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SUMMARY

Dopamine is required for working memory, but how it modulates the large-scale cortex 

is unknown. Here, we report that dopamine receptor density per neuron, measured by 

autoradiography, displays a macroscopic gradient along the macaque cortical hierarchy. This 

gradient is incorporated in a connectome-based large-scale cortex model endowed with multiple 

neuron types. The model captures an inverted U-shaped dependence of working memory on 

dopamine and spatial patterns of persistent activity observed in over 90 experimental studies. 

Moreover, we show that dopamine is crucial for filtering out irrelevant stimuli by enhancing 

inhibition from dendrite-targeting interneurons. Our model revealed that an activity-silent memory 
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trace can be realized by facilitation of inter-areal connections and that adjusting cortical dopamine 

induces a switch from this internal memory state to distributed persistent activity. Our work 

represents a cross-level understanding from molecules and cell types to recurrent circuit dynamics 

underlying a core cognitive function distributed across the primate cortex.

Graphical Abstract

In brief

Little is known about how dopamine outside of the prefrontal cortex affects working memory. 

Froudist-Walsh et al. identify a gradient of dopamine receptors in the macaque cortex and use this 

to build a large-scale computational cortex model. A gradient of cortical dopamine modulation 

provides a parsimonious explanation for diverse findings in the literature.

INTRODUCTION

Our ability to think through difficult problems without distraction is a hallmark of cognition. 

When faced with a constant stream of information, we must keep certain information in 

mind and protect it from distraction. For instance, when at the supermarket looking for your 

favorite butter, it is important to keep in mind its distinctive golden packaging and not be 

distracted by the many other dairy products. This brain function is called working memory. 

Working memory often engages persistent neural activity that is specific to the information 

that must be remembered. This mnemonic activity is sustained internally across multiple 
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cortical and subcortical areas in the absence of external stimulation (Funahashi et al., 1989; 

Fuster and Alexander, 1971; Guo et al., 2017; Leavitt et al., 2017; Mejias and Wang, 2021; 

Mendoza-Halliday et al., 2014; Murray et al., 2017; Romo et al., 1999; Romo and Salinas, 

2003; Vergara et al., 2016; Wang, 2001; Zhang et al., 2019).

Working memory and the prefrontal cortex are under the influence of monoaminergic 

modulation (Goldman-Rakic, 1995; Robbins and Arnsten, 2009). In fact, depletion of 

dopamine from the prefrontal cortex and complete ablation of the prefrontal cortex cause 

similar working memory deficits (Brozoski et al., 1979). Dopamine modulates cortical 

activity through its receptors. D1 receptors are the most densely expressed dopamine 

receptor type in the cortex. Prefrontal neuron activity during working memory depends 

on precise levels of activation of D1 receptors, with too little or too much D1 stimulation 

disrupting delay period activity (Vijayraghavan et al., 2007; Wang et al., 2019). However, 

the density of D1 receptors is known only for relatively small sections of the monkey cortex 

(Goldman-Rakic et al., 1990; Impieri et al., 2019; Lidow et al., 1991; Niu et al., 2020; 

Richfield et al., 1989). Because of the shortage of areas analyzed across studies, it is not 

clear whether the variation in D1 receptor densities across cortical areas represents random 

heterogeneity or a systematic gradient of cortical dopamine modulation.

Dopamine receptors are also expressed differently across different types of inhibitory 

neurons (Mueller et al., 2018, 2020). Distinct inhibitory cell types primarily focus their 

inhibition on the dendrites or somata of pyramidal cells or on other inhibitory neurons (Jiang 

et al., 2015; Tremblay et al., 2016). Through its differing effects on distinct interneurons, 

dopamine decreases inhibition to the somata of pyramidal cells and increases inhibition 

to the dendrites (Gao et al., 2003). An early theoretical study proposed that inhibition 

targeted more strongly toward the dendrites and away from the somata of pyramidal cells 

could increase the resistance of working memory to distraction (Wang et al., 2004a). The 

functional significance of dopamine’s differential effects on distinct inhibitory neuron types 

has not yet been investigated.

In this work, we tackled two open questions. First, how does dopamine modulate distributed 

working memory across a multi-regional large-scale cortical system? Second, in light of the 

emphasis on cell types in modern cortical physiology, does dopamine contribute to robust 

working memory against distractors by virtue of differential effects on different neuron 

classes? To address these questions, we performed quantitative mapping of dopamine D1 

receptor densities across 109 cortical areas using in vitro autoradiography and constructed 

a large-scale computational model of the macaque cortex that is capable of performing 

working memory tasks. The model is built using retrograde tract-tracing connectivity 

data and incorporates gradients of D1 receptors and excitatory synapses. Moreover, to 

our knowledge, this is the first large-scale cortex model endowed with three subtypes 

of inhibitory neurons. Our results suggest that firing of dopamine neurons can engage 

distractor-resistant, stimulus-selective, sustained activity across multiple brain regions in 

response to behaviorally relevant stimuli. Furthermore, we extend, from a local area to 

the multi-regional cortex, an activity-silent mechanism that has been proposed for certain 

forms of short-term memory trace without persistent activity (Mongillo et al., 2008; Rose 

et al., 2016; Wolff et al., 2017). We found that this scenario relies principally on short-term 
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facilitation of inter-areal connections but fails to resist distractors. Enhanced dopamine 

modulation can convert an internal memory trace to an active persistent activity state needed 

to filter out distractors. Therefore, our findings contribute to resolving the current debate 

about the two contrasting scenarios that contribute to working memory (Constantinidis et 

al., 2018; Lundqvist et al., 2018; Watanabe and Funahashi, 2014) and under what conditions 

each mechanism is implemented (Barbosa et al., 2020; Masse et al., 2019; Trübutschek et 

al., 2019).

RESULTS

A hierarchical gradient of dopamine D1 receptors per neuron across the monkey cortex

We first analyzed D1 and D2 receptor distribution patterns throughout the macaque brain 

using in vitro receptor autoradiography (Figure S1). Autoradiography enables quantification 

of endogenous receptors in the cell membrane through use of radioactive ligands (Niu et al., 

2020; Palomero-Gallagher and Zilles, 2018; Rapan et al., 2021). The highest densities (in 

fmol/mg protein) of both receptor types were found in the basal ganglia, with the caudate 

nucleus (D1, 298 ± 28; D2, 188 ± 30) and putamen (D1, 273 ± 40; D2, 203 ± 37) presenting 

considerably higher values than the internal (D1, 97 ± 34; D2, 22 ± 12) or external (D1, 55 

± 16; D2, 30 ± 11) subdivisions of the globus pallidus. Raw cortical D1 receptor densities 

ranged from 49 ± 13 fmol/mg protein in area 4a of the primary motor cortex to 101 ± 35 

fmol/mg protein in orbitofrontal area 11l (Figure 1A). The density of the D2 receptor in the 

cortex is so low that it is not detectable with the method used here.

To compare the gradient of D1 receptors with other known gradients of anatomical 

organization in the monkey cortex, we carefully mapped the receptor data (Figure 1A) as 

well as data on neuronal density (Figure 1B; Collins et al., 2010) and spine count (Figure 

1C; Elston, 2007) onto the Yerkes19 common cortical template, to which anatomical tract 

tracing data (Figure 1D, i) has been mapped previously (Donahue et al., 2016). Here we 

include retrograde tracing data from 40 regions, quantified using the same protocol as in 

previous publications (Markov et al., 2014b). This expands the number of injected cortical 

areas by 33%, with connections to areas 1, 3, V6, F4, F3, 25, 32, 9, 45A, and OPRO 

(orbital proisocortex) now included in the database (downloadable from core-nets.org). 

We estimated the cortical hierarchy using laminar connectivity data (Figure 1D, ii; STAR 

Methods; Markov et al., 2014a), expanding previous descriptions of the cortical hierarchy 

based on fewer regions (Markov et al., 2014a; Mejias et al., 2016). A one-dimensional 

hierarchy is probably an oversimplification of the cortical connectivity structure. Because 

we have connectivity data for two distinct sensory modalities, we also calculated a circular 

embedding of the connectivity data, with radial distance from the edge representing the 

hierarchical position and angular distance between points representing the inverse of their 

connectivity strength (Chaudhuri et al., 2015). In this circular representation, separate visual 

and somatosensory hierarchies can clearly be appreciated, with association regions falling at 

angles off the main sensory hierarchy axes (Figure 1E).

To facilitate functional interpretation, we divided D1 receptor density by neuron density 

(Collins et al., 2010) to allow estimation of the degree to which dopamine modulates 

individual neurons across the cortex. D1 receptor density per neuron peaked in the parietal 
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and frontal cortex and was relatively low in the early sensory cortex (Figure 1F). There 

was a strong positive correlation between D1 receptor density per neuron and the cortical 

hierarchy (Figure 1G; r = 0.81). Because of spatial autocorrelation between cortical features 

(i.e., nearby parts of the cortex tend to have a similar anatomy), it is possible to detect 

spurious correlations between distinct features of brain anatomy. To account for this, 

we generated 10,000 surrogate maps with similar spatial autocorrelation to the hierarchy 

map (Burt et al., 2020). None of these surrogate maps were as strongly correlated with 

the D1 receptor density map as the hierarchy, giving a p value of less than 0.0001 for 

the D1 receptor-hierarchy correlation. There was no significant relationship between D1 

receptor expression and whether a cortical area had a granular layer IV (Wilcoxon rank­

sum Z = 0.39, p = 0.70) or to the degree of externopyramidalization (Kruskal-Wallis 

χ2 = 1.47, p = 0.48; Goulas et al., 2018; Sanides, 1962; Figure S2). This pattern of 

receptor expression suggests that dopamine principally modulates areas contributing to 

higher cognitive processing.

A cortical circuit with three types of inhibitory neurons modulated by dopamine

We built a model of a local cortical circuit that contains pyramidal cells and three types of 

inhibitory neurons (Figure 2A). The cortical circuit is based on a disinhibitory motif that 

was originally predicted theoretically (Wang et al., 2004a), with details of the connectivity 

structure chosen to reflect recent experimental findings (STAR Methods).

In our model, dopamine acted by increasing the synaptic strength of inhibition to the 

dendrite and reducing the synaptic strength of inhibition to the cell body of pyramidal 

cells (Figure 2B; Gao et al., 2003). In addition, dopamine increased the strength of 

transmission via N-methyl-D-aspartate (NMDA) receptors (Seamans et al., 2001). On the 

other hand, high stimulation of D1 receptors resulted in increased adaptation in excitatory 

cells (potentially an M-current, via KCNQ potassium channels; Arnsten et al., 2019), 

mimicking the net inhibitory effect of high concentrations of D1 agonists.

A large-scale model of the macaque cortex incorporating multiple macroscopic gradients

We then built a large-scale model of the macaque cortex. We placed the local circuit in each 

of the 40 cortical areas (Figure 2A, right). Properties of these local circuits varied across 

areas in the form of macroscopic gradients (Wang, 2020) of long-distance connectivity 

(set by tracing data), strength of excitation (set by the spine count), and modulation 

by D1 receptors (set by the receptor autoradiography data). We defined the connections 

between areas using the quantitative retrograde tract-tracing data. In the model, inter-areal 

connections are excitatory and target the dendrites of pyramidal cells (Petreanu et al., 2009). 

Inter-areal excitatory connections also target calretinin (CR)/vaso-active intestinal peptide 

(VIP) cells to a greater degree than parvalbumin (PV) or calbindin (CB)/somatostatin (SST) 

cells (Lee et al., 2013; Wall et al., 2016). The frontal eye fields (FEF) have an unusually high 

density of CR (here CR/VIP) cells (Pouget et al., 2009). To account for this, we increased 

the proportion of inter-areal input to CR/VIP cells in FEF and reduced the strength of input 

to PV and CB/SST cells.
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An inverted U relationship between cortical D1 receptor stimulation and distributed 
working memory activity

We simulated the large-scale cortical model during performance of a working memory 

task (Figure 2C) with different levels of cortical dopamine availability. In simulations, 

stimulus-selective activity propagated from the visual cortex to the temporal, parietal, and 

frontal cortex. Activity in the visual cortex was relatively insensitive to dopamine (Figures 

2E and 2F). Dopamine modulation had little to no effect on the initial peak of activity 

in early visual areas, but it did modulate the later peak of activity in these areas (Figure 

S3), consistent with a specific role of feedback connections in late visual activity (Self et 

al., 2012). In all cases, there was a strong transient response in visual areas prior to rapid 

return to baseline firing rates. This is similar to the response seen in neurons recorded 

from area V1 in behaving monkeys (van Vugt et al., 2018). We observed similar transient 

activity in somatosensory areas in response to stimulus input to the somatosensory cortex 

(Figure S4), as seen experimentally (Romo and Rossi-Pool, 2020). Delay period activity 

in a large network of prefrontal, lateral parietal, and temporal areas showed an inverted 

U relationship with dopamine levels (Figure 2D). A midrange level of dopamine release 

engaged a distributed pattern of persistent activity throughout these areas (Figures 2E and 

2F), but release that was too low or too high only led to a transient response (Figure 2F). A 

similar pattern of delay period activity was observed following somatosensory input (Figure 

S4). The inverted U relationship between D1 receptor stimulation and working memory 

activity has been shown locally in the prefrontal cortex in experimental and computational 

studies (Brunel and Wang, 2001; Vijayraghavan et al., 2007) but has not been described 

previously throughout the distributed cortical system.

