-
spective of EMT [8]. However, the role of MET-related genes
(MRGs) in HCC remains unclear.

-us, our study focused on the development of a
prognostic expression signature from the perspective of
MET. First, both expression profiles of MRGs and clinical
data of HCC samples were obtained from TCGA and ICGC
datasets. -en, a novel expression signature was constructed
using prognostic differentially expressed MRGs (DEMRGs)
obtained from the TCGA dataset and externally validated
using the ICGC dataset. Finally, the enrichment analysis of
immune cell features and immune function characteristics
was performed to better understand the role of tumor
immunity in this signature.

2. Materials and Methods

2.1. Data Acquisition. MRGs were obtained from Gene-
Cards website (https://www.genecards.org/) [9]. RNA se-
quencing data and clinical data for HCC were downloaded
from the TCGA-LIHC project (https://portal.gdc.cancer.
gov/repository) and ICGC database (https://dcc.icgc.org/
releases/current/Projects/LINC-JP). Expression profiles of
MRGs extracted from TCGA and ICGC datasets were used
for further analysis.

2.2. Identification of Prognostic MRGs. DEMRGs between
HCC samples and normal ones were recognized using
“limma” R package [10] in the TCGA dataset. We set false
discovery rate (FDR) <0.05 and |log2 fold change (FC)| >1 as
the threshold. Univariate Cox regression analysis was then
performed to screen out the MRGs correlated with OS, and
P< 0.01 was regarded as the statistical difference. Venn
diagram was plotted in which the interaction between
DEMRGs and MRGs with the prognostic value was dis-
played and used for subsequent analysis. Correlation anal-
ysis among these prognosis-related DEMRGs was
performed, and the protein-protein interaction (PPI) net-
work was analyzed in the STRING database (https://www.
string-db.org/) [11] to identify the hub genes. We set me-
dium confidence (0.400) as the minimum required inter-
action score.

2.3. Construction of MRGs-Related Signature and Evaluation
of Its Clinical Utility. -e least shrinkage and selection
operator (LASSO) method with tenfold cross-validation was

performed to reduce the risk of overfitting and select the
optimal predictors for OS of TCGA-LIHC project [12, 13].
Some MRGs with a regression coefficient of nonzero were
incorporated into this novel signature, whose risk score was
calculated based on MRGs expression value multiplied by
their corresponding regression coefficient. -e patients were
then split into 2 groups (high- or low-risk) with a cutoff
point of the median risk score. -e Wilcoxon signed-rank
test was conducted to analyze the difference of clinico-
pathological characteristics between high- and low-risk
groups. -e chi-square test was conducted to investigate the
relationship between clinicopathological features and the
risk score.

2.4. Investigation of the Role of 6is Novel Signature in Che-
motherapeutic Efficacy and Immunosuppressive Molecules.
-e half inhibitory centration (IC50) of common antitumor
drugs, such as doxorubicin, mitomycin C, sorafenib, cisplatin,
and vinblastine, were calculated, and the Wilcoxon signed-
rank test was conducted to explore the drug sensitivity be-
tween different risk groups. To visualize the relationship
between this signature and the expression value of immune
checkpoint inhibitors (ICIs)-related molecules, we applied
“ggpubr” package to transform results into the violin plot.

2.5. Verification of 6is Novel Signature. Kaplan–Meier
analysis was conducted to analyze the difference in OS
between different risk groups. -e distribution of risk score
and survival outcome for each HCC patient was visualized
using R software. Area under the curve (AUC) of 1-, 2-, and
3-year receiver operating characteristic curve (ROC) was
calculated to assess the predictive ability of this novel sig-
nature using “timeROC” package. Principal component
analyse (PCA) and t-SNE analysis were performed to in-
vestigate whether MRGs identified by this signature could
distinguish HCC samples between different risk groups.
Univariate and multivariate Cox analyses were performed to
confirm whether this signature could predict prognosis
independent of clinicopathological indicators.

2.6. Functional Enrichment Analysis and Tumor-Infiltrating
Immune Cells. R “limma” package was used to determine
DEMRGs between different risk groups. We selected FDR
<0.05 and |log2 FC| >1 as the threshold. Gene ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analyses were then performed to understand the biological
function and pathways. To investigate the immune infil-
tration landscape between different risk groups, single-
sample gene set enrichment analysis (ssGSEA) was imple-
mented to calculate the score of 16 infiltrating immune cells
and 13 immune functions [14].

