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Hepatitis B virus reverse transcriptase: diverse functions
as classical and emerging targets for antiviral intervention

Scott A Jones and Jianming Hu

Hepatitis B virus (HBV) infection remains a global health problem with over 350 million chronically infected, causing an increased risk

of cirrhosis and hepatocellular carcinoma. Current antiviral chemotherapy for HBV infection include five nucleos(t)ide analog reverse

transcriptase inhibitors (NRTIs) that all target one enzymatic activity, DNA strand elongation, of the HBV polymerase (HP), a

specialized reverse transcriptase (RT). NRTIs are not curative and long-term treatment is associated with toxicity and the emergence of

drug resistant viral mutations, which can also result in vaccine escape. Recent studies on the multiple functions of HP have provided

important mechanistic insights into its diverse roles during different stages of viral replication, including interactions with viral

pregenomic RNA, RNA packaging into nucleocapsids, protein priming, minus- and plus-strand viral DNA synthesis, RNase H-mediated

degradation of viral RNA, as well as critical host interactions that regulate the multiple HP functions. These diverse functions provide

ample opportunities to develop novel HP-targeted antiviral treatments that should contribute to curing chronic HBV infection.
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INTRODUCTION

Hepatitis B virus (HBV) chronically infects over 350 million people

and remains a global health threat.1,2 HBV is a member of the hepad-

naviridae family, which includes members that can infect mammalian

or avian species such as duck hepatitis B virus (DHBV).2 The ca. 3.2-kb

genome of HBV is replicated by a virally encoded polymerase (HP), a

specialized reverse transcriptase (RT). HP uses the viral pregenomic

RNA (pgRNA) as the template to synthesize minus-strand viral DNA

via its RNA-dependent DNA polymerization activity (Figure 1).2,3 The

minus-strand DNA is then used by HP as the template for plus-strand

DNA synthesis. HP also has RNase H activity that is required to

degrade the pgRNA template during minus-strand DNA synthesis.

Minus-strand DNA synthesis is initiated by a novel protein priming

mechanism in which HP itself serves a protein primer as well as the

catalyst.4–9

In order to become competent for protein-primed initiation of

reverse transcription, HP must first bind to a short RNA structure

termed epsilon (HBV e or He) on the 59 end of pgRNA in a host

chaperone-dependent reaction.6,10–14 HP–He interaction is required

not only for protein-primed DNA synthesis by HP, but also for pgRNA

packaging into viral nucleocapsids where viral DNA synthesis takes

place.15,16 Currently, HP is the only viral target successfully tapped for

anti-HBV chemotherapy through the use of one class of chemical

compounds, nucleos(t)ide analog RT inhibitors (NRTIs), which

primarily target HP DNA strand elongation activity.17,18 However,

these treatments are not curative and long-term therapy is associated

with toxicity and emergence of drug resistant HP mutations.18,19

Furthermore, antiviral drug-resistant HP mutants can also acquire

resistance to the current HBV vaccine due to the compact nature of

the HBV genome and the overlap of the viral genes encoding HP and

the viral envelope proteins, which are targeted by the vaccine.19–22

These ‘vaccine escape’ mutants may pose a serious threat to the success

of the global HBV vaccine campaign.

HEPADNAVIRAL POLYMERASE DOMAIN STRUCTURE AND

INTERDOMAIN INTERACTIONS

Hepadnaviral polymerases are composed of four domains that include

an N-terminal terminal protein (TP) domain followed by a spacer

region, an RT domain and a C-terminal RNase H domain

(Figure 2A).3,23–25 Although the RT and RNase H domains are con-

served with other RTs, the TP domain is only found in hepadnaviruses

and not in any other RT.23,24,26–28 Efforts to obtain high-resolution

structural information about hepadnaviral polymerases have been

hampered by the difficulty in obtaining sufficient amounts of highly

purified and active proteins, but important motifs and residues critical

for various polymerase activities have been identified by genetic and

biochemical studies (Figure 2A).

