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Introduction

Humans have coexisted with viral pathogens for tens of thousands of years, influencing both

their emergence and evolution. However, the pervasiveness of the Western diet and disparities

in food access and security have altered how we as hosts interact with our viral pathogens. Mal-

nutrition, the state of having insufficient, excess, or imbalanced sources of energy, is well

known to attenuate immune responses. Could nutrition also actively shape how viruses evolve?

Malnourishment is a global, intersectional issue, and it may soon force a revision of our under-

standing of how viruses evolve within their hosts (Fig 1) [1].

Why do RNA viruses form quasispecies?

First theorized over 4 decades ago [2], a quasispecies population structure has been docu-

mented in plant, animal, and human pathogens [3–5]. A viral quasispecies describes the

mutant but related genomes that collectively infect, replicate, and spread among hosts. Tradi-

tionally, the theory has been applied to RNA viruses. Because of their short generation times,

small genomes, and the inherent lack of proofreading in most RNA replication, single nucleo-

tide variants (SNVs) emerge at a rate of roughly 103 to 107 more mutations per nucleotide cop-

ied compared with DNA viruses [6].

Nonsynonymous SNVs are continuously accrued and purged from the viral genome. This

flux generates a related “swarm” of viruses, which have little effect on the consensus sequence

but may show phenotypic differences. Mutations with phenotypic consequences are generally

deleterious; very few mutations have any fitness benefit. However, if beneficial mutations arise,

they may relate to host range, drug resistance or vaccine escape, and replicative capacity [7, 8].

Both beneficial and the common deleterious mutations balance the structure of the viral

swarm through complementation, interference, and cooperation [9–11]. Within a single host,

tissue-specific subpopulations may vary in virulence without affecting consensus sequence or

phenotype [12, 13]. Importantly, the consensus sequence should not be considered the “fittest

sequence,” because selection, competition, and genetic drift act upon the entire viral swarm.

Therefore, fitness of the swarm exceeds clonal sequence fitness, highlighted by work in vesicu-

lar stomatitis virus [3] and bacteriophage systems [14].

Viruses are obligate intracellular parasites that require a host cell to complete their life

cycle. Barriers to replication exist within and between susceptible hosts, which restrict viral

population diversity to quell infections [13]. In these wide-ranging environments, a
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heterogenous viral swarm containing isolates with differing abilities to infect, transmit, and

survive environmental and immunological onslaughts may safeguard viral existence. However,

this genetic plasticity has bounds, with an evolutionarily beneficial middle ground between

high- and low-fidelity replication [15, 16]. The “Goldilocks” approach maximizes fitness by

avoiding lethal mutagenesis while ensuring amenability to selective pressures [17]. Too low

fidelity leads to error catastrophe and collapse of the viral population; conversely, a highly

clonal population may be extinguished by host defenses [18–21].

What is the implication of viral diversity on disease severity?

Numerous theories have questioned the biological relevance of a quasispecies and challenged

its significance [17, 22]. However, boosting genetic diversity—to a point—is theorized to

increase virulence. A viral swarm may be better equipped to face bottlenecks imposed by

infecting hosts, environmental persistence, and transmission. Even within a single host, block-

ades due to infection barriers and the immune response diminish sequence variation, leaving a

relatively homogenous population until replicative errors replenish the mutant pool [13]. So,

do viruses harboring higher genetic diversity initially fare better in establishing an infection

and displaying virulent phenotypes?

Fig 1. Prevalence of malnutrition may impact global viral evolutionary patterns. Worldwide rates of obesity are projected to reach over 50% by 2050. Additionally,

undernutrition of both children and adults continues to be a global health crisis. (A) In a primarily healthy, lean environment, viral spread and acquisition of variants is

limited as a result of robust immune responses. (B) As the incidence of malnourishment has increased, we have discovered that the resulting diminished immunity can

permit the acquisition of minor variants and a virulent phenotype. In our current environment of widespread obesity, global viral evolutionary patterns may change

because of increased host susceptibility and decreased host immunity.

https://doi.org/10.1371/journal.ppat.1008711.g001
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In studies with classical swine fever virus, higher genetic diversity correlated with virulence

[23]; however, this conclusion has been challenged [24]. In other animal viruses, diversity

increases precede the selection of virulent genomes [4]. Parallel conclusions have been made

for human pathogens. In hepatitis C virus (HCV)-positive patients, high viral diversity prior to

transplantation correlated with higher liver fibrotic scoring 1 year post-transplantation [5].

Continued genetic evolution of HCV correlated with progressing hepatitis, whereas resolution

was associated with genetic stasis of HCV population [25, 26]. A model low-fidelity RNA-

dependent RNA polymerase (RdRp) poliovirus variant demonstrates that increasing genetic

diversity may not always yield fit populations [10, 27], yet high-fidelity RdRp mutants produc-

ing nearly clonal populations display reduced fitness in vivo [21].

Do host characteristics influence quasispecies structure?

Selection pressures ranging from host antiviral responses to pharmaceutical interventions

mold the viral swarm. Upon infection, immune responses restrict genetic diversity by limiting

spread and replication, eloquently demonstrated using a model poliovirus RdRp [13, 20]. Host

immunological status is implicated in molding the quasispecies of dengue virus [28], norovirus

[29], influenza virus [30], and coronavirus [31], among others. From these findings, empirical

studies have found that host features responsible for attenuating immunity are also implicated

in shaping the quasispecies and virulence, including aging [32] and immunocompromised sta-

tus [29, 30, 33, 34].