3. Results

3.1. Identification of Prognosis-Related MRGs. A total of 365
and 231 HCC samples with the available gene expression
value and clinical information were retrieved from TCGA
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and ICGC dataset, respectively. -e detailed clinical char-
acteristics of these samples are summarized in Table 1. 148
DEMRGs between 374 HCC tissues and normal ones were
identified, and 37 out of them were found associated with OS
in the univariate Cox analysis (Figures 1(a)–1(c)). -e in-
teractions among 37 prognostic MRGs were visualized in the
PPI network, in which there were 37 nodes and 111 edges
(Figure 1(d)). Genes with the top 11 degrees of interaction
were identified as hub genes (Figure 1(e)). -e correlation
among 37 prognostic MRGs is shown in Figure 1(f ).

3.2. Construction of MRGs-Related Signature. Based on the
expression profiles of 37 prognosis-relatedMRGs, we performed
LASSO regression analysis to construct a prognostic expression
signature, in which a total of 5 MRGs, whose coefficients were
non-zero, were regarded as optimal predictors. -e formula for
this novel signature is given as follows: [EZH2 expression
∗ (0.231780268980573)]+ [SPP1 expression ∗ (0.0622786294
410273)]+ [ETV4 expression ∗ (0.0203905514170323)]+

[ANLNexpression ∗ (0.124600566473429)]+ [MT3 expression
∗ (0.169607630930886)]. -e median risk score was then used
as a cutoff value to split HCC samples into 2 groups (high- and
low-risk). A total of 182 high- and 183 low-risk cases in the
TCGA dataset were identified for subsequent analysis.

3.3. Clinical Utility of 6is Novel Signature. Kaplan–Meier
analysis demonstrated that high-risk patients had shorter OS
than those low-risk counterparts (Figure 2(a)). Patients with
low-risk were less likely to suffer from earlier death com-
pared with those high-risk counterparts (Figure 2(b)). PCA
and t-SNA analysis revealed that it was easy to distinguish
HCC samples between high- and low-risk group
(Figures 2(c) and 2(d)). -e AUC of 1-, 2-, and 3-year ROC
for this novel signature was 0.776, 0.738, and 0.697
(Figure 2(e)). By comparison with ROC curve of this sig-
nature and other clinicopathological parameters, we found
that the AUC of this signature was higher than that of
clinical indicators (Figure 2(f)). Besides, the chi-square test

Table 1: Baseline characteristics of HCC patients involved in this research.

Characteristics TCGA-LIHC dataset (N� 365) ICGC-LINC-JP dataset (N� 231)
Age
≤60 173 (47.4%) 49 (21.2%)
>60 192 (52.6%) 182 (78.8%)

Gender
Male 246 (67.4%) 170 (73.6%)
Female 119 (32.6%) 61 (26.4%)

Grade
G1 55 (15.1%) NA
G2 175 (47.9%) NA
G3 118 (32.3%) NA
G4 12 (3.3%) NA
Unknown 5 (1.4%) NA

Stage
Stage I 170 (46.6%) 36 (15.6%)
Stage II 84 (23.0%) 105 (45.5%)
Stage III 83 (22.7%) 71 (30.7%)
Stage IV 4 (1.1%) 19 (8.2%)
Unknown 24 (6.6%) 0 (0.0%)

T stage
T1-2 271 (74.2%) NA
T3-4 91 (24.9%) NA
Unknown 3 (0.8%) NA

N stage
N0 248 (67.9%) NA
N1 4 (1.1%) NA
Unknown 113 (31.0%) NA

M stage
M0 263 (72.1%) NA
M1 3 (0.8%) NA
Unknown 99 (27.1%) NA

Survival status
Alive 235 (64.4%) 189 (81.8%)
Deceased 130 (35.6%) 42 (18.2%)
Chronic liver disease/cirrhosis NA NA

HCC, hepatocellular carcinoma; TCGA,-e Cancer Genome Atlas; LIHC, liver hepatocellular carcinoma; ICGC, International Cancer Genome Consortium.
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Figure 1: Identification of prognosis-related DEMRGs in the TCGA-LIHC dataset. (a)-e Venn diagram presenting DEMRGs which were
associated with OS in the univariate Cox regression analysis. (b) -e heatmap showing 37 prognosis-related DEMRGs. (c) -e forest plot
displaying the relationship between 37 prognosis-related DEMRGs and OS in the univariate Cox regression analysis. (d) -e PPI network
among candidate genes obtained from the STRING database. (e) Hub genes with the top 11 degrees of interaction. (f ) -e correlation
analysis of candidate genes.
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Figure 2: Continued.
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and Wilcoxon signed-rank test revealed that clinicopatho-
logical characteristics, including tumor grade, clinical stage,
and Tstage were different between high- and low-risk groups
(Figure 3).