The TP domain

The TP domain was originally identified by its attachment to the 59 end

of viral minus-strand DNA.26 TP, unique to hepadnaviral RTs, is

required for e binding, RNA packaging, and protein priming.23,24,29–35

Genetic screens in DHBV have identified a short sequence near the C-

terminus of TP, the T3 motif (Figure 2A), which is important for all the

TP functions identified so far.29,36,37 Mutations of the corresponding

residues in the HP T3 motif also disrupt HBV DNA synthesis, although

there is some dispute regarding the importance of particular HP T3

residues in RNA packaging and genome replication.32,36,38 The T3 motif

in DHBV polymerase (DP) is part of a larger C-terminal region of TP

that is transiently surface exposed following chaperone- and adenosine
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triphosphate (ATP)-dependent activation, which likely contributes

directly to DHBV e (De) RNA binding39 (see the section on

‘Polymerase–host interactions’).

As the RT domain is also important for e binding, the T3 motif in

TP is thought to interact with the RT domain at a region called RT-1

(Figure 2A) (for more information, see the section on ‘The RT

domain’), forming a composite RNA-binding site, although there is

no direct proof yet for this interaction.37 These data together led to a

model in which the polymerase is activated by host chaperones to

expose the C-terminal region of TP, including the T3 motif, which

interacts with the RT1 motif in the RT domain, allowing for e binding

and subsequent RNA packaging and protein priming.

Mutagenesis of charged and hydrophobic residues of the HBV TP

domain identified several important residues that contribute to RNA

packaging and genome replication.38,40 In particular, R105 in TP was

found to be important for pgRNA packaging (Figure 2A).38 While

Y173 is required for RNA packaging, both W74 and Y147 are impor-

tant for genome replication but not for RNA packaging (Figure 2A).40

These hydrophobic residues are hypothesized to be important for

either intra- or intermolecular protein interactions,41 although further

analysis will be needed to verify this prediction.

The spacer region

Although much of the spacer region of HP can be mutagenized with-

out disrupting HP function,24 three cysteine residues located in the C-

terminal region of the spacer, as well as one additional cysteine residue

in the N-terminus of the RT domain, are required for RNA packaging

(Figure 2A).42 Although their exact function is unknown, these

cysteines could be part of a zinc finger that coordinates He binding,

or could play an important structural role in HP function such as the

formation of disulfide bonds.

The RT domain

The RT domain of the hepadnaviral polymerase shows significant

homology to retroviral RTs, including the human immunodeficiency

virus (HIV) RT.28 Because of this similarity, the RT domain of HP has

been structurally modeled using HIV RT as a template.43–46 HP shares

homologous short motifs with retroviral RTs that include boxes A

through E along with boxes F (or box II) and G (or box I)

(Figure 2A).47–49 These motifs are known to form a well-defined cata-

lytic core in retroviral RTs based on crystal structural analyses.50,51 No

high-resolution structure for any hepadnaviral polymerase is available

yet, but three lines of evidence support structural homology with

retroviral RTs: first, amino-acid sequence homology; second, resis-

tance to NRTIs occur in similar RT regions of HP as HIV RT; third,

mutational analysis of these motifs show similar phenotypes to retro-

viral RTs.48,52–54

A conserved F residue in box A of DP, F451, plays a crucial role in

deoxy-ribonucleoside triphosphate versus nucleoside triphosphate

discrimination, as in retroviral RTs.53 Fundamental for polymerase

activity, the conserved tyrosine–methionine–aspartate–aspartate

active site in box C is required to catalyze DNA synthesis in both

HBV and DHBV including protein priming (Figure 2A).4,6,23,24 The

box E motif of the polymerase, which contains the proposed DNA

primer grip found in retroviruses, is important for DHBV and HBV

replication and specifically plays a role in the polymerase-e interaction

and DNA polymerization.54 Remarkably, HIV RT sequences (ca. 60

amino acids) from box C to box E can substitute the homologous DP
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Figure 1 HBV replication cycle. Upon entry into the cytosol, the viral capsid with its encapsidated viral genome, a partially DS, RC DNA covalently attached to HP,
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circular DNA; DS, double-stranded; RC, relaxed circular.
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sequences and this chimeric DP can produce mature viral relaxed

circular-DNA.54 Mutations downstream of box E around a

hypothesized nucleic acid binding region (based on HIV) of HP

reduce pgRNA packaging, although these mutations might affect

the global DP structure.55–57 Boxes F and G are within the afore-

mentioned RT1 motif (Figure 2A). Mutations in RT1 inhibit DP–

De binding and protein priming and RT1 is thought to interface

with the T3 motif in TP to form a composite RNA binding site,37 as

mentioned above.