Inter-areal connectivity determines the distributed working memory activity pattern

We next compared the pattern of delay period activity in the model with delay period 

activity observed in over 90 electrophysiology studies (Leavitt et al., 2017). We chose model 

parameters that would produce persistent activity in the prefrontal cortex, but we did not 

fit the model to the experimental data. Of the 19 cortical areas in which such activity 

has been assessed during the delay period in at least three experimental studies, 18 were 

in agreement between the simulation and experimental results (χ2 = 15.03, p = 0.0001 

Figure 3A). Overall, the experimentally observed persistent activity from numerous studies 

is reproduced, validating the model. This allows us to inspect the anatomical properties that 

underlie the distributed activity pattern and gain insight into the brain mechanisms that may 

produce it.

We repeated model simulations after shuffling the anatomical data. The delay period activity 

patterns for 30,000 simulations based on the shuffled anatomy were compared with the 

pattern observed experimentally. Ten thousand simulations were run using shuffled inter­

areal connections, shuffled D1 receptor expression, and shuffled dendritic spine expression 

separately. The overlap between the experimental persistent activity pattern and the model 

persistent activity pattern was strongly dependent on the inter-areal connections (p = 0.0004) 

but not on the pattern of D1 receptors (p = 0.71) or dendritic spine count (p = 0.46) (Figure 

3B). This analysis suggests that the edges between nodes in the network (i.e., the inter-areal 

connections) are important for defining the spatial pattern of delay period activity. Next we 
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asked how the nodes themselves (i.e., individual cortical areas) contribute differentially to 

distributed working memory.

Working memory deficits are most severe following lesions to prefrontal areas with high 
D1 receptor density

We next quantified the degree to which focal lesions to individual areas in the model 

disrupted persistent activity during the working memory task (without distractors). The 

effect depended on the lesioned area and the level of cortical dopamine (Figure 3C). Lesions 

to prefrontal and posterior parietal areas caused the greatest reductions in delay period firing 

rates (Figure 3D,E). Lesions to frontal areas caused a significantly greater reduction in delay 

period firing rates than lesions to parietal areas (Mann-Whitney U = 46.0, p = 0.027). We 

tested the effects of progressively larger lesions to the frontal and parietal cortex. To increase 

the size of the lesions, for each lobe we first lesioned the area that caused the biggest drop 

in delay activity when lesioned individually and then additionally lesioned the area that 

caused the second biggest drop and so on (frontal lesion 1: 46d, lesion 2: 46d+8B, lesion 

3: 46d+8B+8 m etc.; parietal lesion 1: LIP, lesion 2: LIP+7m, lesion 3: LIP+7 m+7B. etc.). 

When lesioning two frontal regions, the mnemonic delay period activity was completely 

destroyed throughout the cortex, so the network was no longer able to perform the task. In 

contrast, progressively larger lesions of the parietal cortex caused only a gradual decrease 

in frontoparietal delay activity, and even when the entire parietal cortex was removed (10 

areas), sufficient residual mnemonic delay period activity remained to allow the cue stimulus 

to be decoded (Figure 3F).

We subsequently addressed the ability of the model to maintain cue-specific delay period 

activity in the presence of distractors following precise lesioning of each cortical area. We 

analyzed trials across all levels of cortical dopamine availability. Lesions to three prefrontal 

areas (8m, 46d, and 8B), but not other areas, caused complete disruption of distractor­

resistant working memory activity in all trials. Lesions to many other areas caused complete 

reduction of distractor-resistant working memory activity for some trials (corresponding 

to a particular dopamine range) but not others. The seven lesions causing the greatest 

disruption of working memory performance were in the frontal cortex (six prefrontal areas 

and premotor area F7; Figure 3G). The reduction in performance was significantly greater 

for lesions to frontal cortical areas than parietal areas (Mann-Whitney U = 48.5, p = 0.032). 

Our simulations thus suggest that (1) lesions to the prefrontal and posterior parietal cortex 

can cause a significant disruption of delay period activity, (2) frontal lesions have a greater 

effect on behavior than parietal lesions, and (3) smaller lesions, particularly to the prefrontal 

cortex, can significantly disrupt performance on more difficult working memory tasks, such 

as those with distractors. In contrast, larger lesions are required to disrupt performance on 

simple working memory tasks.

Lesions to area V1 and V2 led to complete loss of visual working memory activity (Figure 

3D). However, this was because of the fact that a visual stimulus must go through area V1 

to gain access to the working memory system. We confirmed this by showing that lesions 

to V1 and V2 had no effect on working memory when somatosensory stimuli were used 

(with stimulus presented to primary somatosensory area 3). In the somatosensory working 
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memory task, lesions to early somatosensory areas and frontoparietal network areas caused 

memory deficits (Figure S5). This clearly separates early sensory areas, which are required 

for signal propagation to the working memory system, from core cross-modal working 

memory areas in the prefrontal and posterior parietal cortex.

D1 receptor density (F = 4.72, p = 0.036; Figure 3H) was the strongest anatomical predictor 

of the lesion effects, and adding hierarchy or spine count to the model did not significantly 

improve the fit. Thus, our model predicts that lesions to areas with a higher D1 receptor 

density are more likely to disrupt working memory activity. This prediction can be tested 

experimentally.

Dopamine shifts between activity-silent and persistent activity modes of working memory

Recent experimental and modeling results show that some delay tasks can be solved with 

little or no persistent activity (Mongillo et al., 2008; Rose et al., 2016; Watanabe and 

Funahashi, 2014; Wolff et al., 2017). This has spurred a debate about whether persistent 

activity or “activity-silent” mechanisms underlie working memory (Constantinidis et al., 

2018; Lundqvist et al., 2018). Is dopamine modulation throughout the cortex relevant to 

this debate? We endowed the model with short-term plasticity to assess the possibility 

of activity-silent working memory in the large-scale network. Short-term plasticity was 

implemented at all synapses between excitatory cells (using the same parameters as 

Mongillo et al., 2008) and from excitatory to CB/SST cells. We investigated activity-silent 

representations by “pinging” the system with a neutral stimulus and reading out the activity 

generated in response, similar to the experimental protocol in Wolff et al. (2017) (Figure 4A, 

i). For optimal midlevels of dopamine release (Figure 4A, ii), the model generated persistent 

activity that was very similar to the network without short-term plasticity. The strong and 

distributed activation of the frontal and parietal cortex is reminiscent of the ignition response 

to consciously observed stimuli (van Vugt et al., 2018).

For low and high levels of dopamine release, there was no persistent activity (Figure 

4A, iii). However, when we pinged the system with a neutral stimulus, activity relating 

to the target cue was generated transiently throughout the frontoparietal network (Figure 

4A, iii), suggesting that a memory of the target stimulus was stored internally. During the 

delay period, the synaptic efficacy increased at connections between neurons coding for the 

target stimulus. Previous models of activity-silent short-term memory have focused on local 

synaptic changes in the prefrontal cortex (Mongillo et al., 2008). In our model, most of 

the increase in synaptic efficacy was in synaptic connections from neurons in sensory areas 

(Figure 4A, iii). We then restricted short-term synaptic plasticity to presynaptic neurons 

outside of the frontoparietal network. Pinging this system again resulted in activation of the 

target-related activity throughout the frontoparietal network (Figure S6). Next we performed 

the opposite manipulation and restricted short-term synaptic plasticity to presynaptic 

neurons in the frontoparietal network. Pinging that system did not lead to activation of the 

frontoparietal network (Figure S6). This suggests that synaptic plasticity at connections from 

(presynaptic) prefrontal cortical neurons is not required for activity-silent memory. Finally, 

we restricted short-term plasticity to local connections. In that network, activity-silent 

memory recall also failed (Figure S6). This suggests that short-term facilitation in inter-areal 
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feedforward connections from early sensory areas to the frontal and parietal cortex is a 

potential substrate for “activity-silent” memory in the absence of a strong initial prefrontal 

response to the stimulus.

Why does the brain have two parallel systems for holding items in short-term memory? To 

explore this question, we simulated the model using a ping protocol (Wolff et al., 2017) with 

a distractor. After a behaviorally relevant cue and during the delay period, we introduced 

a distractor that should be filtered out by the network, followed by a neutral ping stimulus 

(Figure 4B, i). For mid-level dopamine release, persistent activity coding for the target 

stimulus is engaged and maintained through the distractor and ping (Figure 4B, ii). The 

distractor is represented transiently in inferior temporal (IT) and lateral intraparietal cortex 

(LIP) (thus replicating the experimental results in Suzuki and Gottlieb, 2013) but does not 

reach most of the frontoparietal network. In the low- and high-dopamine cases, during the 

ping, the activity-silent mechanism regenerates activity related to the last encoded stimulus, 

the distractor, in the frontal and parietal cortex (Figure 4B, iii). Thus, pinging from the 

activity-silent state scenario always recalls the latest item but cannot ignore a distractor. 

Therefore, dopamine release may serve to encode salient items in working memory and 

protect them from distraction.

Dopamine increases distractor resistance by shifting the subcellular target of inhibition

How does dopamine protect working memory from distraction? To examine this question, 

we analyzed activity within CR/VIP and CB/SST neurons during a working memory task 

with a distractor (Figure 5A). CB/SST and CR/VIP neurons are in competition because they 

mutually inhibit each other. When CB/SST cell firing is higher, pyramidal cell dendrites 

are relatively inhibited. Conversely, when CR/VIP cell firing is higher, pyramidal cell 

dendrites are disinhibited. Each cortical area in the model contains two selective populations 

of pyramidal, CB/SST, and CR/VIP cells. We first analyzed trials in which the model 

successfully ignores the distractor. In the target-selective populations, CR/VIP neurons fire 

at a much higher rate than CB/SST neurons (Figures 5B and 5C). Thus, the dendrites 

of the target-selective pyramidal cells are disinhibited, allowing inter-areal target-related 

activity to flow between cortical areas. In the distractor-selective populations, throughout 

the frontoparietal network, CB/SST neurons fire at a slightly higher rate than CR/VIP 

cells. Thus, activity from other cortical areas is blocked from entering the dendrites of 

distractor-selective pyramidal cells in the frontal and parietal cortex.

To test the importance of this effect, we transiently inhibited CB/SST2 cells in the 

frontoparietal network during presentation of the distractor (CB/SST2; Figure 5D). This 

transient inhibition of CB/SST2 cells was sufficient to switch the network to a distractible 

state, with the distractor stimulus held in working memory until the end of the trial (Figure 

5D).

Because dopamine increases the strength of inhibition to dendrites and decreases inhibition 

to somata, it is possible that this aspect of dopamine modulation enhances distractor 

resistance of the system. We removed this effect of dopamine modulation while leaving 

dopamine’s effects on NMDA and adaptation currents as before (Figure 5E). We repeated 

the working memory task in the presence of the distractor with a mid-level of dopamine, 
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which normally results in distractor-resistant working memory. Without the dopamine­

dependent shift of inhibition from the soma to the dendrite, the system becomes distractible 

(Figures 5F and 5G). Previous modeling work has shown that persistent activity can depend 

on local recurrent excitatory connections or a combination of local and inter-areal loops 

(Mejias and Wang, 2021; Murray et al., 2017). We searched the parameter space for the 

strength of local and inter-areal excitatory-to-excitatory connections and found that, when 

a subset of local cortical areas was endowed with sufficient recurrent excitation to generate 

persistent activity in isolation (e.g., gE, E
self = 0.33nA, μE,E = 1.25), high somatic inhibition 

and low dendritic inhibition were generally associated with distractibility (Figure 5H; Figure 

S7). Low somatic and high dendritic inhibition were associated with distractor-resistant 

behavior (Figure 5H; Figure S7). Therefore, the action of dopamine in shifting inhibition 

from the soma to the dendrite (Gao et al., 2003), via its strong effect on CB/SST cells 

(Mueller et al., 2020), prevents distractor-related activity from sensory areas disrupting 

ongoing persistent activity in the frontoparietal network.

Learning to optimally time dopamine release through reinforcement

In real life, we experience a constant flow of sensory inputs, and our working memory 

system must be flexible in determining the timing of relevant versus irrelevant information. 

Dopamine neurons fire in response to task-relevant stimuli (Schultz et al., 1993) but 

should not fire in response to task-irrelevant distracting stimuli, regardless of timing. We 

hypothesized that correct timing of dopamine release could be learned by simple reward­

learning mechanisms.

