
RESEARCH ARTICLE

TAMMiCol: Tool for analysis of the

morphology of microbial colonies

Hayden TronnoloneID
1☯*, Jennifer M. Gardner2☯, Joanna F. SundstromID

2☯,

Vladimir Jiranek2☯, Stephen G. Oliver3☯, Benjamin J. BinderID
1☯

1 School of Mathematical Sciences, University of Adelaide, Adelaide, Australia, 2 Department of Wine and

Food Science, University of Adelaide, Adelaide, Australia, 3 Cambridge Systems Biology Centre and

Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom

☯ These authors contributed equally to this work.

* hayden.tronnolone@adelaide.edu.au

Abstract

Many microbes are studied by examining colony morphology via two-dimensional top-down

images. The quantification of such images typically requires each pixel to be labelled as

belonging to either the colony or background, producing a binary image. While this may be

achieved manually for a single colony, this process is infeasible for large datasets containing

thousands of images. The software Tool for Analysis of the Morphology of Microbial Colo-

nies (TAMMiCol) has been developed to efficiently and automatically convert colony images

to binary. TAMMiCol exploits the structure of the images to choose a thresholding tolerance

and produce a binary image of the colony. The images produced are shown to compare

favourably with images processed manually, while TAMMiCol is shown to outperform stan-

dard segmentation methods. Multiple images may be imported together for batch process-

ing, while the binary data may be exported as a CSV or MATLAB MAT file for quantification,

or analysed using statistics built into the software. Using the in-built statistics, it is found that

images produced by TAMMiCol yield values close to those computed from binary images

processed manually. Analysis of a new large dataset using TAMMiCol shows that colonies

of Saccharomyces cerevisiae reach a maximum level of filamentous growth once the con-

centration of ammonium sulfate is reduced to 200 μM. TAMMiCol is accessed through a

graphical user interface, making it easy to use for those without specialist knowledge of

image processing, statistical methods or coding.

Author summary

Many microbes are studied by examining the colony morphology via a two-dimensional

top-down image. In order to quantify such images, we typically need to label each pixel as

belonging either to the colony or the background, creating a binary image. This task is

laborious when performed manually and proves infeasible for large datasets. To overcome

this, we have developed the software Tool for Analysis of the Morphology of Microbial

Colonies (TAMMiCol), which automatically and efficiently converts colony images to

binary. Multiple images may be imported and processed simultaneously, and TAMMiCol
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exploits the structure of the images to identify an appropriate threshold for the binary

conversion of each image. The images produced by TAMMiCol, which take around 20 sec-

onds each to process, compare favourably with images processed manually, which take

anywhere up to 15 minutes, while TAMMiCol outperforms several standard image seg-

mentation methods. After processing, the images may be exported as a CSV or MATLAB

MAT file for further analysis, or may be quantified by TAMMiCol using the in-built statis-

tics. Using TAMMiCol, we have found that colonies of S. cerevisiae reach a maximum level

of filamentous growth once the concentration of ammonium sulfate is reduced to 200 μM.

This is a PLOS Computational Biology Software paper.

Introduction

Budding yeasts, such as Saccharomyces cerevisiae (baker’s yeast), are able to change their pat-

tern of growth on a solid substrate in response to the surrounding nutrient level. At sufficiently

high nutrient levels, buds separate from the mother cell following cytokinesis to produce colo-

nies that appear close to circular when viewed from above. When nutrient is not readily avail-

able, the cells reproduce via the pseudohyphal growth pattern, which is characterised by distal

unipolar budding (budding opposite to the birth scar), the elongation of cells, and a persistent

connection between mother and daughter cell [1]. As a result of these changes, the colony

develops a number of filaments that grow along and into the substrate. This growth mode has

important consequences both ecologically and medically. For example, pseudohyphal growth

increases the virulence of the pathogenetic yeast Candida albicans [2].