The RNase H domain

The RNase H domain of both DHBV and HBV contains a stretch of ca.

100 amino acids in which a ‘DEDD’ motif is located (Figure 2A),

which is important for RNase H activity by coordinating metal ion

binding.58 The negatively charged residues in the DEDD motif are

important for both DHBV and HBV replication and specifically for

RNase H activity (Figure 2A).23,24,59,60 Additionally, purified recom-

binant RNase H from HBV genotype D and H shows in vitro RNase H

activity. Aside from its RNase H activity, the RNase H domain is also

important for pgRNA packaging.15,27,30

TP–RT domain interactions

For both HP and DP, the TP as well as the RT domains are required

for e binding and protein priming.10,33–35,61–63 In order for protein

priming to occur, proper TP and RT domain interactions, includ-

ing the possible T3–RT1 interaction discussed above, must occur

such that the priming Y residue in TP is positioned correctly at the

polymerase active site in RT, with the additional constraint that the

e internal bulge must also be positioned appropriately relative to

the polymerase active site and the primer Y residue to serve as the

template for the priming reaction. As only one polymerase mole-

cule may be packaged per nucleocapsid,16,64 TP–RT domain inter-

actions normally occurs in cis, i.e., intramolecularly. However, for

both DP and HP, independently expressed TP and RT domains can

trans-complement one another and reconstitute e binding and pro-

tein priming in vitro.4,33,61,65 Furthermore, either the TP or RT

domain, even when linked in cis to an RT or TP domain, can also

interact, in trans, with another RT or TP domain productively to

carry out trans-priming (see ‘protein priming’ section below).33

The strong TP–RT domain interactions are weakened following

protein priming, which induces a structural alteration in the poly-

merase resulting in TP–RT dissociation, which, in turn, may induce

the dissociation of the polymerase from e and facilitate the transfer

of the polymerase–nascent minus-strand DNA complex to DR1.33

POLYMERASE–HOST INTERACTIONS

A number of host factors bind and modulate the activities of hepad-

naviral polymerases (Figure 2B). Considering the diverse functions

attributed to the polymerase and the multiple conformational states

it has to adopt to carry out these functions, it is perhaps of little

surprise that polymerase functions are subject to modulation by a

multitude of host factors.
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Molecular chaperones

The first host factors shown to interact with the hepadnaviral poly-

merase are components of the 90 kDa heat shock protein (Hsp90)

complex, a multicomponent regulatory chaperone consisting of

Hsp90 itself and several cochaperones, including Hsp70, Hsp40,

Hop/p60 and p23 (Figure 2B).10,12–14,39,63,66,67 The host chaperone

complex associates with DP and HP and is required to establish and

maintain the polymerase in a conformation competent for e inter-

action in a dynamic process driven by ATP hydrolysis. The exact

details of polymerase activation by chaperones remain to be defined,

but as alluded to earlier, the chaperones transiently expose a C-

proximal region of TP (including the T3 motif), which may, in turn,

bind e directly.39 Components of the Hsp90 complex remain bound to

the polymerase and are packaged into viral nucleocapsids.10,14 For in-

depth reviews of the interactions and effects of the Hsp90 complex on

hepadnaviral polymerases, refer to the following references.66,68

Eukaryotic translation initiation factor 4E (eIF4E)

As HBV pgRNA encapsidation, which requires HP, is dependent on

close proximity of He to the 59 cap,69 it was postulated that a cap-

binding protein(s) might associate with HP and play a role in pgRNA

packaging. Indeed, the eukaryotic translation initiation factor 4E

(eIF4E) binds to HP independently of pgRNA, although the presence

of pgRNA enhances the HP–eIF4E interaction.70 eIF4E is also pac-

kaged into viral nucleocapsids. The functional consequence of eIF4E

binding to HP, if any, remains unclear.