We created a simplified model of the ventral tegmental area (VTA) with GABAergic and 

dopaminergic neurons and connected this to our large-scale cortical model (Figure 6A) (cf. 

Braver and Cohen, 2000). Cortical pyramidal cells target GABAergic and dopaminergic 

cells in the VTA (Soden et al., 2020;Watabe-Uchida et al., 2012). Dopaminergic cells are 

also strongly inhibited by local VTA GABAergic cells (Soden et al., 2020). Dopamine in the 

model is released in the cortex in response to VTA dopaminergic neuron firing, and cortical 

dopamine levels slowly return to baseline following cessation of dopaminergic neuron firing 

(Muller et al., 2014). In the model, the synaptic strengths of cortical inputs from the selected 

populations to VTA populations are increased following a reward and weakened following 

an incorrect response (Harnett et al., 2009; Soltani and Wang, 2006).

We tested the model on a variant of the target-distractor-ping task introduced earlier (Figures 

4B, i and 6B). For the first 30 trials, the first stimulus (cue 1, red) was rewarded (rule 

1). For the following 30 trials, the second stimulus (cue 2, blue) was rewarded (rule 2). 

For the final 30 trials, we switched back to rule 1 (Figure 6B). By the seventh trial 

of the first block, distractor-resistant persistent activity emerged, and the first cue was 

remembered correctly. This behavior persisted until the next block. Following a few trials of 

the second block, dopamine release in response to the first stimulus was reduced, and neural 

populations throughout the cortex only transiently represented the first (now irrelevant) 

stimulus. However, dopamine response to the second stimulus increased so that persistent 

activity representing the second stimulus was engaged. Following the second rule switch, 

the system again switched back to engaging persistent activity in response to the first 
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cue. Additionally, the number of trials to engage appropriate persistent activity decreased 

gradually with each switch. We further tested the model on a version of the task in which 

the relevant red cue could be shown first or second within a block before the blue cue 

became relevant in the second block. The model was also able to learn this task, although 

it took more trials (10–15) to learn the switch (for the first few blocks). Thus, by means of 

simple reward-learning mechanisms, the optimal timing of dopamine release can be learned, 

allowing flexible engagement of distributed persistent activity in working memory.

DISCUSSION

We uncovered a macroscopic gradient of dopamine D1 receptor density along the cortical 

hierarchy. By building a novel anatomically constrained model of the monkey cortex, 

we showed how dopamine can engage distributed persistent activity mechanisms and 

protect memories of behaviorally relevant stimuli from distraction. This work leads to new 

predictions that would not have been possible with local circuit models. For example, the 

model shows that dopamine’s enhancement of inhibition from CB/SST-expressing cells 

to the dendrites of pyramidal cells blocks distracting sensory information from entering 

the frontoparietal working memory network. Second, when an initial stimulus fails to 

robustly activate the prefrontal cortex, we found that the memory of the original stimulus 

can be recalled through an activity-silent synaptic mechanism in inter-areal connections 

from the sensory to the frontoparietal cortex. Last, our model predicts that dopamine 

can switch between activity-silent and distributed persistent activity mechanisms, and the 

timing of dopamine release could be learned through reinforcement. This suggests that 

distributed persistent activity may be engaged for behaviorally relevant stimuli that need to 

be remembered and protected from distractors.

A gradient of D1 receptors along the cortical hierarchy

We used quantitative in vitro receptor autoradiography to create a high-resolution, high­

fidelity map of cortical dopamine receptor architecture. The dopamine system can also be 

imaged in vivo using positron emission tomography (PET) and single photon emission 

computed tomography (SPECT) scans. These scans can provide information regarding 

individual and group differences but are limited in spatial resolution and signal-to-noise 

ratio (Abi-Dargham et al., 2002; Froudist-Walsh et al., 2017a; Roffman et al., 2016; Slifstein 

et al., 2015) and are often unreliable for cortical measurements (Egerton et al., 2010; Farde 

et al., 1988). It is now possible to map the expression of genes coding for dopamine 

receptors across the brain. Gene expression methods have certain advantages, especially 

RNA sequencing, which can provide cell-specific data. However, mRNA expression is not 

always closely related to or even positively correlated with the receptor density at the 

cell membrane (Arnatkeviciute et al., 2019; Beliveau et al., 2017). Receptor density at the 

membrane is the functionally important quantity and is measured here directly. The map 

of D1 receptor density here greatly expands previous descriptions of D1 receptor densities 

(Goldman-Rakic et al., 1990; Impieri et al., 2019; Lidow et al., 1991; Niu et al., 2020; 

Richfield et al., 1989). We show that D1 receptor density increases along the cortical 

hierarchy, peaking in the prefrontal and posterior parietal cortex. A previous study of 12 

cortical areas suggested a posterior-anterior gradient of D1 receptor expression (Lidow et al., 
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1991). Here we assess D1 receptor density in 109 cortical areas, take into account variation 

in neuron density across the cortex, and show that the D1 receptor gradient more closely 

follows the cortical hierarchy than a strict posterior-anterior gradient. The distinction is 

clear, with higher levels of D1 receptor density per neuron in areas of the posterior parietal 

cortex than the somatosensory and primary motor cortex. Future work is required to test 

the degree to which gradients of gene expression accurately capture the receptor gradient 

(Beliveau et al., 2017; Hurd et al., 2001). The gradient of dopamine D1 receptors is similar 

to gradients of other anatomical and functional properties described across the cortex, many 

of which increase or decrease along the hierarchy (Burt et al., 2018; Fulcher et al., 2019; 

Goulas et al., 2018; Margulies et al., 2016; Sanides 1962; Shafiei et al., 2020; Wang 2020). 

We observed some interesting patterns of D1R density per neuron (Figure 1F), such as 

a gradual caudorostral increase within the prefrontal cortex, which resembles previously 

reported gradients of plasticity, laminar connectivity, and abstraction (Badre and D’Esposito 

2009; Riley et al., 2018; Vezoli et al., 2021). Because of the small number of animals 

and relatively similar D1R expression levels in several areas of the frontal and parietal 

cortex, comparison of D1R density between pairs of areas is difficult. As shown originally 

in Markov et al. (2014a), the hierarchy itself is steep for early sensory areas and becomes 

shallower for higher-association areas. Therefore, the exact positions of areas like LIP or 

10 are not as robustly distinguishable as those of V1, V2, and V4. Nonetheless, we expect 

the general pattern of an increase in D1R density per neuron along the cortical hierarchy 

to hold. Although the D1R labeling per neuron as well as synaptic excitation and inhibition 

display a smooth gradient, quantitative variations of circuit properties can give rise to a 

non-smooth pattern of persistent activity along the cortical hierarchy through a phenomenon 

akin to bifurcations described by the theory of nonlinear dynamical systems (Mejias and 

Wang, 2021; Wang, 2020). Such a sudden transition was observed in a monkey experiment 

where elevated persistent activity associated with working memory was absent in the middle 

temporal area (MT) but significantly present one synapse away in the nearby medial 

superior temporal area (MST) (Mendoza-Halliday et al., 2014). Simultaneous recording 

from many parcellated areas using new tools, such as Neuropixels (Jun et al., 2017), from 

behaving animals could systematically test our model prediction in future experiments. This 

increasing gradient of dopamine receptors along the cortical hierarchy is a major anatomical 

basis by which dopamine can modulate higher cognitive processing.

An inverted U relationship between dopamine and distributed working memory activity

Previous experimental and modeling studies have shown an inverted U relationship 

between D1 receptor stimulation and persistent activity in the prefrontal cortex in monkeys 

performing working memory tasks (Brunel and Wang, 2001; Vijayraghavan et al., 2007; 

Wang et al., 2019). Dopamine activity in the VTA is relatively low during the delay period 

but still has an inverted U shape relationship with short-term memory performance in the 

rat (Choi et al., 2020). In our model, this may be interpreted as the VTA continuing to 

provide low-level dopamine to the cortex to maintain cortical dopamine levels within the 

appropriate bounds for distributed persistent activity. We found dense D1 and D2 receptor 

labeling in the striatum. However, we focused our working memory modeling on the cortex 

and VTA. Notably, optogenetic manipulation of substantia nigra pars compacta dopamine 

neurons (which principally target the striatum) does not have specific short-term memory 
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effects (Choi et al., 2020). This suggests that cortical rather than striatal dopamine release 

is likely to be more important to short-term memory. By constructing a novel large-scale 

model based on the D1 receptor map and tract-tracing data, we found that the inverted 

U relationship between D1 receptor stimulation and persistent activity held across the 

frontal and parietal cortex during working memory. The working memory activity pattern 

was strikingly similar to that seen experimentally, according to a meta-analysis of 90 

electrophysiology studies of delay period activity in the monkey cortex (Leavitt et al., 2017). 

Analyzing the model showed that the pattern of inter-areal connections was the strongest 

determinant of the pattern of working memory activity.

Noudoost and Moore (2011) found that injecting a D1 antagonist into FEF led to an 

increase in firing rates in V4. Similarly, in our model, when cortical dopamine levels are 

close to the optimal range for working memory (i.e., the peak of the inverted U), then 

reducing D1 receptor stimulation via an antagonist would lead to an increase in V4 activity 

during the second peak of the response to visual stimulation (Figure S3). However, our 

model focused on distributed working memory in a large-scale cortical system and was 

not built to uncover mechanisms of attention or decision-making. Recent electrophysiology 

and modeling studies of non-human primate attention have suggested that the dominant 

net effect of attention on neural activity in the sensory cortex is inhibition (Huang et al., 

2019; Yoo et al., 2021). This may be consistent with subtle enhancement of firing for 

neurons whose receptive field is in the focus of attention, combined with greater inhibition 

of neurons with nearby receptive fields. We showed that somatosensory and visuospatial 

working memory tasks engage largely overlapping higher cortical areas during the delay 

period. It is likely that, at a neural level, these networks may overlap only partially. To 

simulate these mixed inhibitory and excitatory effects of attention and identify the degree 

to which different types of working memory engage the same neurons, future models will 

require more neural populations per area, perhaps with structured connectivity, such as a 

ring (Ardid et al., 2007). Local circuit modeling has shown previously that a circuit designed 

for working memory is suitable for decision-making (Wang 2002). Our model may also be 

suitable for considering decision processes distributed across cortical areas.

Prefrontal and parietal contributions to distributed working memory

It is increasingly feasible to uncover the circuit mechanisms underlying distributed cognitive 

functions because of advances in recording technology (Jun et al., 2017) and large-scale 

cortical models (Cabral et al., 2011; Chaudhuri et al., 2015; Honey et al., 2007; Joglekar et 

al., 2018; Mejias et al., 2016; Mejias and Wang, 2021; Schmidt et al., 2018; Shine et al., 

2018). Most previous large-scale cortical models have focused on replicating resting-state 

functional connectivity (Cabral et al., 2011; Chaudhuri et al., 2015; Honey et al., 2007) or 

propagation of neural activity along the hierarchy (Chaudhuri et al., 2015; Joglekar et al., 

2018; Schmidt et al., 2018), with the notable exception of one recent model that simulated 

distributed working memory in a network of 30 cortical areas (Mejias and Wang, 2021). 

Compared with previous efforts, our model additionally includes (1) a D1 receptor gradient; 

(2) multiple inhibitory cell types and distinct pyramidal cell compartments; (3) at least 33% 

more cortical areas connected via quantitative graded and directed connectivity data, and, for 

some figures, (4) short-term synaptic plasticity; and (5) a VTA module with reinforcement 
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learning mechanisms. The large-scale nature of the model enabled us to investigate the 

contributions of different brain regions to distributed working memory activity.

Some experimental studies have aimed to dissociate the contribution of the prefrontal and 

parietal cortex to working memory via temporary inactivations. For example, Chafee and 

Goldman-Rakic (2000) examined the effects of reversibly cooling the prefrontal or parietal 

cortex on activity in the other area and behavior during a visuospatial working memory 

task without a distractor. Cooling affected the FEF (area 8) and nearby prefrontal cortex, 

including the principal sulcus (areas 46 and 9). Cooling of the parietal cortex included 

LIP as well as parts of areas DP (dorsal prelunate gyrus), 7A, and 5. Cooling the parietal 

cortex led to a substantial reduction in prefrontal firing rates with only a minor effect on 

performance. Cooling the prefrontal cortex led to a substantial reduction in parietal firing 

rates and a large increase in behavioral errors (Chafee and Goldman-Rakic 2000). This is 

consistent with our simulation results showing that prefrontal and parietal inactivation can 

have a robust effect on reducing mnemonic delay activity but that prefrontal inactivation has 

much larger effects on performance (Figures 3E and 3F).