Owing to the widespread occurrence of yeasts in the production of foods such as bread,

wine and beer, and the need to restrict the growth of drug-resistant yeast colonies on catheters

and other medical equipment [3, 4], it is important to understand and classify strain-specific

properties and growth characteristics. These features are usually investigated via two-dimen-

sional top-down images of colonies grown on a solid medium [1, 5–7]. The growth patterns

observed in these experimental images are typically quantified using binary versions of the

images, which indicate whether or not each pixel is part of the colony [7–9]. While it is possible

to manually convert a single image to binary with sufficient accuracy using image analysis soft-

ware, this task is difficult in studies of dimorphic growth, which may involve hundreds of

images [7], and is infeasible for large datasets produced using genome-wide mutant libraries,

which consist of thousands of images [6]. The analysis of large datasets thus requires two ele-

ments: the automated conversion of colony images to binary, and robust statistics that enable

quantification of the spatial patterns.

The conversion of an image to binary requires each pixel to be placed into one of two cate-

gories (in this case, the colony and background) based upon a set of criteria. A variety of meth-

ods capable of performing this operation are available. The simplest approach to this task is

thresholding, through which each pixel is categorised depending upon whether its intensity is

greater than a given tolerance level. This approach is limited by the need to select a suitable tol-

erance, which may differ for each image and, for large datasets, must be chosen automatically

to make processing feasible. There is a significant body of work regarding image thresholding

and a variety of methods for achieving this are available, as illustrated in the reviews by Weszka
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[10], Sahoo, Soltani and Wong [11], and Sezgin and Sankur [12]. Common methods for select-

ing the tolerance include Otsu’s method [13], the Ridler–Calvard method [14, 15], k-means

clustering [16, 17], a watershed transformation [18, 19] and DBSCAN [20]. Some existing

techniques require particular lighting [21] or cells to be marked, such as by a fluorescent com-

pound [22, 23], to facilitate the image analysis.

Colony identification has been performed using specialised lighting techniques combined

with multilevel thresholding [24, COVASIAM], through manual thresholding on multiple lay-

ers to create three-dimensional binary images [25, COMSTAT], and by using local threshold-

ing around areas where colonies were expected to grow [26]. Methods have also been

developed to identify individual cells using a mix of different processing methods [27, 28, Cell-

Profiler], edge detection [23, 29], Otsu’s method [21, 30] and a combination of Otsu’s method

and a watershed transformation [31]. Software [32, CalMorph] and algorithms [19] tailored

for yeast have also been produced for identifying and analysing individual cells. The produc-

tion of binary images has been used to quantify images by examining the selected pixels in

binary images produced using a range of thresholds [22]. Software for counting bacterial colo-

nies using Otsu’s method has been developed for mobile phones [33, Colonizer].

The choice of method is dependent upon the particular application and its computational

cost. The demands of processing large datasets require that the method provides no greater

accuracy than is needed in order to make the analysis tractable. The statistics required thus

influence the choice of method, and consideration must be given to these in order to deter-

mine the appropriate accuracy for the image processing. Previous studies of yeast colonies

have relied on a variety of commercial packages to quantify the images [6]; however, these pro-

duce a limited range of statistics, such as the colony area or the change in pixel intensity pre-

and post-wash. Ruusuvuori et al. [8] developed the web-based application Yeast Image Analy-

sis (YIMMA) for processing and analysing images of yeast colonies, which converts images to

binary representations by first applying a global intensity threshold to the green channel of a

colour image, followed by post-processing to clean the image. The images are quantified by

427 features, such as the area, perimeter, and fractal dimension. Cross-validation analysis

found that only 6 features were required to classify colonies as either smooth or fluffy. A set of

three spatial indices designed specifically to quantify the growth of filamentous yeast colonies

[7] have been shown to provide useful information on the morphology of yeast colonies and

microbial mats [34, 35].

To facilitate the analysis of colony images, we have developed the software Tool for Analysis

of the Morphology of Microbial Colonies (TAMMiCol). This software converts images of

microbial colonies to binary for analysis using either in-build statistics or by computing other

statistics after export. The binary images are produced by applying a threshold to a greyscale

image. Importantly, this threshold is determined efficiently and automatically for each image

by exploiting the structure of microbial colony images, which provides an advantage over

generic methods for image analysis. TAMMiCol is able to process images provided there is

some contrast between the colony and background, so does not require prior marking of cells

and thus may be used to analyse existing datasets, as demonstrated here. While fluorescent

marking is not required, any enhancements to the contrast between the colony and back-

ground may improve performance.