Apobec3G

Apobec3G, a human cytidine deaminase that deaminates retroviral

DNA leading to hypermutation,71–73 binds to HP in an RNA inde-

pendent manner and is packaged into nucleocapsids in an HP- and

He-dependent manner.74 Apobec3G can block HBV replication inde-

pendent of its deaminase activity by a strong inhibitory effect on a very

early stage of viral minus-strand DNA synthesis.75,76

Immune modulatory factors

The interplay between HBV and the host immune system is complex

and remains the subject of intense investigation. An immune modu-

latory factor, DDX3, was recently identified as a host factor that inter-

acts with HP independently of pgRNA and is incorporated into

nucleocapsids.77 Expression of DDX3 in cells with replicating HBV

reduces HBV genome replication without affecting pgRNA encapsi-

dation, and was initially thought to be primarily an antiviral (or

restriction) factor. However, this interaction was later linked to HP-

dependent disruption of DDX3 binding to an effector kinase complex

involved in interferon (IFN) signaling and suppression of IFN-b pro-

moter activity.78 As DDX3 is a required component of both hepatitis C

virus and HIV replication,79–81 further studies may be warranted to

elucidate the physiological role of DDX3 during HBV replication.

Other work has also connected HP to immune suppression as HP

expression alone can suppress IFN-a-mediated response through HP-

mediated repression of signal transducer and activator of transcription

(STAT) translocation to the nucleus.82,83 HP is reported to bind both

protein kinase C-d and importin-a5, two proteins that modulate

activation of STAT1 by phosphorylation and STAT1/2 nuclear trans-

location respectively.84 HP possibly binds and subsequently inacti-

vates these factors, ultimately repressing STAT activation, although

more work will be needed to characterize the direct effects of HP

binding on protein kinase C-d and importin-a5. Additionally, it will

be important to determine the significance of the HP-induced

immune suppression phenomenon during HBV infection at physio-

logical levels of HP expression in vivo.

POLYMERASE-e INTERACTION AND pgRNA PACKAGING

As hepadnaviral polymerase-e binding is required for RNA encapsida-

tion and protein priming, extensive work has been carried out to

decipher the determinants of both the polymerase and e required

for ribonucleoprotein (RNP) formation.4,33,61,63,65,85,86 For a recent

review on hepadnaviral RNP formation.66 HP–He RNP formation

shows fairly limited requirements of He and does not require the He
apical loop (Figure 3).6,63 The HP requirements for He binding are

also minimal in that the entire RNase H domain, the C-terminal part

of the RT domain, the majority of the spacer and the N-terminal part

of TP can be deleted without affecting HP–He binding (Figure 2A).63

This is in contrast to the HP requirements for RNA packaging, which

include nearly the full-length of HP.30 Similarly, the entire He struc-

ture, plus a closely spaced (no more than 65 nucleotide away) 59 cap, is

required to direct pgRNA packaging.15,16,69

Mapping of the important He and HP determinants for HP–He
interaction was mostly performed in vitro using truncated HP con-

structs purified from bacterial expression systems and reconstituted

with the Hsp90 chaperone complex.63 Recently, full-length HP was

expressed and purified using a human cell line and was shown to

display He binding activity in vitro and in cells.6 This simplified system

has verified previous findings of He requirements for HP–He inter-

action and will facilitate further characterization of important He and

HP regions for HP–He interaction in vitro and in cells.

One approach adopted for characterizing e RNA structural require-

ments for DP and HP binding is the systematic evolution of ligands by

exponential enrichment (SELEX) screen.87,88 With DP, a SELEX

screen identified RNA aptamers that contain less predicted base pair-

ing in the upper stem region, but remain active in DP binding and

priming in vitro and active in replication in cell culture and in ani-

mals.88,89 For HP, a recent SELEX screen randomized the apical loop

and/or upper stem sequences of He and identified He variants that

retain HP binding in vitro.87 Interestingly, some strong HP-binding

RNA aptamers are predicted to have a less stable upper stem, similar to

DHBV and other avian hepadnaviruses.