3.4. Estimation of 6is Novel Signature and the Efficacy of
Chemotherapeutics and the Expression Value of Immuno-
suppressive Molecules. By exploring the relationship be-
tween this signature and the efficacy of common
chemotherapeutics used for HCC, we found that the low-
risk group had a higher IC50 of cisplatin, doxorubicin, and
mitomycin and a lower IC50 of sorafenib (Figure 4(a)).
Because, ICIs were the common treatment for HCC in
clinical practice, we investigated whether this signature was
associated with ICIs-related molecules and found that the
high-risk group was positively related with PDCD1, CD274,
CTLA4, HAVCR2, and LAG3 (Figure 4(b)).

3.5. External Verification of 6is Novel Signature.
Subsequently, the ICGC dataset was used as external vali-
dation to assess the predictive ability of this novel signature.
By calculating the risk score of each HCC sample based on
the formula for this signature, we split them into 2 groups
(high- or low-risk) with a cutoff of the median value
(Figure 5(a)). Patients with low risk had a lower probability
of earlier death and favorable OS than those high-risk
counterparts (Figures 5(b) and 5(c)), which were in great
accord with the results of the TCGA dataset. Likewise, PCA
and t-SNE analysis revealed that HCC samples in different
risk groups were easily distinguished (Figures 5(d) and 5(e)).
Besides, the AUC of 1-, 2-, and 3-year ROC for this signature
was 0.710, 0.686, and 0.715 (Figure 5(f)).

3.6. Independent Prognostic Analysis of 6is Signature. To
investigate whether this signature could predict HCC
prognosis independent of clinicopathological parameters,
univariate and multivariate Cox analyses were performed.
-e results revealed that this signature was remarkedly
associated with OS (TCGA dataset: HR� 4.788, 95%
CI� 3.088–7.424, p< 0.001; ICGC dataset: HR� 5.943, 95%
CI� 2.728–12.947, p< 0.001) and could serve as an inde-
pendent predictor for OS in both TCGA and ICGC datasets
(HR� 4.226, 95% CI� 2.679–6.666, p< 0.001; HR� 4.816,
95% CI� 2.200–10.540, p< 0.001, respectively) (Figure 6).

3.7. Functional Enrichment Analysis. To analyze the bio-
logical significance associated with this signature, we per-
formed GO and KEGG analyses of DEMRGs between
different risk groups. In both TCGA and ICGC datasets, the
GO enrichment terms for the biological process were nu-
clear division, mitotic sister chromatid segregation, and
mitotic nuclear division; for cellular component were
chromosomal region, condensed chromosome, centromeric
region, and kinetochore; and for molecular function was
DNA replication origin binding (Figures 7(a) and 7(b)).
Besides, the KEGG results showed that these DEMRGs of
both datasets were mainly involved in pathways associated
with cell cycle and DNA replication (Figures 7(c) and 7(d)).

3.8. Immune Cell Infiltration. To elucidate the relationship
between this signature and immune status, we implemented
ssGSEA to calculate the risk score of immune cells and
immune functions. Macrophages, aDCs, iDCs, -2_cells,
and Treg earned high scores in high-risk patients, while the
score of NK_cells was higher in low-risk patients of TCGA
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Figure 2: Development of a MRGs expression signature in the TCGA dataset. (a) -e Kaplan–Meier curve survival analysis. (b) -e risk
score curve plot and risk score scatter plot of high- and low-risk HCC patients. (c) PCA plot of the TCGA dataset. (d) t-SNE analysis of the
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and ICGC datasets. Noticeably, tumor-associated neutro-
phils, an essential component of tumor microenvironment
contributing to immunosuppression, exhibited no

significant difference between high- and low-risk groups
(Figures 8(a) and 8(b)). Besides, the score of APC_co_sti-
mulation, HLA, and MHC_class_I was higher in high-risk
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Figure 5: Validation of this novel expression signature in the ICGC dataset. (a) -e risk score curve plot in the ICGC dataset. (b) -e risk
score scatter plot of high- and low-risk HCC patients. (c)-e Kaplan–Meier curve survival analysis. (d) PCA plot of the ICGC dataset. (e) t-
SNE analysis of the ICGC dataset. (f ) AUC of time-dependent ROC used to assess performance of this signature in predictive ability in the
ICGC dataset.
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patients, while Type_II_IFN_Response earned a higher score
in low-risk patients of TCGA and ICGC datasets
(Figures 8(c) and 8(d)).

4. Discussion

-e sequential EMT-METprocess is essential for tumor cell
metastasis, poor survival outcome, and drug resistance [15].

Numerous studies have focused on the development of
prognostic expression signature from the perspective of
EMT [8, 16]. However, fewer studies addressed the prog-
nostic value of MRGs in cancer, especially for HCC.