TAMMiCol provides several advantages over existing software used for converting images

to binary, such as ImageJ [36]. Multiple images may be imported simultaneously and con-

verted using a different threshold computed for each image without the need for the user to

record macros. Post-processing steps are applied automatically and checks are performed on

the binary images. TAMMiCol is able to compute specialised spatial indices [7], which are

shown to be sufficiently robust so that small differences between binary images produced
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manually and those produced automatically do not significantly alter the statistics. Critically,

use of TAMMiCol does not require knowledge of image processing and all features are

accessed through a graphical user interface, placing the ability to analyse images directly with

experimentalists. This package thus makes it possible to produce useful statistics automatically

from experimental images alone, and opens up an avenue to study large datasets in greater

detail than has previously been possible.

The images produced by this automated method are found to be of similar quality to images

produced manually. Furthermore, because TAMMiCol is designed for images of microbial

colonies, images produced using this method provide better agreement than images produced

by standard image segmentation techniques. Through an analysis of new data using TAMMi-

Col, we find that colonies of the yeast S. cerevisiae reach a maximum level of filamentous

growth once the concentration of ammonium sulfate is reduced to 200 μM. While largely

applied to filamentous yeast colonies, this approach is shown to work for biofilms and other

microbial colonies.

TAMMiCol is free and publicly available from github.com/HaydenTronnolone/

TAMMiCol. Installation files are available for both macOS and Windows. TAMMiCol is writ-

ten in MATLAB using the App Designer package and, while not requiring a MATLAB license

in order to operate, does need MATLAB Runtime, which contains necessary shared libraries

and will be downloaded automatically during the TAMMiCol installation. Once TAMMiCol is

downloaded, installation should be complete in under five minutes. TAMMiCol does not

require additional plugins and is designed for microbial colony analysis, so provides seamless

operation.

Design and implementation

Image analysis

We consider a two-dimensional experimental image with dimensions Lx and Ly in the hori-

zontal and vertical directions, respectively. The image is first converted to greyscale and, with-

out loss of generality, we assume that the colony is darker than the background, as the same

method may be applied when the colony is lighter by inverting the image. The colony is typi-

cally located near to the centre of the image, and so is assumed to lie within a rectangle of the

same aspect ratio as the original image but 10% of the size, which ensures that some part of the

colony is captured. The darkest pixel p in this central rectangle is assumed to be part of the col-

ony and the corresponding intensity of this pixel denoted cp. Since p lies within the colony,

pixels with intensities within some integer tolerance τ of cp that are near to p are thus also

assumed to represent part of the colony. Accordingly, for each tolerance τ 2 [τs, τf] for some

chosen minimum tolerance τs and maximum tolerance τf, a binary image is produced contain-

ing all pixels with intensities in the interval [cp − τ, cp + τ] that form a contiguous region that

contains p. By requiring that the colony comprises a connected region, other artefacts in the

image, such as contaminants, are automatically removed.

The binary images produced for each tolerance τ are quantified using the proportion χ(τ)
of pixels selected for each tolerance, as illustrated in Fig 1. The proportion χ(τ) is a non-

decreasing function of τ, since increasing the tolerance can introduce additional pixels but not

remove them. At low values of τ, the selected region will typically be a strict subset of the col-

ony. As τ increases, more pixels from the colony are included in the selected region. Once τ
becomes sufficiently large, the selected region will expand beyond the colony and start to

include the background of the image. The transition as the selected region expands beyond the

boundary of the colony appears as a rapid increase in the value of χ. Once τ is sufficiently
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large, the entire image is selected, corresponding to the maximum proportion χ = 1. The toler-

ance at which this first occurs is denoted τu.
Having created a binary image for each tolerance τ, it remains to choose which best repre-

sents the colony. The best image is assumed to occur just before parts of the background are

included at the tolerance τb. This point is identified by optimising a piecewise linear fit to χ, as

illustrated in Fig 1. A critical tolerance τc is selected from the region after the rapid increase in