SUPPRESSION OF pgRNA TRANSLATION

HP directly regulates viral translation by repressing the translation of

pgRNA through interaction with its 59 He.90 This translational repres-

sion is dependent on He being located within ca. 60 nucleotides from

the 59 end cap, very similar to pgRNA packaging requirement.69,91 The

mechanism by which HP suppresses translation is not entirely clear,
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but it is thought that HP binding to the 59 He could prevent ribosomal

binding and subsequent translation. It is also unresolved why the

position of the 59 He is critical for both RNA packaging and trans-

lational repression, although it could be related to cap binding factors

that require a short enough distance to interact with and regulate the

HP–He complex for both activities.91,92

PROTEIN PRIMING

Hepadnaviral DNA synthesis can be divided into at least three distinct

stages that are associated with major polymerase conformational

changes: (i) initiation of protein priming (deoxyguanidylation of

the TP Y priming residue); (ii) the DNA polymerization stage of

protein priming (the addition of 2–3 residues to the initiating

deoxy-guanosine monophosphate (dGMP)), and (iii) the subsequent

DNA elongation following minus-strand template switch and during

plus-strand DNA synthesis (Figures 1 and 4).6,7,9,62

DHBV

Protein priming in hepadnaviruses was initially discovered using

DHBV and was later found to require DP, De and components of

the Hsp90 chaperone complex.9,10,13,14,67 For an in-depth review of

DHBV priming, the reader is referred to the following reviews.3,66,68

Although viral replication is dependent on priming at a conserved

tyrosine residue (Y96 for DHBV and Y63 for HBV),4,8,93 the structural

determinants for selecting the priming residue remain poorly under-

stood and primer specificity is not absolute. Priming at other residues

including other Y and S residues on both the TP and RT domains can

occur in vitro.94,95 Also, full-length as well as truncated DP, in addition

to utilizing cis-linked TP for priming of DNA synthesis (cis-priming),

can also use separate TP or RT domain fragments in trans as primers

(trans-priming). That priming can occur at multiple residues on DP

and also in trans raises the possibility that host factors might also be

modified by nucleotidylation and potentially regulated by the viral

polymerase.33 Indeed, nucleotidylation is increasingly being recog-

nized as an important protein modification with functional conse-

quences.96 As trans TP and RT fragments can complement each

other to allow for e binding and priming, truncation analysis of both

the TP and RT domains has helped to narrow down the minimal

boundaries for both the TP and RT domains for priming activity.33

Identification of these minimal sequences not only provides insights

into the requirements for protein priming, but should also facilitates

ongoing efforts to obtain high-resolution structures of this most

important yet difficult enzyme.

HBV

Studies on HBV protein priming have been difficult due to the lack of

suitable in vitro systems. HP expressed in Escherichia coli and recon-

stituted with chaperone proteins shows He binding and but no protein

priming activity, in contrast to DHBV.10,12 HP expressed by in vitro

translation in rabbit reticulocyte lysate does not show any priming

activity even though the same translation system was the first used to

produce a priming active DP.9 HP expressed in insect cells using a

recombinant baculovirus system does show a low level of in vitro

priming (with a specific activity less than 1%), using the authentic

Y63 priming residue, but protein priming in this system is indepen-

dent of He,4,5 raising the possibility that the activity detected may

represent the recently discovered, protein-primed terminal transferase

activity of HP.7

We have recently expressed and purified HP using a human cell

system.6 HP purified using this system recapitulates authentic He

binding and He-dependent protein priming in vitro, including both

initiation (dGMP attachment to Y63 in TP) and polymerization (addi-

tion of two deoxy-adenosine monophosphate (dAMP) residues to the

initiating dGMP) in the presence of physiologically relevant Mg21

(Figure 4). In order for HP to show protein priming activity in vitro,

HP has to be isolated bound to He as an RNP complex formed in cells.

The He determinates required for HBV priming in this system are

strict and similar to the RNA packaging requirements, including the

need for both the He bulge and apical loop and a short distance

between the 59 cap and He (Figure 5). Furthermore, we have

developed an assay to directly visualize the nascent minus-strand

DNA products formed during protein priming by releasing them from

HP using tyrosyl-DNA phosphodiesterase 2,6 an enzyme able to spe-

cifically break the linkage between a tyrosine residues of a protein and
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the 59 end of DNA.97,98 The availability of this system should facilitate

efforts to elucidate the viral and host requirements for HBV protein

priming, and help characterize why HP expressed using this system has

priming activity, while other systems that produce priming active DP

are unable to produce priming active HP. Among other possibilities

the presence of the capped and polyadenylated He that is bound to HP

may allow additional RNA- or RNP-binding factors to be copurified,

producing a priming active, multicomponent HP complex, while DP

does not require these additional factors for protein priming.