Exogenous control of infections can affect viral swarm composition. As hosts, we have

exploited the high mutation rates of viruses by redirecting viral evolution toward error catas-

trophe via pharmaceutical interventions [18, 19]. Interestingly, high-fidelity foot-and-mouth

disease viral variants possess a higher level of resistance to pharmacologics but are attenuated

in vivo, suggesting that the resulting restricted quasispecies hampers adaptability in the pres-

ence of drug or host pressures [19]. Also, antiviral treatment can lead genetic diversity gains

that may precede selection of drug-resistant genotypes, as has been observed with oseltamivir

[33, 35].

Is there evidence for altered viral evolution in malnourished hosts?

Globally, 1 in 9 people are undernourished and 1 in 3 are overweight or obese, with innumera-

ble others suffering from micronutrient deficiencies [1]. Consequently, it is of utmost impor-

tance to understand whether host nutrition actively shapes how viruses evolve because many

hosts do not mirror the actively studied “wild-type” condition. Previous work has identified

micronutrient deficiencies that may increase pathogen virulence through acquisition of minor

variants. In mineral- and vitamin-deficient mice, genetic mutations arise in coxsackie B and

influenza virus populations that promote virulence even in well-nourished hosts [36–40].

In our work with influenza virus, we determined that nutrient excesses can drive virulence

through population diversification [41]. Experimental evolution of CA/09 virus through two

models of murine obesity resulted in a viral population displaying increased virulence upon

inoculation of a wild-type host. This phenotype was not strain specific; an avirulent H3N2

virus was, upon passage in obese hosts, able to productively infect immunocompetent mice.

We observed a significant increase in viral diversity and subsequent virulence after a single

round of infection, with the phenotype persisting in obese-derived viral populations across 10

passages [41]. Interestingly, arbovirus-infected obese or protein-deficient mice showed higher

morbidity but lower viral diversity, and both malnourished models transmitted virus less effi-

ciently, highlighting that the effects of nutrition may vary based on the natural life cycles of
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viral families [42]. It is yet to be determined how malnourishment may impact transmission of

a respiratory, as compared with a vector-borne, virus.

How could what we eat shape our viral pathogens?

Both undernourishment and obesity are two sides of the same coin and are implicated in

blunting immune responses and increasing susceptibility to infection [43, 44]. In our studies

with influenza virus, we linked the emergence of a more diverse and virulent viral population

with blunted interferon responses in obese hosts. Interferon treatment of obese mice restricted

the emergence of a diverse quasispecies and attenuated the virulence of the resulting viral pop-

ulation, strengthening the claim that a robust innate immune response restricts subsequent

infection severity, possibly through reduced viral replication and acquisition of a genetically

diverse viral population [8, 20, 41]. Dietary metabolites also influence cellular metabolism and

can push the body to a state of metainflammation; this prooxidant environment may also

directly influence the genetic composition of the viral population [45].

Nutritional excess or deficiency may dampen the host immune responses and alter cellu-

lar metabolism, indirectly fostering an advantageous environment for viruses to explore the

sequence space (Fig 2). The dearth of host responses to infection—particularly innate

immunity—and the baseline malnourished state facilitates greater viral replication, permits

the diversification of the viral swarm, and potentially allows for the emergence of advanta-

geous mutations. Other indirect consequences of poor nutrition may also be involved.

Blunting of immune responses may alter viral tropism and viral- or immune-induced

pathology, thus remodeling the microenvironment in which the virus attacks the host. Also,

nutrition is increasingly appreciated as an influence on the gut microbiome (reviewed in

[46]). Interestingly, perturbations to the microbiome—both respiratory and gut—dampen

interferon responses to respiratory virus infection [47–49]. However, to our knowledge, no

empirical studies connect the obese microbiome to modulating enteric or respiratory viral

populations.

Fig 2. Direct effects of malnutrition on host antiviral responses shape the viral population. Nutritional status can alter the baseline state of host cells and the antiviral

response postinfection. These departures to healthy metabolism and robust immunity may cultivate a proviral environment for increased replication and perhaps permit

acquisition of beneficial mutations due to reduced selective pressures on the viral population. Other indirect effects of malnutrition could also alter viral interactions

with resident microbiota. Finally, the ripple effects of over- and undernutrition are systemic for the host; however, nutrition status may have differing impacts for the

virus based on tissue tropism, route of transmission, and mode of pathology.

https://doi.org/10.1371/journal.ppat.1008711.g002
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Conclusion

Pathogen virulence is a complex interplay of both host and pathogen properties. Host nutri-

tional status has long been considered a risk for infection susceptibility and severity and is now

implicated in shaping viral evolution. Continued studies on the molecular consequences of

obesity and malnutrition at the macro- and micronutrient levels will reveal which host

defenses are impaired through malnutrition and how they control quasispecies development

and viral pathogenesis. Similarly, as we gain insight into how hosts influence quasispecies for-

mation and pathogen virulence, we too can exploit these features for host benefit [18, 50].

The global ubiquity of malnutrition is shifting our population toward a more susceptible

state. This will undoubtedly influence how pathogens behave within and between hosts. Con-

tinued study of how quasispecies evolution relates to other human, animal, and plant patho-

gens will indeed usher in a greater understanding of host–pathogen interactions and provide

novel insights into how pathogens impact hosts and hosts impact pathogens.
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