χ. In general, we choose τc = τu; however, the fit may be adjusted by varying the value of τc. For

each midpoint tolerance τm 2 [τs + 1, τc − 1], the proportion χ is approximated by a piecewise

linear function pm(τ). This interpolant has two components that are defined on the intervals

[τs, τm] and [τm + 1, τc]. These are chosen to agree with χ exactly at the end points τs and τc,
and at the two adjacent values τm and τm + 1 where the intervals meet. These conditions

completely specify the four coefficients of the piecewise polynomial and may be written as

pmðtsÞ ¼ wðtsÞ; pmðtmÞ ¼ wðtmÞ;

pmðtm þ 1Þ ¼ wðtm þ 1Þ; pmðtcÞ ¼ wðtcÞ:

For each choice of midpoint τm, we compute the mean error δ(τm) between the proportions χ
and the interpolant pm. The optimal threshold τb is taken to be the value of τm corresponding

Fig 1. Illustration of the method used to identify the optimal tolerance τb. On the interval [τs, τf], the proportion of

selected pixels χ (solid black) is non-decreasing and reaches the maximum value 1 for τ� τu. The best binary image

occurs at the tolerance τb, which occurs just before the rapid increase in χ. For each τm 2 [τs + 1, τc − 1], a piecewise

linear function pm (purple) is fit to χ on the intervals [τs, τm] and [τm + 1, τc], for some critical value τc such that χ(τc) is

close to unity. The point τb is taken to be the threshold that minimises the mean error between χ and the piecewise

linear interpolant.

https://doi.org/10.1371/journal.pcbi.1006629.g001
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to the minimum of δ(τm). Although not typically needed, the tolerance may be adjusted manu-

ally. This may be required when analysing images comprising several disconnected pieces,

which bring added difficultly as the increase in χ near the optimal choice of τ may be more

gradual. When processing more than one image, the tolerance selection will be repeated inde-

pendently for each image, so that image may thus be processed using a different tolerance. A

detailed example of this process for sample 5 of the AWRI 796 50 μM dataset produced by

Binder et al. is given in the Supplementary Material S1 Text.

Three operations are performed on the selected image. Since it is assumed that the colony

lies entirely within the image, it is expected that the filtered image will not contain any selected

pixels around the boundary. If boundary pixels are selected, the tolerance is decreased auto-

matically by one unit at a time until no pixels lie on the boundary. Next, any pixels with fewer

than four neighbours in the cardinal directions are removed. While this removes a small num-

ber of pixels from the colony boundary, it ensures that any stray pixels located outside of the

colony are not included in the binary image. Finally, if the user has indicated that the colony is

connected, the largest connected piece in the binary image is identified and all other elements

are removed from the image. The binary images are then saved as either CSV or MATLAB

MAT files, which may be analysed using other software or by using the statistics incorporated

into TAMMiCol, described in the next subsection.

Quantifying the morphology

Filamentous yeast colonies may be quantified using the spatial indices introduced by Binder

et al. [7] with some modifications, explained here briefly. To validate the binary images pro-

duced by TAMMiCol, we compare the statistics computed from the automated method with

those computed from manually processed images, and examine the statistics produced from

new large datasets that are infeasible to analyse manually. In the following definitions, the total

number of occupied pixels is denoted ν and the maximum colony radius, as measured from

the colony centroid, is denoted R. From these two quantities, the average density is calculated

as ρ = ν/πR2.

To quantify the distribution in the radial direction, we count the number of pixels in nr con-

centric annuli centred on the colony. Instead of using annuli of equal width, as per Binder

et al. [7], the annuli are chosen to each have area A = πR2/nr. The number of pixels in the jth
annulus is denoted cr(j). This is scaled by the number of pixels expected to lie within the annu-

lus if the pixels were distributed uniformly, yielding the scaled counts

frðjÞ ¼
crðjÞ
rA
¼
nrcrðjÞ
n

:

The function fr has mean value 1, which is not true when using annuli of equal width. The

value at which fr(j) first drops below 1 is called the complete spatial randomness (CSR) radius

RCSR. Using this value, the radial distribution is characterised by the index

Ir ¼ 1 �
RCSR

R
2 ½0; 1�:

This index measures non-uniform growth in the radial direction.