Effects of metal ions on priming

Mn21 affects the function of DP by stimulating in vitro protein prim-

ing activity, allowing for low level De-independent protein priming

and inducing an alternate DP conformation.85 Mn21 also affects the

activity of the insect cell-derived HP.99 Surprisingly, HP purified from

human cells displays a Mn21-dependent protein-primed transferase

activity, in which HP can attach to itself long stretches of DNA using

all deoxy-ribonucleoside triphosphate substrates completely inde-

pendent of He or any other template.7 Protein-primed transferase

activity, similar to He-dependent DNA synthesis, shows a conforma-

tional change after production of a nascent DNA oligomer (Figure 4).

Although Mn21 is most likely not the divalent metal ion used for HP

functions during viral replication, it is possible that Mn21 could exert

mutagenic effects on HBV genomic replication during long-term

infection by activating the template independent transferase activity

of HP. Additionally, as cryptic site priming (i.e., independent of Y63)

can also occur with HP in the presence of Mn21,7 HP might modify

host proteins by covalent attachment of nucleotides and/or DNA

strands and regulate their activity, as discussed above.

DNA ELONGATION

After protein priming, which produces a three nucleotide (HBV)

or four nucleotide (DHBV) long DNA oligomer attached to the

polymerase, minus-strand DNA synthesis continues only after transfer

of this covalent polymerase–DNA oligomer complex to the comple-

mentary, direct repeat 1 (DR1) region at the 39 end of pgRNA

(Figure 4).11,100–104 The viral pgRNA is degraded by the polymerase

RNase H activity during minus-strand DNA synthesis.23,24,60

Subsequently, the polymerase is able to continue with plus-strand

DNA synthesis by using a small, RNase H-resistant fragment derived

from the 59 end of pgRNA as the primer.105 Hepadnaviral DNA rep-

lication occurs not only with the polymerase protein attached to the

DNA product, but also within the constraints of the nucleocapsid. The

capsid environment directly controls viral DNA synthesis within it,

possibly through modulating the polymerase activities.106,107 In

DHBV, mutations mimicking the capsid in a non-phosphorylated

state completely block reverse transcription at an early stage, while

mutations mimicking constitutive capsid phosphorylation allow for

minus-strand DNA synthesis, but cause a severe defect in plus-strand

DNA synthesis and accumulation. It is currently of great interest to

characterize how the capsid and polymerase proteins work together to

carry out pgRNA packaging and reverse transcription.

TARGETING HP FOR ANTIVIRAL THERAPY

There are currently seven Food and Drug Administration-approved

treatments for chronic HBV infection, including IFN-a and its pegy-

lated form and five NRTIs, which inhibit the DNA strand elongation

activity of HP.17,18 NRTIs are highly effective in inhibiting HBV rep-

lication. However, these treatments are not curative and require life-

long therapy with a high risk of drug resistance and toxicity.17,48 In the

search for a cure of chronic HBV infection, it will be important to

target all the essential functions of HP in addition to its DNA synthesis

activity (Figure 6).

Targeting polymerase-e binding

As polymerase-e binding is prerequisite for both pgRNA packaging

and protein priming, RNP formation represents an attractive early

target for antiviral development. We have shown that the antibiotic
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geldanamycin inhibits polymerase-e association in both HBV and

DHBV by blocking the chaperone function of Hsp90.12–14

Inhibition of host proteins as fundamental to cellular function as

Hsp90 may not be ideal, and other compounds that target the poly-

merase-e interaction have been identified. For example, hemin and

other porphyrins block polymerase-e interaction in both HBV and

DHBV.108

Another approach to identify agents that target HP–He binding is

through SELEX selection of strong HP-binding RNA aptamers that

compete with He for HP binding.87 An HP-binding ‘decoy’ aptamer

transfected into cells replicating HBV shows a strong inhibitory effect

on pgRNA packaging and DNA synthesis. Similar in basic mechanism,

peptides containing DHBV T3 or RT1 sequences inhibit priming,

likely through preventing DP–De binding.36,37 Lastly, a carbonyl J acid

derivative, which targets HIV polymerase–primer/template bind-

ing,109,110 disrupts the formation of hepadnaviral polymerase-e com-

plexes.111

Targeting protein priming

It should also be advantageous to target protein priming for anti-HBV

treatment as priming is the earliest stage of viral reverse transcription.