In this study, bioinformatic analysis was conducted to
investigate the role of 415 MRGs in HCC and their rela-
tionship with prognosis. A total of 148 DEMRGs were
identified between HCC tissues and normal ones, and 25%
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Figure 6: Results of univariate and multivariate Cox regression analysis of OS in the TCGA development dataset (a) and the ICGC
validation dataset (b).
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(37/148) was found associated with OS in the univariate
Cox analysis, suggesting that MET played a critical role in
HCC. A novel gene expression signature integrating of 5
MRGs was constructed and verified using an external
cohort with regard to its predictive ability for prognosis and
relationship with clinicopathological characteristics. -e

analysis of immune cell infiltration revealed that this sig-
nature was significantly associated with tumor immunity.
Besides, this signature was correlated with sensitivity of
common antitumor drugs, including cisplatin, doxorubi-
cin, mitomycin, and sorafenib and the expression value of
immunosuppressive molecules, including PDCD1, CD274,
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Figure 8: Comparison of the ssGSEA scores between different risk groups in the TCGA dataset and ICGC dataset. -e scores of 16 immune
cells (a, b) and 13 immune-related functions (c, d) are displayed in boxplots. Adjusted p values are shown. ns, not significant. ∗P< 0.05,
∗∗P< 0.01, ∗∗∗P< 0.001.
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CTLA4, HAVCR2, and LAG3, indicating that it could serve
as a potential predictor for drug efficacy and ICIs-related
biomarkers.

A total of 5 MRGs were finally incorporated into this
novel signature, some of which have been reported to play an
essential role in HCC tumorigenesis. For instance, EZH2, a
family member of polycomb group protein, could regulate
DNA and histone methylation to modify transcription
epigenetically [17, 18]. In HCC, EZH2 could repress miR-22
at the epigenetic level to facilitate galectin-9 upregulation,
resulting in tumorigenesis and aggressiveness [19]. SPP1
belongs to a secreted phosphoprotein, which possesses cell-
adhesive and chemotactic properties [20]. In HCC, SPP1 is
regarded as an essential regulator participating in enhancing
HCC cell growth [21]. ETV4, a member of ETS family, could
bind to the promoter region of downstream target genes to
promote their transcription [22–24]. In HCC, PBK could
promote invasion and metastasis by enhancing the binding
of ETV4 to the uPAR promoter to activate its transcription
[25]. ANLN is a conserved protein which could bind to
cytoskeletal components and their regulator [26]. In HCC,
miR-15a andmiR-16-1 could bind to complementary sites in
the 3’-UTRs of ANLN to inhibit tumor growth and predict
favorable survival outcome [27].

To investigate the relationship between this novel sig-
nature and immune cell infiltration, we performed ssGSEA
based on DEMRGs between different risk groups. -e result
revealed that the high-risk group of both TCGA and ICGC
datasets had higher contents of macrophages, -2_cells, and
Treg. It is widely accepted that macrophages [28, 29],
-2_cells [30], and Treg [28, 31] could promote tumor
propagation and invasion and are associated with unfa-
vorable prognosis. Especially, CD4+ CD25+ Foxp3+ regu-
latory T cells could secrete inhibitory cytokines (IL-10 and
TGF-β) to suppress NK cells and CD8+ T cells activity,
resulting in T cell exhaustion and the defective antitumor
effect [32]. Moreover, Type_II_IFN_Response and NK_cells
were higher in low-risk patients. It is possibly because type II
IFN is mainly released by NK_cells [33], which are major
components of innate and adaptive immune defense against
tumorigenesis [34]. Besides, the antigen-presenting process,
including APC_co_stimulation, iDCs, aDCs, MHC_Class_I,
and HLA, earned a high score in the high-risk group. One
speculation is that mesenchymal cells have to revert to
epithelial status to form metastatic colonization. -is pro-
cess is required by reactivation of signaling pathway and
attachment between heterologous cells and healthy tissue,
resulting in activation of antigen-presenting cells and pro-
motion of antitumor T cell activity [6].

Several limitations should be recognized in our research.
First, we constructed and verified a novel MRGs signature
using TCGA and ICGC dataset. Real-world cohort is re-
quired to assess its accuracy and efficacy in future. Second,
this novel expression signature is constructed merely from
the hallmark of MET, and many genes with the prognostic
value in HCC may be neglected. Finally, the potential
mechanisms between MRGs identified by this signature and
immune activity are not elucidated, and future experimental
studies are needed to address this problem.

5. Conclusions

We constructed and verified a novel expression signature
integrating of 5 MRGs, which was significantly associated
with HCC prognosis, clinicopathological features, immune
status, chemotherapeutic efficacy, and immunosuppressive
molecules. -e molecular mechanisms between MRGs and
tumor activity in HCC are largely unknown and require
further experimental investigation.
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