The angular distribution is quantified by computing the angular distance between each pair

of pixels. Since the large number of possible pairs ν(ν − 1)/2 makes this computationally expen-

sive, we repeatedly sample νΘ pixels chosen randomly from the population and average over

the samples. Throughout this study, we take at most 103 pixels and calculate the average of 103

samples. The differences are grouped into nΘ bins with widths π/nΘ and the corresponding
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bin counts are denoted cΘ(j). These counts are scaled by the expected count for a uniform dis-

tribution to give the scaled counts

fY ¼
2nYcYðjÞ
nYðnY � 1Þ

;

which again has mean 1. Binder et al. [7] introduced the index IΘ = fΘ(1), which is a measure

of local aggregation. This index is largest when all the pairs lie in the first bin, in which case

fΘ(1) = nΘ. An improved index is given by scaling by this maximum value, resulting in

IY ¼
fYð1Þ
nY
2 ½0; 1�:

This index measures the aggregation of cells. The maximum variance of fΘ occurs when all the

pairs lie in a single bin. In this case

VarðfYÞ ¼ nY � 1:

The spread of the cells is measured by the index

ICSR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðfYÞ
nY � 1

s

2 ½0; 1�:

This index measures non-uniform growth in the angular direction.

For each of the indices, larger values indicate greater variation in the morphology. For the

purposes of this work, each index is calculated using 200 bins. In addition to the three indices

described here, TAMMiCol produces several other values that quantify the morphology,

which are described in the Supplementary Material S1 Text.

Results and discussion

Comparison with manually processed data

To examine the performance of the automated method, we validate the binary images pro-

duced using the filamentous yeast datasets produced by Binder et al. [7] and summarised in

Table 1. These datasets comprise 270 raw images of filamentous yeast colonies, along with

binary versions of each image that were processed manually using image processing software.

The binary images produced by TAMMiCol are available online [37]. All analysis by TAMMi-

Col was performed using the default settings.

To first illustrate this method, we consider the experimental image of colony 5 from the

AWRI 796 50 μM dataset after 233 hours of growth. The original image, the region selected by

TAMMiCol and the corresponding proportions χ plotted against τ are shown in Fig 2. The

selected level and the value at which all pixels are selected are also marked on this plot. The

overlaid image shows that TAMMiCol is able to separate the colony from the background with

a high degree of accuracy. This is confirmed by the plot of the pixel proportions, which shows

that the point just before the rapid increase in the number of pixels was correctly selected.

The suitability of the automated method may be quantified by comparing the images pro-

duced by TAMMiCol to the images produced manually by Binder et al. [7]. For each pair of

images, we counted both the number of pixels νu selected in the union of the manual and auto-

mated images (pixels selected as part of the colony in at least one image) and the number of

pixels νi selected in the intersection (pixels selected as part of the colony in both images). A

graphical representation of this process for sample 5 of the AWRI 796 50 μM dataset produced

by Binder et al. is given in the Supplementary Material S1 Text. The relative percentage

TAMMiCol: Tool for analysis of the morphology of microbial colonies
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difference between the images is defined to be

d ¼
nu � ni
nu
� 100 2 ½0; 100�;

which is the Jaccard distance expressed as a percentage. This represents the percentage of

selected pixels that differ between the two images relative to the total number of pixels that are

considered part of the colony by at least one of the methods. If both images have the same set

of selected pixels then d takes the value 0, while if there are no common selected pixels between

the two images then d = 100. If the pixels in both images are selected at random with probabil-

ity 0.5, then d = 200/3� 66.7. The values of d for each image from the datasets described in

Table 1 are shown in Fig 3. For each dataset, the difference is typically less than 10% and many

samples have percentage difference values around 5% or lower. Furthermore, the mean differ-

ences �d over each dataset, given in Table 1, are all less than 7%. This indicates that the auto-

mated and manual images are in close agreement. Extreme value distributions [38] and

Wilcoxon’s rank-sum test [39] have been used previously to perform statistical tests to deter-

mine whether agreement indicated by d is due to chance alone. It has been noted, however,

that statistical tests performed on Cohen’s kappa coefficient, which measures agreement in a

similar fashion to d, rarely indicate that agreement is due to chance alone [40]. As this observa-

tion also applies to d, we do not report formal statistical tests on these results but instead note

that they indicate a high level of agreement.