Distinct conformations adopted by HP for protein priming vs. the

subsequent DNA strand elongation afford the opportunity to design

structurally distinct agents to inhibit HP priming functions that would

be complementary to current NRTIs (Figure 4).6,7,9,62,85,112 Currently,

only one Food and Drug Administration-approved NRTI, entecavir, a

guanosine analog NRTI, can inhibit HP priming initiation by com-

peting for incorporation with the initiating nucleotide, deoxy-guano-

sine triphosphate.113,114 As HP resistance to entecavir only occurs with

multiple simultaneous HP mutations, it would be of great interest to

determine if entecavir-mediated priming inhibition contributes to

this increased barrier to viral resistance.18 Surprisingly, we found that

clevudine, a thymidine analog NRTI approved for HBV treatment in

South Korea, can also inhibit the initiation of protein priming,

through an apparent non-competitive mechanism and without being

incorporated into viral DNA.114 Additionally, both clevudine and

tenofovir, an adenosine analog NRTI, can inhibit the DNA polymer-

ization stage of protein priming.114 This was not too surprising for

tenofovir as it can compete with the natural deoxy-adenosine tripho-

sphate (dATP) substrate during the polymerization stage and can stop

viral DNA synthesis via chain termination once it is incorporated.

However, it was again surprising that clevudine could inhibit the

DNA polymerization stage of protein priming; as for its inhibition

of priming initiation, it also inhibited polymerization without being

incorporated into the DNA. Lastly, via a mechanism entirely different

from NRTI inhibitors, a catalytic dead RT domain fragment derived

from DP can potently inhibit DP priming activity in vitro when pro-

vided in trans, likely by ‘snatching’ the TP domain from the cis-linked

RT domain.33 Preventing proper TP–RT domain interactions could

prove an effective way of blocking polymerase functions in e binding,

RNA packaging and DNA synthesis.

Targeting RNase H activity

Much of the focus for HBV treatment to date has been targeted at the

DNA polymerization activity of HP, but the RNase H activity repre-

sents yet another essential enzymatic activity of HP with untapped

potential as an antiviral target. Recently, active HBV RNase H purified

from E. coli was used to screen a group of 21 known or predicted

inhibitors of HIV RNase H and/or integrase for their effects on

HBV RNase H activity.59 Twelve of these compounds were found to

have inhibitory effects on HBV RNase H activity. Although the specific

inhibitory mechanism of these compounds is not yet known for HBV,

structural predictions and inhibitory profiles suggest that some com-

pounds likely compete with Mg21 binding to the RNase H active site,

while others appear to act by novel non-competitive mechanisms.59

CONCLUSION

Genetic and biochemical studies to date have revealed many impor-

tant hepadnaviral polymerase residues and motifs that are important

for polymerase-e binding, RNA packaging, protein priming, DNA

strand elongation and RNase H activity. However, much remains to

be learnt. Many of the studies to date on protein priming have been

performed using the DHBV model system, while the recently

developed HP protein priming assay will now allow similar studies

to be performed with HBV. Additionally, there is still much to be

discovered regarding the viral and host requirements for HP protein

priming and the conformational dynamics of HP throughout viral

replication. The mechanisms of the mutually dependent packaging

of HP and pgRNA into assembling nucleocapsids and how the chang-

ing capsid environment regulates HP activities and viral DNA syn-

thesis are also not well understood at present. In addition to further

genetic and biochemical studies, intensified efforts to obtain high-

resolution structures of HP and various HP complexes essential for

HP functions and HBV replication will greatly inform the develop-

ment of novel effective agents targeted at diverse HP functions, includ-

ing the HP–He interaction, HP interdomain interactions, pgRNA

packaging, protein priming and RNase H activity. As these treatments

would target different stages in viral replication through distinct
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mechanisms than current antivirals, they could contribute signifi-

cantly to a cure for chronic HBV infection.
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