Suzuki and Gottlieb (2013) inactivated areas LIP and dorsolateral prefrontal cortex (dlPFC) 

using the GABA-A receptor agonist muscimol and assessed performance on a similar 

visuospatial working memory task with and without distractor stimuli. In these experiments, 

neither LIP nor dlPFC inactivation caused errors in trials without distractors (Suzuki and 

Gottlieb, 2013). However, inactivation of dlPFC, but not LIP, led to a dramatic increase 

in errors on trials with distractors (Suzuki and Gottlieb, 2013). This is consistent with our 

simulation results showing that precise lesions to dlPFC affect behavior on challenging 

working memory trials with distractor stimuli, but larger lesions are required to disrupt 

performance in simple working memory trials without distractors, and lesions to LIP have 

only subtle effects on performance. This agrees with recent models of distributed working 

memory that suggest that the prefrontal cortex may have a particularly important role in 

maintaining distributed persistent activity (Mejias and Wang, 2021; Murray et al., 2017). 

The effects of lesions on model performance are consistent with recent reports showing that 

there is a distinction between areas that are active during normal behavior and those that 

are essential for a computation (Pinto et al., 2019; Zatka-Haas et al., 2021) and that cortical 

lesions have greater effects on performance in more challenging tasks (Pinto et al., 2019).

Lesions to areas with a high D1 receptor density disrupt working memory

Working memory activity was most disrupted by lesions to areas with a high D1 receptor 

density, a prediction that can be tested experimentally. Humans with traumatic brain injury 

often have working memory deficits (Dunning et al., 2016). Pharmacological treatment of 

these deficits, including with dopaminergic drugs, has had mixed success (Froudist-Walsh 

et al., 2017b). Our model simulations suggest that D1 agonists or antagonists could be 

effective at restoring normal working memory functioning following lesions to particular 

cortical areas, but the correct treatment may depend on the baseline cortical dopamine levels 

of the individual. Dopaminergic drugs have also been suggested as treatments for individuals 

with schizophrenia with working memory deficits (Yang and Chen 2005). In individuals 

with schizophrenia, PV and SST gene expression is reduced across multiple areas of the 
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cortical working memory network (Tsubomoto et al., 2019). Disruption of these inhibitory 

neurons is likely to contribute to working memory deficits. Future adaptations of our model 

could allow simulation of working memory deficits and motivate potential treatments for 

individuals based on their particular anatomy, gene expression, and patterns of cortical 

dopamine release or receptor density (Abi-Dargham et al., 2002; Slifstein et al., 2015).

A dopamine switch between the activity-silent state and persistent activity

For very low or high levels of D1 receptor stimulation, it was possible to maintain stimulus 

information in the absence of persistent activity via synaptic mechanisms. This pattern of 

successful memory recall without frontoparietal delay period activity is reminiscent of a 

passive short-term memory trace thought to rely on “activity-silent” synaptic mechanisms 

(Rose et al., 2016; Trübutschek et al., 2017; Wolff et al., 2017) that could occur without 

ignition of the frontoparietal cortex (Trübutschek et al., 2017, 2019). Previous models 

with short-term synaptic plasticity have focused on local activity in the prefrontal cortex 

(Mongillo et al., 2008) and, thus, implicitly imply that the initial stimulus must significantly 

engage prefrontal neural activity and store the memory trace via short-term plasticity in local 

prefrontal connections. However, some stimuli may be remembered without a strong initial 

prefrontal response. We found that short-term synaptic plasticity in inter-areal connections 

from sensory to frontoparietal areas was most important for maintaining the silent memory 

trace. In particular, this is a potential mechanism for activity-silent short-term memory in 

the absence of a strong initial prefrontal response to the stimulus. It has been proposed 

that nonspecific excitatory or inhibitory currents could account for switches between active 

and silent states (Barbosa et al., 2020). Our model suggests that dopamine could, in fact, 

account for the switch from the silent to the active state. Indeed, because of the inverted U 

relationship between dopamine and persistent firing, a dopamine response to the reward at 

the end of a trial could also terminate persistent activity. Another recent proposal suggests 

that activity-silent short-term memory could be undertaken via hippocampal-prefrontal 

episodic memory mechanisms, perhaps in combination with short-term synaptic changes in 

the cortex (Beukers et al., 2021). Future studies should aim to disentangle the contributions 

of rapid synaptic changes within the prefrontal cortex (Mongillo et al., 2008), at inter-areal 

connections from sensory areas (this paper), or in the hippocampus (Beukers et al., 2021) 

to activity-silent short-term memory in the primate. We found that, in the activity-silent 

state, the most recently encoded stimulus was always encoded most strongly, even when it 

was a distractor. This may reflect involuntary encoding of irrelevant stimuli in a short-term 

synaptic memory trace (Barbosa et al., 2021,2020). This prediction should hold as the 

number of distractors is increased. The activity-silent system may still be able to recall 

earlier stimuli for a limited time when another input biases the network toward the activity 

pattern used during encoding of the earlier stimulus to trigger pattern completion and recall 

of the memory (Manohar et al., 2019) or through active forgetting of the distracting stimuli 

(Wolff et al., 2021). Alternatively, multiple competing memories may be represented in 

neural activity (Barbosa et al., 2021; Panichello and Buschman, 2021), which would rely 

on an unspecified selection mechanism and may occur in parallel with short-term synaptic 

changes. In our model, stimuli stored in persistent activity (and thus dependent on mid-level 

dopamine release) were more robust against distraction, consistent with drug studies in 
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humans (Fallon et al., 2017a, 2017b). Thus, dopamine release may engage distributed 

persistent activity to protect memories of important stimuli from distraction.

Dopamine increases distractor resistance by shifting the subcellular target of inhibition

The resilience of the active working memory state in the model depended on CB/SST cells 

blocking distracting inputs from sensory areas to the dendrites of pyramidal cells in the 

frontal and parietal cortex. Previous modeling work on local cortical circuits has suggested 

that greater dendritic and less somatic inhibition could increase distractor resistance (Wang 

et al., 2004a) and that selective disinhibition of the dendrite (through CR/VIP cells) could 

allow specific information to be passed through the network (Yang et al., 2016). In our large­

scale model, CR/VIP cells selectively disinhibited the dendrites of target-selective cells, 

allowing target-related activity to flow through the cortical network. D1 receptors in the 

monkey cortex are more strongly expressed on CB/SST neurons than other interneuron types 

(Mueller et al., 2020). In agreement with these anatomical findings, application of dopamine 

to a frontal cortex slice increases inhibition to the dendrites and decreases inhibition to the 

somata of pyramidal cells (Gao et al., 2003). We found that, as long as local cortical areas 

(or potentially cortico-subcortical loops) are capable of maintaining persistent activity, then 

shifting the balance of inhibition from the soma to the dendrite can allow maintenance of an 

active representation of a stimulus in persistent activity while shielding it from distracting 

input from sensory areas. The ability of cortical areas to maintain persistent activity itself 

depends on dopaminergic enhancement of NMDA-dependent excitation. In mice, inhibition 

of SST neurons in medial prefrontal cortex during the sample period of a spatial working 

memory task impairs performance and increases representation of irrelevant information in 

prefrontal activity (Abbas et al., 2018). Consistent with our model, this suggests that SST 

neurons gate entry of information into working memory and that inhibition of SST neurons 

in frontoparietal areas allows distracting information to enter.

Learning to engage distributed persistent activity through reinforcement

Distractor resistance in response to all stimuli could render the working memory system 

inflexible and unresponsive to new, potentially important inputs. Previous studies have 

shown that lesioning the prefrontal cortex impairs the ability to switch attention between 

stimuli across trials (Rossi et al., 2007). Our model predicts that the prefrontal cortex is 

more crucial for persistent activity than activity-silent short-term memory, which can rely 

on short-term synaptic changes outside of the prefrontal cortex. We show that, by using 

a simple reward-based learning mechanism, a cortical VTA model (cf. Braver and Cohen, 

2000; Frank 2005) can successfully perform a task with reversals between the memory cue 

and distractor stimuli across trials. In our model, the timing of dopamine release in the 

cortex can be learned to engage distributed persistent activity throughout the frontoparietal 

network only in response to reward-predicting cues. Dopamine neurons burst about 130–

150 ms after reward-predicting stimuli, coinciding with a rise in activity in frontal cortical 

neurons (de Lafuente and Romo, 2012). Because of the slow dynamics of cortical dopamine 

(Muller et al., 2014), we suggest that a transient increase in dopamine release in response 

to the target stimulus (Choi et al., 2020; Schultz et al., 1993) may be sufficient to maintain 

distributed persistent activity for several seconds. This mechanism may thus be reserved 

for behaviorally important stimuli that must be protected from distraction even when the 
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behaviorally relevant stimuli change from trial to trial. In contrast, irrelevant or less salient 

stimuli result in lower dopamine release and may be remembered via silent mechanisms 

or forgotten. We investigated model performance on a reversal learning task with identical 

repeated trials within a block. In natural life, no two situations are exactly the same. It is 

likely that the brain generalizes across similar situations to enable reinforcement learning to 

be used in practice. This ability to generalize may arise from dopamine-dependent plasticity 

in the prefrontal cortex (Wang et al., 2018). The classic reward-prediction-error hypothesis 

treats dopamine as a global scalar reward prediction error signal that is spatiotemporally 

uniform (Schultz 1998). Here we aim to highlight one form of spatial heterogeneity and 

suggest that broad dopamine release will affect each cortical area according to the D1 

receptor density per neuron. Recent work suggests that there is temporal heterogeneity in 

dopamine release, which is released in waves in the mouse striatum (Hamid et al., 2021). 

Whether such dopamine waves also occur in the cortex or in primates remains to be seen. 

Even if dopamine is released in waves across the cortex, its effect on cortical areas will be 

dependent on the D1 receptor gradient presented here.

Roles of other neuromodulatory and subcortical systems

In addition to dopamine, other neuromodulators, such as acetylcholine (Croxson et al., 

2011; Sun et al., 2017; Yang et al., 2013) and noradrenaline (Arnsten et al., 2012), 

affect prefrontal delay period firing and performance on visuospatial working memory 

tasks. Cholinergic mechanisms may complement dopaminergic mechanisms. For example, 

nicotinic alpha-7 receptors depolarize pyramidal cells, which enables NMDA receptors to 

be engaged via removal of the magnesium block (Yang et al., 2013). This may compensate 

for a reduction in presynaptic glutamate release in response to D1 stimulation and enable 

dopamine’s permissive effects on NMDA transmission (Seamans et al., 2001). Muscarinic 

M1 receptor activation closes KCNQ channels, which contribute to the hyperpolarizing 

effect of high levels of D1 stimulation (Arnsten et al., 2012; Galvin et al., 2020). Thus 

M1 stimulation may enable persistent activity over a larger range of dopamine release. The 

effects of noradrenaline on working memory circuits depend on the targeted adrenergic 

receptors. Moderate release of noradrenaline engages adrenergic α2A receptors, which may 

counteract the hyperpolarizing effects of hyperpolarization-activated cyclic nucleotide-gated 

(HCN) channels (Arnsten, 2000; Arnsten et al., 2012; Li and Mei, 1994; Robbins and 

Arnsten, 2009) and keep the D1 effects in check by decreasing calcium-cyclic AMP 

(cAMP) signaling. Greater noradrenergic levels engage a1 and b1 receptors, which promote 

calcium-cAMP signaling and, at high levels, provide negative feedback via KCNQ and HCN 

channels (Arnsten et al., 2020). Studies linking neuromodulators to working memory have 

focused on the dorsolateral prefrontal cortex. Much less is known about the influence of 

these and other neuromodulators on the distributed network activity that underlies working 

memory outside of the prefrontal cortex. Future work should focus on the interaction of 

distinct neuromodulators and how release of different combinations of neuromodulators 

may affect distributed activity patterns and behavior, taking into account the different 

distributions of these receptors across the cortex (Froudist-Walsh et al., 2021). Subcortical 

structures, such as the thalamus, may play a significant role in working memory (Fuster 

and Alexander, 1971; Guo et al., 2017; Jaramillo, et al., 2019; Watanabe and Funahashi, 

2012). Future experiments and computational modeling studies should aim to disentangle 
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the contribution of the thalamus to sensory working memory and motor preparation (Guo et 

al., 2017; Watanabe and Funahashi, 2012) and clarify the degree to which such mechanisms 

are shared across species. When appropriate weighted and directed connectivity data become 

available, future large-scale cortical models should also integrate further structures, such as 

the thalamus (Jaramillo et al., 2019), basal ganglia (Wei and Wang, 2016), the claustrum, 

and the cerebellum to identify their contributions to working memory.

Conclusion

We experimentally found a macroscopic gradient of dopamine D1 receptor density along the 

cortical hierarchy. By building a novel connectome-based biophysical model of the monkey 

cortex, endowed with multiple types of inhibitory cells, we show how dopamine can engage 

robust distributed persistent activity mechanisms across connected higher cortical areas and 

protect memories of salient stimuli from distraction. Because distributed persistent activity is 

necessary for internal manipulation of information in working memory (Masse et al., 2019; 

Takeda and Funahashi, 2004; Trübutschek et al., 2019), dopamine release in the cortex may 

be a key step toward higher cognition and thought.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the lead contact, Xiao-Jing Wang (xjwang@nyu.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability—Dopamine D1 receptor per neuron and tract-tracing 

connectivity data have been deposited at at BALSA: 7qKNZ and core-nets and are publicly 

available as of the date of publication. Accession numbers are listed in the Key resources 

table.