To examine the performance of TAMMiCol, the trial datasets were also processed using

a selection of standard methods implemented using MATLAB. The methods considered

were: (1) Otsu’s method for threshold selection [13]; (2) the Ridler-Calver method [14],

which is the default algorithm used by the commercial image processing software ImageJ; (3)

k-means++ clustering [16, 41]; (4) a watershed transformation [18] using Meyer’s flooding

algorithm [42]; and (5) DBSCAN [20] using natural patterns [43]. The watershed

Table 1. Summary of the datasets produced by Binder et al. [7]. Shown are the species, nutrient level (ammonium sulfate), number of samples, number of observation

times, and the mean percentage difference �d between the TAMMiCol and manual images, along with the corresponding mean percentage differences �dOtsu, �dkmeans and �dRC
when using Otsu’s method [13], k-means++ clustering [16, 38] and the Ridler–Calvard method [14], respectively.

Species Nutrient Samples Obs. �d �dOtsu
�dkmeans

�dRC

AWRI 796 50 μM 10 8 5.49 13.1 12.3 15.4

AWRI 796 500 μM 9 10 3.67 8.89 5.61 6.12

AWRI R2 50 μM 10 10 6.41 20.2 12.9 14.7

https://doi.org/10.1371/journal.pcbi.1006629.t001

Fig 2. Example of image processing by TAMMiCol. (a) Colony 5 after 233 hours of growth and (b) with the selected

area overlaid in green. (c) The proportions χ (blue) and error δ (red) are plotted against τ. Marked on this plot are the

selected level τb and the critical value τc. TAMMiCol is able to separate the colony from the background with a high

degree of accuracy.

https://doi.org/10.1371/journal.pcbi.1006629.g002
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transformation (method 4) was not able to produce viable images, while DBSCAN (method 5),

which has computational complexity O(N2) for the number of pixels N, proved infeasible for

the image sizes considered here.

Otsu’s method (method 1), the Ridler–Calvard method (method 2) and k-means++ cluster-

ing (method 3) produced viable images, which were compared with the manual images in the

same manner as for TAMMiCol. The respective mean differences �dOtsu, �dRC and �dkmeans for

these methods are given in Table 1. The mean differences for each dataset are lower for images

produced by TAMMiCol than for images produced by either Otsu’s method, the Ridler–

Calvard method or k-means++ clustering.

As the images can be quantified using the in-built spatial indices, it is of interest to compare

the values produced by the TAMMiCol and the manual images, which are plotted in Fig 4.

Both methods produce similar results, which indicates that the automated method provides

sufficiently accurate images for the computation of the indices. Importantly, despite the differ-

ences in the indices, the automated and manual images generally agree on the relative order of

the statistics for each of the datasets.

Filamentous growth and nutrient concentration

Having validated TAMMiCol using existing data, we next demonstrate the computational effi-

ciency of this software using a larger collection of new images. It is well known that colonies of

Fig 3. Comparison of images produced by TAMMiCol and images produced manually. The percentage difference d
between binary images produced by TAMMiCol and binary images created manually for the (a) AWRI 796 50 μM, (b)

AWRI 796 500 μM and (c) AWRI R2 50 μM datasets. The original images feature colonies of S. cerevisiae produced by

Binder et al. [7] and are described in Table 1. The differences are plotted against the sample number s and observation

time t. All plots are shown with the same colour scale. The difference is typically less than 10%, and many samples have

disagreement values of around 5% or lower, indicating a close agreement between the automated and manual images.

https://doi.org/10.1371/journal.pcbi.1006629.g003

Fig 4. Comparison of indices computed from TAMMiCol images and manual images. The spatial indices (a) Ir, (b)

IΘ and (c) ICSR computed from both the TAMMiCol images (solid lines) and the manual images produced by Binder

et al. [7] (dashed lines). Shown are AWRI 796 50 μM (blue), AWRI 796 500 μM (red), and AWRI R2 50 μM (yellow).