All original code has been deposited at GitHub: seanfw/dopamine-dist-wm and Zenodo: 

https://doi.org/10.5281/zenodo.5507279 and is publicly available as of the date of 

publication. DOIs are listed in the Key resources table.

Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

For in-vitro receptor autoradiography we analyzed the brains of three adult male Macaca 
fascicularis specimens (between 6 and 8 years old; body weight between 5.2 and 6.6 

kg) obtained from Covance (now Labcorp Drug Development), Münster, where they were 

used as control animals for pharmaceutical studies performed in compliance with legal 

requirements. All experimental protocols were in accordance with the guidelines of the 

European laws for the care and use of animals for scientific purposes.
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Tract tracing data was obtained from fluorescent retrograde injections of fast blue (FsB) 

and diamidino yellow (DY) in 29 areas reported in Markov et al., 2014b supplemented by 

injections in an additional 11 areas with either FsB (areas 9, OPRO), DY (areas LIP, V6, 25, 

32) or cholera toxin subunit B (CTB) (areas 1, 3, 45A, F4, F3). Animals were aged 10-15 

years, female and M. fasicularis except for the LIP injection which was M. mulatta. The LIP 

injection was reported in Mejias et al. (2016). Animals were group housed in cages in with 

access to plastic toys and other enrichment devices. Housing and surgical intervention were 

in accordance with European procedures and were reviewed by the veterinary and ethical 

services.

METHOD DETAILS

Overview of anatomical data—In this study, we combine post-mortem anatomical 

data on receptor densities, white matter connectivity, neuron densities and dendritic spine 

counts. Each of these four anatomical measures was originally quantified using different 

parcellations of cortex. Large sections of the temporal lobe are not yet quantified for either 

the receptor autoradiography data, or the tract-tracing connectivity data. Collection of this 

data is underway and will be made available in future studies. With the exception of the 

receptor densities in the posterior parietal cortex (Impieri et al., 2019; Niu et al., 2020, 

2021), all D1 receptor densities are reported for the first time in this study. The connectivity 

data for ten of the 40 cortical areas is used here for the first time, but will be described in 

more detail in an upcoming publication from the Kennedy lab. This enabled us to expand the 

calculation of the cortical hierarchy to 40 regions.

A note on notation—Subscripts in square brackets, such as [k] are used to denote cortical 

areas themselves. Subscripts not in brackets, such as i are used to denote populations 

of neurons within a cortical area. Superscripts are used to provide further clarifying 

information. We use the convention that targets are listed before sources, so that gi,j 

would denote the strength of a connection from neural population j to neural population 

i. Parameter values are listed in Table S6.

Quantification of receptor density across cortex - in-vitro autoradiography—
In order to create a high-resolution, and high-fidelity map of cortical dopamine receptor 

architecture, we used quantitative in-vitro receptor autoradiography (Palomero-Gallagher 

and Zilles, 2018). Previous dopamine receptor autoradiography has focused on relatively 

small sections of cortex (Goldman-Rakic et al., 1990; Impieri et al., 2019; Lidow et al., 

1991; Niu et al., 2020; Richfield et al., 1989). To create a more comprehensive map of the 

cortical dopamine receptors, we measured D1 receptor density across 109 cortical areas, and 

D1 and D2 receptors in the basal ganglia.

Animals were sacrificed by means of an intravenous lethal dose of sodium pentobarbital. 

Brains were removed immediately from the skull, and brain stem and cerebellum were 

dissected off in close proximity to the cerebral peduncles. Hemispheres were separated 

and then cut into a rostral and a caudal block by a cut in the coronal plane of sectioning 

between the central and arcuate sulci. These blocks were frozen in isopentane at −40C to 

−50C, and then stored in airtight plastic bags at −70C. Each block was serially sectioned in 
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the coronal plane (section thickness 20 μm) using a cryostat microtome (CM 3050, Leica, 

Germany). Sections were thaw-mounted on gelatine-coated slides, freeze-dried overnight 

and processed for visualization of D1 or D2 receptors, cell bodies (Merker, 1983) or 

myelin (Gallyas, 1979).Quantitative in-vitro receptor autoradiography was applied to label 

dopaminergic D1 and D2 receptors according to previously published protocols (Palomero­

Gallagher and Zilles, 2018) (Zilles et al., 2002) encompassing a preincubation, a main 

incubation and a final rinsing step. For visualization of the D1 receptor, sections were 

first rehydrated and endogenous substances removed during a 20 minute preincubation 

at room temperature in a 50 mM Tris-HCl buffer (pH 7.4) containing 120 mM NaCl, 5 

mM KCl, 2 mM CaCl2 and 1 mM MgCl2. During the main incubation, sections were 

incubated with either 0.5 nM [3H]SCH 23390 alone (to determine total binding), or 

with 0.5 nM [3H]SCH 23390 and 1 mM of the displacer mianserin (to determine the 

proportion of displaceable, non-specific binding) for 90 minutes at room temperature in 

the same buffer as used for the preincubation. Finally, the rinsing procedure consisted of 

two 20 minutes washing steps in cold buffer followed by a short dip in distilled water. For 

visualization of the D2 receptor, sections were preincubated with 50 mM Tris-HCl buffer 

(pH 7.4) containing 150 mM NaCl and 1% ascorbate. In the main incubation, sections 

were incubated with either 0.3 nM [3H]raclopride alone, or with 0.3 nM [3H]raclopride 

and 1 μM of the displacer 1 μM butaclamol for 45 minutes at room temperature in the 

same buffer as used for the preincubation. Rinsing consisted of six 1 minute washing 

steps in cold buffer followed by a short dip in distilled water. Specific binding is the 

difference between total and non-specific binding. Since the ligands and binding protocols 

used resulted in a displaceable binding, which was less than 5% of the total binding, 

total binding is considered to be equivalent of specific binding. Sections were dried in 

a cold stream of air, exposed together with plastic scales of known radioactivity against 

tritium-sensitive films (Hyperfilm, Amersham) for six (for the D1 receptor) or eight (for 

the D2 receptor) weeks, and ensuing autoradiographs processed by densitometry with a 

video-based image analyzing technique (Palomero-Gallagher and Zilles, 2018)(Zilles et al., 

2002). Autoradiographs were digitized using a CCD-camera, and stored as 8-bit gray value 

images with a spatial resolution of 2080x1542 pixels. Grey values (g) in the co-exposed 

scales as well as experimental conditions were used to create a regression curve with which 

gray values in each pixel of an autoradiograph were transformed into binding site densities 

(Bmax) in fmol/mg protein by means of the formula

Bmax = gR
EBW bsa ⋅ KD + L

L (Equation 1)

where R is the radioactivity concentration (cpm) in a scale, E the efficiency of the 

scintillation counter used to determine the amount of radioactivity in the incubation buffer, 

B the number of decays per unit of time and radioactivity, Wb the protein weight of a 

standard, sa the specific activity of the ligand, KD the dissociation constant of the ligand, and 

L the free concentration of the ligand during incubation. For visualization purposes solely, 

autoradiographs were subsequently pseudo-color coded by linear contrast enhancement and 

assignment of equally spaced density ranges to a spectral arrangement of eleven colors.
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Cortical areas were identified by cytoarchitectonic analysis and receptor densities measured 

at comparable sites in the adjacent sections processed for receptor visualization. The mean 

receptor density for each area over a series of 3–5 sections per animal and receptor was 

determined by density profiles extracted vertical to the cortical surface using MATLAB­

based in house software (Palomero-Gallagher and Zilles, 2018).

Retrograde tract-tracing—The inter-areal connectivity data in this paper is part of an 

ongoing effort to map the cortical connectome of the macaque using retrograde tract-tracing 

(Markov et al., 2013, 2014a, 2014b). For each target area, a retrograde tracer was injected 

into the cortex. The tracer was taken up in the axon terminals in this area, and retrogradely 

transported to the cell bodies of neurons that projected to the target. These cell bodies 

could be throughout the brain. Each of these cell bodies in cortex was counted as a labeled 

neuron (LN). The amount of labeled neurons was counted in all cortical areas except for 

the injected target area. The cortical areas that send axons to the target area are called 

source areas. As there are uncontrollable differences in tracer volume and uptake between 

injections, we estimated the strength of connections as follows. For a given injection, the 

total number of cell bodies in the cortex outside of the injected (target) area was counted. 

The number of labeled neurons within a source cortical area was then divided by the number 

of labeled neurons in the whole cortex (excluding the target area), to give a fraction of 

labeled neurons (FLN). The FLN was averaged across all injections in a given target area. 

For this calculation, we include all areas in the entire cortical hemisphere (nareas = 91).

FLN[k, l] = LN[k, l]

∑l = 1
nareas

LN[k, l]
(Equation 2)

In addition, for each connection we defined the supragranular labeled neurons (SLN) as 

the fraction of neurons in the source area whose cell bodies were in the superficial (aka 

supragranular) layers.

SLN[k, l] =
LN[k, l]

supra

LN[k, l]
supra + LN[k, l]

infra (Equation 3)

The subiculum (SUB) and piriform cortex (PIR) have a qualitatively different laminar 

structure to the neocortical areas, and thus supra- and infra-laminar connections (and thus 

the SLN) from these areas are undefined. We thus removed all connections from these areas 

from the following calculations (nareas,SLN = 89). These connectivity data are available on 

the core-nets website.

Estimation of the cortical hierarchy—Following (Markov et al., 2014a), we estimate 

the hierarchical position h of each area using the SLN values of its connections. 

Feedforward connections tend to originate in the supragranular layers, while feedback 

connections tend to originate in the deep layers of the source area (Barone et al., 2000; 

Felleman and Van Essen, 1991). Moreover, if a target area occupies a much higher 

hierarchical position than the source area, a greater proportion of the neurons emerge from 
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the supragranular layers of the source area than if the two areas are closer in the hierarchy 

(Barone et al., 2000). Likewise for the feedback connections, a greater hierarchical distance 

between the areas implies that the higher area sends a greater proportion of it projections 

from the infragranular layers. This implies that the fraction of neurons coming from the 

supragranular layers in a given connection gives an estimate of the relative hierarchical 

position of two connected areas (Barone et al., 2000; Markov et al., 2014a). Here, following 

(Markov et al., 2014a), we estimate a set of hierarchical levels (one per area) that best 

predicts the SLN values for all connections in the dataset.

The model to estimate the hierarchy has the form

g(E(SLN)) = Xβ (Equation 4)

where g is a function that links the SLN of the connection between areas to the hierarchical 

distance between them. β is a column vector of length nareas,SLN, containing the hierarchy 

values to be estimated. X is an incidence matrix of shape nconns×nareas,SLN, where nconns 

( = 2619) is the number of observed (non-zero) connections between cortical areas in the 

remaining dataset. Each row in X represents a connection, and each column represents a 

cortical area. All entries in each row equal 0 except for the column corresponding to the 

source area, which has a value of −1, and the target (recipient) area, which has a value of 1 

(Strang, 1993).

The hierarchical values can be estimated with maximum likelihood regression. However, 

the model is singular (the rows sum to zero). In order to make the model identifiable, we 

therefore removed one column from X. We chose to remove the column corresponding to 

area V1, which is therefore forced to have a hierarchical value of 0. However, the choice of 

column is unimportant, as it is possible to estimate negative hierarchical values (in the case 

that other areas are lower than V1 in the hierarchy).

We used the beta-binomial model. The binomial parameter p corresponds to the proportion 

of successes. This is thought to be a random variable following a Beta distribution. The 

beta-binomial distribution depends on two parameters, the mean (μ, here the SLN), and the 

dispersion (ϕ). The beta-binomial model can account for the overdispersion of the neural 

count data. Note that the SLN of each measured connection is input into the model, without 

averaging across repeated injections.

The likelihood is written as

f(μ, ϕ; q, n) = n
q

B μ 1 − ϕ
ϕ + q, (1 − μ) 1 − ϕ

ϕ + n − q

B μ 1 − ϕ
ϕ , (1 − μ) 1 − ϕ

ϕ
(Equation 5)

where q is the number of neurons projecting from the supragranular layers, n is the number 

of neurons projecting from all layers, and B is the beta function defined as

B(x, y) = ∫
0

1
px − 1(1 − p)y − 1 dp (Equation 6)
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with x,y > 0. We fit the model using μ = Φ(Xβ), where Φ is the cumulative Gaussian, as it 

maps the real numbers to the (0,1) range. Φ−1 = g in Equation 4 is the probit link function. 

The hierarchy is estimated by minimizing the log-likelihood. For more details see Markov et 

al. (2014a).

We then rescaled the hierarchy so that the maximum hierarchial value within the 40 region 

complete subgraph (containing all injected areas) equaled 1:

ℎ[k] = β[k]
max βsubgrapℎ (Equation 7)

for all cortical areas k in the complete 40-area subgraph.

For the circular embedding of the connectivity data, we estimate angles θi,j between areas Ai 

and Aj so that a smaller angular distance between areas corresponds to a higher connectivity 

strength (Chaudhuri et al., 2015). The dissimilarity d(Ai, Aj) is defined as

d(Ai, Aj) =
−log10(FLN(Ai, Aj)) for FLN(Ai, Aj) ≥ 0
−log10(FLNmin) for FLN(Ai, Aj) = 0

where FLNmin = 10−7, a value smaller than any FLN in the dataset.

The angles θi are assigned to each area such that

d(Ai, Aj) ≈ min( ∣ θi − θj ∣ , 2π − ∣ θi − θj ∣ )

The estimated angles θi are constrained to lie within the range [0, 1] and then mapped onto 

[0, 2π].

The radial distance from the center of the circle is ri = 1 − ℎi, where hi is the hierarchical 

value of the area, as defined above.

Integration of anatomical datasets—All anatomical data was mapped to the 

appropriate parcellations on the Yerkes19 surface. For the present study, we mapped all 

data to the 40 area Lyon subgraph (Markov et al., 2014b), as the areas in this parcellation 

were generally larger than those in the Julich Macaque Brain Atlas (Impieri et al., 2019; 

Niu et al., 2020; Rapan et al., 2021; this paper) and the Queensland (spine count) injection 

sites (Elston, 2007), and closer to standard areal descriptions than the Vanderbilt (neuronal 

density) (Collins et al., 2010) sections.

The receptor densities were quantified in 109 cortical regions defined by cyto- and receptor­

architecture. The method for the delineation of cortical region borders is described in 

(Impieri et al., 2019; Niu et al., 2020; Rapan et al., 2021). Using the same method, 

anatomists (NPG, MN, LR) identified cortical areas on the basis of the receptor and cyto­

architecture. See Figure 1 for the definition of the areas. Anatomists carefully drew (NPG, 

MN, LR) and independently revised (NPG, MN, LR, SFW) defined borders on the Yerkes19 
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cortical surface (Donahue et al., 2016) to enable comparison with other data types. The D1 

receptor data was mapped to the Lyon atlas as follows. For each area in the Lyon atlas, we 

searched for overlaps with areas in the Julich Macaque Brain Atlas. If more than 50% of 

the vertices within the area were also in the Julich Macaque Brain Atlas, the D1 receptor 

density for the area was calculated. All vertices within each Julich area were assigned the 

mean value for that area. We averaged the D1 receptor density across all vertices that lay 

within both the Lyon area and the Julich Macaque Brain Atlas, thus performing a weighted 

average of the D1 receptor densities according to the degree of spatial overlap. Thirty-two of 

the 40 Lyon areas were assigned D1 receptor density in this way, with the remaining eight 

areas not overlapping sufficiently with the Julich Macaque Brain Atlas. Due to the strong 

positive correlation between the D1 receptor/neuron density and the hierarchy (Figure 1), for 

the simulations we inferred values for the remaining eight regions using linear regression 

with hierarchy as the independent variable and D1 receptor/neuron density as the dependent 

variable.

The in-vitro autoradiography data accurately quantifies the density of receptors across 

cortex. However, it is important to bear in mind that the density of neurons also varies across 

the cortex. Collins et al. (2010) measured the density of neurons across the entire macaque 

cortex using the isotropic fractionator (a.k.a. brain soup) method. In the original paper, the 

cortex was divided into 42 regions and displayed on a flatmap, with anatomical landmarks 

labeled (Figures 2 and S1 of that paper). The borders of these regions were drawn on the 

Yerkes19 surface by SFW with reference to the original paper (Collins et al., 2010), several 

anatomical papers from the same group (Beck and Kaas, 1999; Cerkevich, et al., 2014; 

Kaas, 2004), the Julich Macaque (109 areas) and the Lyon (Markov-132) atlases (Donahue 

et al., 2016; Markov et al., 2014b), and were independently assessed by anatomists (LR, 

MN, NPG). The neural density data covered the entire cortex. As such, we assigned neural 

density to each area in the Lyon atlas, weighted by the spatial overlap with the original 

regions in the Vanderbilt atlas. D1 receptor density was divided by the neuron density to give 

the D1 receptor/neuron density in each area. The neuron density was in units of neurons per 

gram. To estimate the receptor density in fmol per neuron, we used the previously reported 

figure that 8% of brain tissue is protein (McIlwain and Bachelard, 1972). This amounts to 

multiplying by a constant, and does not affect the correlations or the effect of the dopamine 

gradient in the model.

The Lyon atlas used to define the interareal connectivity data (Markov et al., 2014b) is 

already available on the Yerkes19 surface (Donahue et al., 2016). The complete subgraph 

of injected areas including bidirectional connectivity has been expanded from 29 areas in 

Donahue et al. (2016) to the 40 areas used in this paper.

For the spine count data, outlines of the 27 injection sites were drawn on the Yerkes19 

surface by SFW with reference to the original papers (most of which had substantial 

anatomical description and hand-drawn maps), as well as anatomical papers cited within 

the original papers (Cavada and Goldman-Rakic, 1989; Preuss and Goldman-Rakic, 1991; 

Seltzer and Pandya, 1978) and the Lyon and Julich Macaque Brain Atlases. Direct 

comparison with the hand-drawn maps was possible for areas V1, V2, MT, LIPv, 7a, 

V4, TEO, STP, IT, Ant. Cing., Post. Cing, TEpd, 12vl, A1, 3b, 4, 5, 6, 7b, 9, 13, 46, 
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7 m (Elston, 2007). Areas 10, 11 and 12 were described with reference to Preuss and 

Goldman-Rakic (1991). The injection in area TEa used the maps in Seltzer and Pandya 

(1978) for area definition. We used these maps to approximate the injection location. Area 

STP was identified with the corresponding region STPp in the atlas of Felleman and Van 

Essen (1991). Area FEF was identified as lying on the anterior bank of the medial aspect 

of the arcuate sulcus, as described by Elston (2007). All identified injection sites on the 

cortical surface were independently verified by MN, LR and NPG. Spine count data was 

expressed according to injection sites, rather than entire cortical areas. As such, we found 

the number of vertices from each injection site overlapping with each area in the Lyon atlas. 

For each Lyon area, the spine count was an average of the spine counts for all the injection 

sites overlapping with the area, weighted by the number of vertices of each injection site 

contained within the area. In this way we estimated the spine counts on pyramidal cells in 24 

of the 40 regions in the Lyon atlas. Based on the strong positive correlation between spine 

count and cortical hierarchy (r = 0.61, p = 0.001), and following previous work (Chaudhuri 

et al., 2015; Mejias and Wang 2021), we inferred the spine count for the remaining regions 

based on the hierarchy using linear regression.

Neuroanatomists (NPG, LR, MN) classified each of the 109 cortical areas for which D1 

receptor data is available as being either granular, or agranular, and according to the ratio of 

cell body size between layers III and V.

Delineations of the areal borders for each atlas, and the anatomical data in the Yerkes19 

space are available on the BALSA database.

Overview of dynamical models—We first describe the connectivity structure of our 

local circuit model, and how dopamine modulates the efficacy of these connections. We 

then describe a large-scale dynamical model, in which the local circuit is used as a building 

block, and placed in each of 40 cortical areas. We describe the various steps to building 

the large-scale model, including how to connect the cortical areas, apply heterogeneity of 

excitation and the gradient of dopamine. Lastly, we describe how we simulated working 

memory tasks, lesions and transient inhibition in this model.

Description of the local cortical circuit—We describe a local cortical circuit 

containing populations of four distinct types of neurons. This is conceptually related to 

previous computational models of working memory involving multiple types of interneurons 

(Tanaka, 1999; Wang et al., 2004a), and uses a mean field reduction of a spiking model 

(Brunel and Wang, 2001; Wong and Wang, 2006). PV, CB/SST and CR/VIP cells differed in 

the threshold and slope of their input-output function (f-I curve) (Bacci et al., 2003), local 

(Adesnik et al., 2012; Jiang et al., 2015; Muñoz et al., 2017; Pfeffer et al., 2013; Tremblay et 

al., 2016) and long-range connectivity (Lee et al., 2013; Wall et al., 2016), adaptation rates 

(Kawaguchi, 1993; Mendonça et al., 2016; Schuman et al., 2019), and NMDA/AMPA ratio 

(Lu et al., 2007).

The connectivity structure and strengths of the local circuit, are based on a synthesis of 

anatomical and physiological studies, and are captured in the local connectivity matrix G 
(Tables S1-S3; Jiang et al., 2015; Kalisman et al., 2005; Lee et al., 2013; Ma et al., 2012; 
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Markram et al., 1997; Pfeffer et al., 2013; Silberberg and Markram, 2007; Walker et al., 

2016). Note that connection probability and synaptic strength between neural types are 

generally positive correlated (Jiang et al., 2015). This simplifies the process of identifying 

the relative strengths of connections between neural populations in the circuit.

We grouped the pyramidal neurons into two separate populations. Each of these populations 

is selective to a particular visual feature (such as a region of visual space). Pyramidal cells 

excite all cell types in the circuit, with different strengths. We model two compartments 

in the pyramidal cells. One compartment represents the soma and proximal dendrites, and 

the other the distal dendrites. The dendrite is modeled as a simplified nonlinear function, 

adapted from Yang et al. (2016). Pyramidal cells target the soma and proximal dendrites of 

other pyramidal cells in the same cortical area (Kalisman et al., 2005; Markram et al., 1997; 

Petreanu et al., 2009). Each type of inhibitory neuron has a unique pattern of connectivity. 

The first inhibitory cell type targets the perisomatic area of the pyramidal cells. These cells 

express parvalbumin (PV) and are fast spiking (Jiang et al., 2015; Kawaguchi, 1993,1995). 

They are basket cells with axons that branch across wide distances, which allows them to 

inhibit pyramidal cells in neighboring populations (Helmstaedter et al., 2009; Kawaguchi, 

1995). They also inhibit other PV neurons (Jiang et al., 2015; Pfeffer et al., 2013). 

Compared to other inhibitory neurons, PV neurons receive a smaller proportion of excitatory 

inputs via NMDA receptors (Lu et al., 2007; Wang and Gao, 2009). The second type of 

inhibitory neuron targets the distal dendrites of excitatory cells. In non-human primates, 

dendrite-targeting cells express calbindin (DeFelipe et al., 1989). The best characterized 

dendrite-targeting cell type in rodents is the Martinotti cell, which expresses somatostatin 

(CB/SST) (Wang et al., 2004b). These cells target all other cell types, while avoiding other 

Martinotti cells (Jiang et al., 2015). They also receive a strong lateral projection from 

pyramidal cells in neighboring columns (Adesnik et al., 2012) and receive most of their 

excitation via NMDA receptors (Lu et al., 2007). The third type of interneuron expresses 

calretinin and vasoactive intestinal peptide (CR/VIP) (Tremblay et al., 2016) and targets 

CB/SST inhibitory neurons (Lee et al., 2013). Although gene expression of PV, SST and 

VIP have been used to successfully distinguish non-overlapping classes of interneurons in 

primates (Hodge et al., 2019; Krienen et al., 2020), in primates SST antibodies often label 

relatively few cells (Hendry et al., 1984; Mueller et al., 2018, 2020). SST is often, but 

not always co-expressed with CB (González-Albo et al., 2001; Lake et al., 2016). CB and 

SST expressing cells show a similar pattern of expression across cortical layers and areas 

in the macaque (Dienel et al., 2020). CR is expressed in most VIP neurons in primate 

cortex (Gabbott and Bacon, 1997; Lake et al., 2016), and both VIP and CR show a similar 

expression across layers and cortical areas in the macaque (Dienel et al., 2020). However, 

the investigation of cross-species interneuron type similarities and differences is ongoing 

and not resolved (Hodge et al., 2019; Kooijmans et al., 2020; Krienen et al., 2020). In our 

model, the three interneuron types should be more appropriately interpreted according to 

their synaptic targets, rather than other cellular markers.

See Table S6 for all parameter values.
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Dopamine modulation—The density of dopamine D1 receptors per neuron was rescaled, 

so that the area with minimum density ρminraw was set to zero, and the area with maximum 

density ρmaxraw was set to one, with all other areas lying in between.

ρ[k] =
ρ[k]

raw − ρminraw

ρmaxraw − ρminraw

for all cortical areas k.

Network behavior was investigated for differing amounts of cortical dopamine availability 

(λDA). The specific value of λDA used for each simulation is shown in the figures and main 

text. Note that for Figure 6, λDA is calculated dynamically throughout each trial. Cortical 

dopamine availability is related to the fraction of occupied D1 receptors λocc through a 

sigmoid function. The fraction of occupied D1 receptors thus lies between 0 and 1, as 

expected.