The bars represent the standard error. The automated and manual images generally agree on the relative order of the

statistics for each of the datasets.

https://doi.org/10.1371/journal.pcbi.1006629.g004
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S. cerevisiae produce filamentous growth when starved of nitrogen [1]. In a study of 1026

strains of S. cerevisiae, 56% displayed filamentous growth in low-nitrogen conditions, and

large variations in morphology were observed [44]. Furthermore, changes in growth have been

observed due to the nitrogen source used [45]. Much work has been devoted to identifying the

signalling pathways responsible for the transition to filamentous growth [46], while global

gene-deletion assays have been performed to identify the genes that control filamentous

growth [6]. While some studies have attempted to quantify the observed behaviour [6, 7], little

quantitative information is available relating the nitrogen level and colony shape.

To address this, colonies of AWRI 796 were grown on agar at five different ammonium sul-

fate concentrations between 50 μM and 500 μM at 30˚C, and imaged daily for ten days, as

summarised in Table 2. The experiment was stopped at this point in order to avoid using

images that had been distorted due to evaporation from the agar. Whereas the previous data-

sets considered comprised a total of 270 images and could be processed manually, the new

datasets contain 690 images and, as such, manual processing of the images is infeasible. The

images were thus processed using TAMMiCol only, with spatial indices computed from the

resulting binary data. All analysis by TAMMiCol was performed using the default settings.

Using a MacBook Pro running OS X 10.10.5 with a 2.5 GHz Intel Core i7 processor, each indi-

vidual image was converted to binary and the statistics computed in approximately 20 seconds.

This highlights how TAMMiCol permits analyses that were previously infeasible. The binary

images produced by TAMMiCol are available online [37].

To compare the effect of ammonium sulfate concentration, the spatial indices Ir, IΘ and

ICSR were averaged over each concentration, with the resulting mean values plotted in Fig 5. In

general, the indices show that filamentous growth increases with decreasing nutrient. After

approximately 100 hours of growth, the colonies begin to show filamentous behaviour and the

values for 350 μM and 500 μM become distinct from the other concentrations, which remain

grouped closer together, suggesting that, for ammonium concentrations of 200 μM or less, the

colonies reach a maximum level of filamentous growth. This indicates that a threshold concen-

tration of ammonium is required for cells to grow in the yeast form. Below this, filamentation

is triggered (presumably as a response to nitrogen stress) and some cells then switch to grow in

the filamentous form. Other environmental conditions may affect the exact ammonium

threshold required to trigger filamentous growth, such as the density of the medium and the

concentrations of other nutrients.

Other microbial colonies

While all the examples thus far have considered filamentous yeast colonies, the methods pre-

sented here are applicable to a variety of other cases. To illustrate this, we consider an S. cerevi-
siae (L2056) biofilm produced by Tam et al. [34], and a colony of Bacillus subtilis produced by

Fujikawa and Matsushita [47], both of which are shown with the colony identified by TAMMi-

Col in Fig 6. In both cases, TAMMiCol is able to identify the colony with a high degree of

Table 2. Summary of new data showing the species, nutrient level (ammonium sulfate), number of samples and

number of observation times.

Species Nutrient Samples Obs.

AWRI 796 50 μM 14 10

AWRI 796 100 μM 14 10

AWRI 796 200 μM 14 10

AWRI 796 350 μM 14 10

AWRI 796 500 μM 13 10

https://doi.org/10.1371/journal.pcbi.1006629.t002
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Fig 5. Indices for the new datasets computed using TAMMiCol. Shown are the indices (a) Ir, (b) IΘ and (c) ICSR for

AWRI 796 grown with ammonium sulfate concentrations of 50 μM, 100 μM, 200 μM, 350 μM and 500 μM. The bars

represent the standard error. In general, the indices increase with decreasing concentration, indicating greater

filamentous growth.

https://doi.org/10.1371/journal.pcbi.1006629.g005

Fig 6. Examples of other colony types processed by TAMMiCol. Shown are (a) an S. cerevisiae biofilm and (c) a B.
subtilis colony, along with the colony shown in green as identified by TAMMiCol (b and d, respectively). In each case,

the colony is identified with a high degree of accuracy, demonstrating the versatility of the software. Fig. 6(a and b) was

produced by Tam et al. [34]. Fig. 6(c and d) is reprinted from the Journal of the Physical Society of Japan, 58(11),

Hiroshi Fujikawa and Mitsugu Matsushita, Fractal Growth of Bacillus subtilis on Agar Plates, 3875–3879, 1989 and is

reproduced under a Creative Commons Attribution licence (CC BY 4.0).

https://doi.org/10.1371/journal.pcbi.1006629.g006
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accuracy, demonstrating the versatility of the software. The statistics used here are also suitable

for analysing these colonies [34, 35].