λocc = ebo λDA − co

1 + ebo λDA − co (Equation 8)

Dopamine increases the proportion of inhibition onto the dendrites of pyramidal cells (Gao 

et al., 2003). Therefore, we simulated the effect of dopamine on dendritic inhibition as 

follows. The total amount of dendritic inhibition increases (from a minimum to a maximum 

strength) as the total amount of occupied receptors increases. The total amount of occupied 

receptors is equal to the receptor density multiplied by the fraction of occupied receptors.

gEdend, SST , [k]
DA = gEdend, SST

min + λoccρ[k] gEdend, SST
max − gEdend, SST

min
(Equation 9)

Dopamine decreases the proportion of inhibition onto the soma of pyramidal cells (Gao et 

al., 2003). Therefore, we simulated the effect of dopamine on somatic inhibition as follows. 

The total amount of somatic inhibition decreases (from a maximum to a minimum strength) 

as the total amount of occupied receptors increases.

gEsoma, PV , [k]
DA = gEsoma, PV

max + λoccρ[k] gEsoma, PV
min − gEsoma, PV

max
(Equation 10)

Dopamine also increases the strength of excitatory synaptic transmission via NMDA 

receptors (Seamans et al., 2001). We modeled this with a sigmoid function, so that dopamine 

primarily increases NMDA conductances at low and medium dopamine concentrations, 

before reaching a plateau (Brunel and Wang, 2001).
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ν[k] = ebν λoccρ[k] − cν

1 + ebν λoccρ[k] − cν (Equation 11)

Here bv sets the slope of the sigmoid function, cv sets the midpoint.

The effects of dopamine on NMDA transmission is then defined as

ν[k]
DA = 1 + αν[k] (Equation 12)

where α controls the strength of dopamine modulation on NMDA transmission.

High levels of D1 agonism lead to a reduction in pyramidal cell firing, particularly during 

the delay period of working memory tasks. D1 receptor stimulation may lead to inhibition 

of ongoing activity by engaging an intracellular pathway involving cyclic AMP, protein 

kinase A and either HCN or KCNQ channels (Arnsten et al., 2019; Gamo et al., 2015; 

Vijayraghavan et al., 2007). The mechanisms by which HCN channels may hyperpolarise 

the cell are still under debate (George et al., 2009; Pereira, 2014). We simulated an increase 

in adaptation for very high levels of D1 receptor stimulation with a sigmoid function, so that 

adaptation increases at high dopamine concentrations, before reaching a plateau.

μ[k]
M = ebM λoccρ[k] − cM

1 + ebM λoccρ[k] − cM (Equation 13)

Description of dynamical variables—The neural populations interact via synapses 

that contain NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and 

gamma-aminobutyric acid (GABA) receptors. Each receptor has its own dynamics, governed 

by the following equations.

The synaptic variables are updated as follows (Wang 1999; Wong and Wang, 2006; Yang et 

al., 2016)

dsNMDA

dt = − sNMDA

τNMDA + (1 − sNMDA)γNMDArE (Equation 14)

dsAMPA

dt = − sAMPA

τAMPA + γAMPArE (Equation 15)

dsGABA

dt = − sGABA

τGABA + γlrl (Equation 16)
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dsGABA, dend

dt = − sGABA, dend

τGABA, dend + γlrl (Equation 17)

where s is the synaptic drive onto a particular receptor type, τ is the time constant of 

decay of that receptor and γNMDA, γAMPA and γI are constants. rE and rI are the firing 

rates of the presynaptic excitatory and inhibitory cells targeting the NMDA, AMPA and 

GABA receptors, calculated below. Note that the inhibition onto the dendrite is slower than 

inhibition elsewhere (τGABA,dend > τGABA) (Ali and Thomson, 2008). Hence we calculate 

dynamics of dendritic and somatic inhibition separately.

Adaptation acts to reduce the firing rate when the rate is high and has been frequently 

modeled in the following simple form (Engel and Wang, 2011; Hansel and Sompolinsky, 

1998; Laing and Chow, 2002; Shpiro et al., 2007; Theodoni et al., 2011), derived from a 

spiking model (Liu and Wang, 2001; Theodoni et al., 2011)

da
dt = − a

τa + r (Equation 18)

where a is the adaptation variable, τa is the adaptation time constant, and r is the firing rate 

of the neural population.

NMDA/AMPA ratio—The fraction of excitatory postsynaptic current that is dependent on 

NMDA versus AMPA receptors differs by cell type (e.g., with relatively more current via 

the NMDA receptors in CB/SST versus PV cells) (Lu et al., 2007). Thus, we allowed the 

strength of excitatory transmission via NMDA and AMPA receptors to vary by cell type, 

described in the NMDA fraction, κ (Table S6).

Modulation of excitatory connections by dendritic spines—Approximately 90% 

of excitatory synapses on neocortical pyramidal cells are on dendritic spines (Nimchinsky et 

al., 2002). On this basis, we modulate the strength of excitatory connections according to the 

dendritic spine count.

ζ[k] =
ζ[k]
raw − ζminraw

ζmaxraw − ζminraw

for all cortical areas [k].

z[k] = zmin + ζ[k](1 − zmin) (Equation 19)

where zmin sets the lower bound for the modulation of excitatory connections by the spine 

count, ζ.

Description of local currents—The local NMDA current is calculated as follows
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Ii, [k]
NMDA, local = z[k]κiν[k]

DA ∑
jε{E1, E2}

gi, jE sjNMDA
(Equation 20)

where the local excitatory connections via the NMDA receptors are scaled by the NMDA 

receptor fraction κi, the dendritic spine count z[k] and the D1 receptor stimulation ν[k]
DA for all 

populations of neurons i and cortical areas k.

Similarly local excitatory connections via the AMPA receptors are scaled by the AMPA 

receptor fraction 1 − κi and the dendritic spine count z[k].

Ii, [k]
AMPA, local = z[k] (1 − κi) ∑

jε{E1, E2}
gi, jE sjAMPA

(Equation 21)

Local inhibitory connections are not explicitly modulated by the dendritic spine count (as 

spines are the locations of synapses between excitatory cortical neurons). Note however, 

that the connectivity structure gGABA is modulated by the dopamine receptor density and 

occupancy (See Tables S2, S3, and S6).

Ii
GABA = ∑

jε{Inℎ}
gi, jGABAsjGABA

(Equation 22)

where Inh is the set of inhibitory neuron populations.

The currents onto the dendrites are calculated separately, in order to calculate the nonlinear 

transformation of the current in the dendrite. They depend on the noise and background 

currents, so are described below.

Description of noise and background currents—Noise is modeled as an Ornstein­

Uhlenbeck process, separately for each population.

τAMPAdInoise(t)
dt = − Inoise(t) + η(t) τAMPAσnoise2 (Equation 23)

where σnoise is the standard deviation of the noise and η is Gaussian white noise with zero 

mean and unit variance.

A constant background current Ibg was also added to each population (Table S6). This 

represents input from brain areas that are not explicitly modeled.

Description of the adaptation current—We include adaptation in excitatory cells 

(Kawaguchi, 1993), CB/SST (Kawaguchi, 1993, 1995) and CR/VIP cells (Mendonça et al., 

2016; Schuman et al., 2019), but not PV cells (Kawaguchi 1993, 1995). This is reflected in 

their differing adaptation strengths gPV
a  and gotℎer

a , where gPV
a = 0.

The adaptation current is
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Ii, [k]
adapt = gia + gimμ[k]

M ai, [k] (Equation 24)

for all local populations i and cortical areas k.

Note that gia represents the non-dopamine dependent adaptation, while gimμ[k]
M  controls the 

dopamine-dependent adaptation, which depends on both dopamine release and receptor 

density (Equation 13).

Large-scale connectivity structure—Each of the cortical areas is connected using 

connectivity strengths derived from the retrograde tract-tracing data. Parts of this dataset of 

been included in previous publications (Markov et al., 2013, 2014a, 2014b). The long-range 

connectivity matrices are built from the FLN matrix. However, as noted in Mejias et al. 

(2016), the FLN matrix spans 5 orders of magnitude. The relationship between anatomical 

and physiological connectivity strengths is not clear, but if we were to use the raw FLN 

values in the large-scale model, many of the weaker connections would become irrelevant. 

To deal with this, we rescale the FLN matrix in order to increase the influence of smaller 

connections while maintaining the topological structure (Mejias et al., 2016; Mejias and 

Wang, 2021).

w[k, l] =
FLN[k, l]

b1

∑l = 1
nsub

FLN[k, l]
b1

(Equation 25)

Here we restrict calculations to the injected cortical areas i, j, which allows us to simulate 

the complete bidirectional connectivity structure within the subgraph (nsub = 40). We use the 

same parameter values as in Mejias et al. (2016) and Mejias and Wang (2021) (Table S6) to 

construct our interareal connectivity matrix W.

As noted previously, feedforward projections tend to originate in the supragranular layers, 

while feedback connections originate in the deep layers. Feedforward and feedback 

connections also likely have different cellular targets. Therefore it is useful to separate the 

long-distance feedforward and feedback connections.

w[k, l]
supra = SLN[k, l]w[k, l] (Equation 26)

w[k, l]
infra = (1 − SLN[k, l])w[k, l] (Equation 27)

Interareal population interactions—The majority of interareal connections contain a 

mixture of axons projecting from deep and superficial layers. Long distance connections 

onto excitatory cells primarily target the distal dendrites (Petreanu et al., 2009; Table S4). 

Therefore, in the model we assume that long-distance connections target the dendrites of 

excitatory cells. CR/VIP cells receive the strongest long-distance inputs of all inhibitory 
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cells, while CB/SST receives the weakest (Lee et al., 2013; Wall et al., 2016; Tables S5 and 

S6). This suggests that long-range connections effectively disinhibit the dendrite in the target 

area by exciting CR/VIP interneurons, while concurrently exciting the dendrite, to maximize 

the probability of information passing from the source area into the target area. Following 

Mejias and Wang (2021) we assume that feedback connections target inhibitory cells more 

strongly than feedforward connections.

Excitatory cells in different cortical areas with the same receptive fields are more likely to 

be functionally connected (Zandvakili and Kohn 2015). This is reflected in our model as 

follows. In the source area, there are two excitatory populations, 1 and 2, each sensitive to 

a particular feature of a visual stimulus (such as a location in the visual field). Likewise in 

the target area, there are two populations 1 and 2, sensitive to the same visual features. We 

assume that 90% of the output of population 1 in the source area goes to population 1 in the 

target area, and the remaining 10% to population 2. The converse is true for population 2 in 

the source area (it targets 10% population 1, 90% population 2; Tables S4 and S6).

Disinhibitory circuit in the frontal eye fields—The frontal eye fields (areas 8m and 

8l in the model), have a very high percentage of calretinin neurons, and relatively fewer 

parvalbumin and calbindin neurons (Pouget et al., 2009). To account for this in the model, 

we relatively increased the long-range inputs to CR/VIP cells in areas 8m and 8l, as detailed 

in Table S6. These changes are critical for persistent activity in areas 8l and 8m, but 

otherwise do not greatly affect the behavior of the model. Without this change, the overlap 

between the simulated delay activity pattern and the experimental delay activity pattern (as 

in Figure 3A) is still extremely high (17/19 areas correct, chi-square = 12.31 p = 0.0004), 

and the activity pattern depends on both the long-range connectivity (p = 0.001), and D1 

receptor distribution (p = 0.008), but not the spine count (p = 0.19), and lesions to areas 

8l and 8m have a smaller effect on distributed persistent activity. All other results are 

unchanged. We also increased the relative strength of local CR/VIP connections and reduced 

the relative strength of local PV connections in FEF, but found that this had no effect on 

model behavior, so the simulations in the paper are presented without the local changes in 

FEF.

Calculation of long-range currents—Long-range interactions are applied as follows:

Ii[k]
NMDA, E, E = z[k]μE, Eν[k]

DAκi ∑
l = 1

nsub
w[k, l]

supra ∑
jε{E1, E2}

gi, j
E, ESj[l]

NMDA (Equation 28)

where z[k] is the dendritic spine count for area k (as defined above), μE,E is the long-range 

connectivity strength onto excitatory cells (See Table S6), ν[k]
DA is the degree of dopamine 

modulation of NMDA currents for area k, κi is the NMDA/AMPA fraction for population i, 

w[k,l] is the connection strength from area l to area k, gi, j
E, E sets the long-range strength from 

population j to population i (Tables S4 and S6) and Sj[l]
NMDA is the synaptic NMDA drive 

from population j in source area l.

Similarly,
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Ii[k]
NMDA, I, E = z[k]μI, Eν[k]

DAκi ∑
l = 1

nsub
w[k, l]

infra ∑
jε{E1, E2}

gi, j
I, ESj[l]

NMDA (Equation 29)

(Tables S5 and S6).