Availability and future directions

We have introduced the software TAMMiCol, which converts photographs of microbial colo-

nies to binary images automatically and in a computationally efficient manner. The binary

images are produced using thresholding with the tolerance chosen by exploiting the structure

of the images. By tailoring the method for images of microbial colonies, TAMMiCol produces

results comparable with manual image processing and better than those produced by standard

image segmentation methods, while the graphical user interface gives experimentalists direct

access to quantification methods without the need for specialist knowledge of image process-

ing or coding. TAMMiCol is free and publicly available from github.com/HaydenTronnolone/

TAMMiCol.

Using this method, it is possible to analyse large datasets that would be infeasible to process

manually, as each image may be converted to binary and quantified in approximately 20 sec-

onds using a laptop computer. In comparison, it can take up to 15 minutes to manually process

an image. While TAMMiCol has been demonstrated using examples containing up to 690

images, the same procedure makes it possible to quantify the morphology from datasets con-

taining thousands of images, such as genome-wide deletion mutant libraries. Therefore, TAM-

MiCol provides the opportunity for future research on identifying specific genes responsible

for measurable growth characteristics. Through an analysis of a new large dataset using TAM-

MiCol, we have shown that colonies of the yeast S. cerevisiae reach a maximum level of fila-

mentous growth once the concentration of ammonium sulfate is reduced to 200 μM.

TAMMiCol presents several advantages over existing software used for producing binary

images, such as ImageJ [36]. The default method for producing binary images in ImageJ is

through the IsoData algorithm, which is a version of the Ridler–Calvard method [14] tested

here and which was outperformed overall by TAMMiCol. TAMMiCol automatically under-

takes a number of steps in addition to thresholding to remove artefacts from the images. While

similar steps could be performed using other software, this would need to be done manually

by the user, which could be difficult without experience in image processing. TAMMiCol is

designed for batch processing, while ImageJ requires the user to record a macro in order to

process multiple images, and other software may lack this capability altogether. Finally, TAM-

MiCol is able to organise the binary output and produce statistics to describe the data. This

means that TAMMiCol takes raw images as input and produces appropriate statistics in one

action, so that data are available to the user without the need for specialist skills in image pro-

cessing, data management or shape quantification. We believe that no other software provides

the ease of use and combination of features available through TAMMiCol.

While we have shown that the indices developed by Binder et al. [7] are able to quantify the

spatial pattern, the binary images produced by this method are not limited to these measures.

The processed images may be accessed by other image-analysis software and other features

examined, such as the perimeter or number of connected pieces. Furthermore, the methods

described here may be used to analyse a wide variety of microbial colonies and other images

with similar features. This work thus opens an avenue to efficiently quantify numerous large

datasets using either the indices provided or any other custom statistics. This has the potential

to provide new insights that were previously unobtainable, and to motivate new experimental

work that was previously unsupported by statistical analysis.

While the current version of TAMMiCol has been designed to convert images of microbial

colonies to binary, the methods employed here could be used to analyse a variety of images.
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This includes, but is not limited to, images of scratch assays, tumour spheroids and vegetation

patterns. While TAMMiCol is expected to be able to convert other images, the method could

be improved by employing alternative methods for identifying the best threshold that would

provide additional user control, so that the best method could be selected. Future versions of

TAMMiCol may be further generalised by incorporating a variety of algorithms to assist in

selecting the best binary image, and by analysing individual colour channels rather than a grey-

scale image. While the indices computed by TAMMiCol have been designed to quantify

microbial colonies, future versions may include additional indices and pair-correlation func-

tions that would permit general-purpose analysis.
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