The total long-range current via the NMDA receptors, is simply the concatenation of the two 

above terms INMDA,E,E and INMDA,I,E.

INMDA, LR = INMDA, E, E, INMDA, I, E (Equation 30)

The long-range AMPA current is calculated similarly,

Ii[k]
AMPA, E, E = z[k]μE, E(1 − κi) ∑

l = 1

nsub
w[k, l]

supra ∑
jε{E1, E2}

gi, j
E, ESj[l]

AMPA (Equation 31)

Ii[k]
AMPA, I, E = z[k]μI, E(1 − κi) ∑

l = 1

nsub
w[k, l]

infra ∑
jε{E1, E2}

gi, j
I, ESj[l]

AMPA (Equation 32)

IAMPA, LR = IAMPA, E, E, IAMPA, I, E (Equation 33)

Description of dendritic currents—The inhibitory current onto the dendrite comes 

from CB/SST cells and is modulated by dopamine (Table S2; Equation 9)

Ii
dend, inℎ = ∑

jε{SST1, SST2}
gi, j

GABA, dendsjGABA
(Equation 34)

The distal dendrites receive long-range input (from neurons in other areas), noise and 

background input. In addition, if the area receives a stimulus directly, then the external 

stimulus also targets the dendrites. Note that most local connections target the area around 

the soma (Markram et al., 1997; Petreanu et al., 2009). This is reflected in the model by 

having local connections exclusively target the soma compartment of pyramidal cells.

Ii, [k]
dend, exc = Ii, [k]

NMDA, LR + Ii, [k]
AMPA, LR + Ii, [k]

stim + Ii, [k]
noise + Ii

background (Equation 35)

The dendritic nonlinearity is adapted from Yang et al. (2016) and modeled as follows:
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Isoma, dend = fl Idend, exc, Idend, inℎ = c1

. tanh Idend, exc + c3Idend, inℎ + c4

c5e−Idend, inℎ ∕ c6
+ c2

(Equation 36)

where Isoma,dend is the total current passed from the dendrite to the soma, Idend,exc and 

Idend,inh are the total excitatory and inhibitory current onto the dendrite, respectively. c1 

to c6 control the gain, shift, inversion point and shape of the nonlinear function. These 

parameters are set to ensure that strong inhibition to the dendrite effectively blocks dendritic 

activity, but has little effect on somatic firing if the soma is directly stimulated (See Table 

S6; Marlin and Carter, 2014).

Application of external stimuli for tasks—In all simulations, the first stimulus is 

applied for 400ms. The second stimulus (Figures 3, 4, 5, and 6) is applied 600ms after the 

removal of the target stimulus for another 400ms. The two stimuli are of equal strength and 

duration, although the results are robust to a range of stimulus strengths (See Table S6 for 

parameter values). For Figures 2, 3, 4, 5, and 6 in the main text, a stimulus was applied to 

the dendrite of excitatory population 1 in area V1. For Figures 3, 4, 5, and 6 second stimulus 

was applied to the dendrite of excitatory population 2 of area V1. For Figures S4 and S5, the 

stimuli were applied to area 3 of primary somatosensory cortex instead. In all equations, the 

target and distractor stimuli are designated by the term Istim.

Total current in large-scale model—The total current equals the sum of all long-range, 

local and external inputs, and intrinsic currents.

Itotal = INMDA, LR + IAMPA, LR + INMDA, local + IAMPA, local

+ IGABA, local + Isoma, dend + Iadapt + Inoise + Ibg + Istim (Equation 37)

Description of f-I curves—The f-I (current to frequency) curve of the excitatory 

population is

f IE
total = aIE

total − b

1 − e−d aIE
total − b

(Equation 38)

where rE is the firing rate of an populations of excitatory cells, IE
total is the total input to 

the population, a is a gain factor, d determines the shape of f(IE
total), such that if d is large, 

f(IE
total) acts like a threshold-linear function, with threshold b (Abbott and Chance, 2005).

The f-I curves for the inhibitory neuron populations are modeled using a threshold-linear 

function
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f Ii
total = ciIi

total + ri
0 for Ii

total ≥ − ri
0 ∕ ci

0, otherwise
(Equation 39)

where ri is the firing rate of a population of inhibitory cells, Ii
total is the total input to the 

population.

The threshold ri
0 and slope ci depend on the cell type i (Bacci et al., 2003). See Table S6 for 

parameter values.

The firing rates are updated as follows

τAMPAdR
dt = − R + f Itotal

(Equation 40)

for all cell types.

Short-term synaptic plasticity—For Figure 4, we added short-term plasticity to 

synapses from excitatory cells to excitatory cells (Hempel et al., 2000; Wang et al., 2004b) 

and CB/SST cells (Lee et al., 2013; Silberberg and Markram, 2007) as follows (Mongillo et 

al., 2008).

dsNMDA

dt = − sNMDA

τNMDA + xu(1 − sNMDA)γNMDAγxurE (Equation 41)

dsAMPA

dt = − sAMPA

τAMPA + xuγAMPAγxurE (Equation 42)

du
dt = U − u

τu + U(1 − u)rE (Equation 43)

dx
dt = 1 − x

τx − uxrE (Equation 44)

with U = 0.2, τu = 1.5s, τx = 0.2s, as inMongillo et al. (2008). We also added a term γxu = 

2.5 to account for the fact that the product xu is usually less then 1, and to keep firing rates 

similar to those in other simulations.

Simulated transient inhibition of SST2 populations—In Figure 5, we simulate the 

effects of transient inhibition to the SST2 populations in cortical areas in the frontoparietal 

network. The frontoparietal network is defined according to the results of Leavitt et al. 

(2017), as in Figure 3. To do this, we apply an external inhibitory stimulus of 0.1nA to these 

populations for the duration of the distractor stimulus.
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Dynamics and connectivity within VTA—For Figure 6, we investigate whether the 

dynamics of dopamine release can be learned in order to selectively maintain the desired 

working memory content. Previous cortico-basal ganglia models have tackled similar 

problems (Braver and Cohen, 2000; Frank, 2005). Note both dopaminergic and GABAergic 

cells in the VTA receive excitatory input from the cortex, while the majority of inhibition to 

dopaminergic cells comes from local VTA GABAergic cells (Soden et al., 2020).

The total current input to the dopamine cells in VTA is

IDA
tatal = IDA

bg + ∑
k = 1

nareas
∑

j = 1

2
cEj
vta, ctxgDA, Ej

vta, ctxSNMDA, Ej
k + ∑

k = 1

nareas
∑

j = 1

2
cEj
vta, ctxgDA, Ej

vta, ctxSAMPA, Ej
k

+ gDA, l
vta SGABA

vta

where gDA, Ej
vta, ctx sets the maximum strength of cortical-VTA connections. cEj

vta, ctx is 

the fraction of synapses in an up state (Soltani and Wang, 2006), and is updated 

via reinforcement learning (see below). Initial values are c1
vta, ctx = 0.7, c2

vta, ctx = 1. 

gDA, Ej
vta, ctx = 0.047nA gDA, l

vta = − 0.55nA, IDA
bg = 0.35nA.

The input to VTA inhibitory cells is

Ivta, l
tatal = Ivta, l

bg + ∑
k = 1

nareas
∑

j = 1

2
cEj
vta, ctxgl, Ej

vta, ctxSNMDA, Ej
k + ∑

k = 1

nareas
∑

j = 1

2
cEj
vta, ctxgl, Ej

vta, ctxSAMPA, Ej
k

where gl, Ej
vta, ctx = 0.02nA, Ivta, l

bg = 0.25nA.

Synaptic inputs to the VTA inhibitory are driven by facilitating synapses (Soden et al., 

2020), as in Equations 41-44, but with x = 0.87 held constant and τu = 200ms.

The firing rates of the dopamine cells rDA are calculated as in Equations 38 and 40. The 

firing rates of GABAergic cells are updated as in Equations 39 and 40.

Cortical dopamine availability—Dopamine neurons fire bursts in response to stimuli 

that predict reward in working memory tasks (Schultz et al., 1993). Following release 

in the cortex, dopamine levels remain elevated for seconds (Muller et al., 2014). This is 

approximately the period of one trial in our simulations. Therefore, for the majority of 

simulations we approximated this by setting dopamine to a constant value for each trial.

For Figure 6 the cortical model is the same as in previous figures, with the exception that 

dopamine availability in the cortex λDA changes dynamically and depends on the firing rates 

in the dopamine neurons, and γNMDA = 6.41, γAMPA = 25.

dλDA
dt = − λDA

τDA + γDArDA
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where τDA = 2s and γDA = 0.1. In addition, we removed the effect of dopamine on 

adaptation currents to simplify the learning process.

Reward-based learning—The fraction of cortex to VTA synapses in the up state is 

updated according to the outcome of the previous trial, using the simplified learning rule of 

Soltani and Wang (2006)

cEj(T + 1) = cEj(T ) + α[1 − cEj(T )]

if target j is selected and rewarded and

cEj(T + 1) = cEj(T ) − α[cEj(T )]

if target j is selected and not rewarded. T is the current trial and α = 0.2 is the learning rate.

QUANTIFICATION AND STATISTICAL ANALYSIS

Correlation between D1 receptor density and other anatomical features—Many 

aspects of brain anatomy are spatially autocorrelated, with nearby brain areas displaying 

similar anatomy. This spatial autocorrelation is not accounted for in conventional statistical 

tests, which often assume independence of data points. Failing to account for the spatial 

autocorrelation can lead to spurious correlations between brain maps. To overcome this 

problem, we generated random surrogate brain maps, with a spatial autocorrelation that 

closely matched the hierarchy map (Burt et al., 2020). This is done by first randomly 

permuting the values in the hierarchy map, and then smoothing and rescaling the permuted 

map to recover the lost spatial autocorrelation. The smoothing is perfomed by a local 

kernel-weighted sum of values of the k nearest neighbor regions, where k is chosen to 

best match the autocorrelation of the original hierarchy map (Burt et al., 2020). Each of 

the randomly generated surrogate maps is then correlated with the D1 receptor map. The 

spatially-corrected p value is then the fraction of surrogate maps that show a stronger 

Pearson correlation (negative or positive) with the D1 receptor map than the hierarchy map.

To compare the D1R density between granular and agranular cortical areas, we used a 

non-parametric Wilcoxon rank-sum test. To compare D1R density between areas with 

internopyramidisation, externopyramidisation and equal layer III and layer V pyramid sizes, 

we used a non-parametric Kruskall-Wallis test.

Comparing the simulated and experimental patterns of delay activity—In 

Figures 3A and 3B we compare the activity pattern of the model to the experimental pattern, 

and investigate its dependence on anatomical features. The experimental electrophysiology 

data was taken from a mega-analysis by Leavitt et al. (2017) of over 90 electrophysiology 

studies of delay period activity during working memory tasks. We first divided the cortex 

into persistent activity and non-persistent activity areas for both the experimental data and 

simulation (Table S7). Areas were classified in the persistent activity group if at least 3 more 

studies observed persistent delay period activity than a lack of such activity. We excluded 

areas that have been assessed in less than three studies. Of the areas that have been studied 
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in at least three studies, we classify an area as having persistent activity, if more than 50% 

of studies have found persistent activity. However, the conclusions are not dependent on 

this threshold, or the minimum number of studies (Table S8). Areas in the simulation were 

classified as having persistent activity if, for the last 500ms of the trial, they had mean firing 

rates of at least 5Hz greater than the pre-stimulus baseline firing rates.

To shuffle anatomical connections, we shuffled connections within rows of the FLN matrix, 

so that the distribution of connections and connection strengths to each area remained 

constant, with the identity of the connections changing. The same reordering was applied 

to the SLN matrix. D1 receptor densities and spine counts were shuffled separately. Results 

were visualized using a custom version of a Raincloud Plot (Allen et al., 2019) to enable 

concurrent visualization of the distribution and individual simulation results. The p value is 

calculated as the fraction of simulations based on shuffled anatomical data that produce a 

delay activity pattern that overlaps with the experimental data as well as (or better than) the 

original simulation.

Lesioning of cortical areas—In Figures 3C-3H, we simulate the effects of a lesion to 

individual cortical areas. We do this by removing all input and output connections of the 

lesioned area in the connectivity matrices WE,E and WI,E. For the statistical analysis of the 

relationship between anatomical features and lesion effects, we removed areas V1 and V2 

from the analysis. This was due to the fact that these areas were crucial to the propagation of 

the visual stimulus, but not working memory per se (Figure 3; Figure S5). We performed a 

stepwise-linear regression approach.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A gradient of dopamine receptors increases along the macaque cortical 

hierarchy

• A connectome-based dynamical model incorporates dopamine and multiple 

cell types

• Dopamine release switches from synaptic to persistent activity memory 

mechanisms

• Dopamine modulates dendritic inhibition to protect working memory from 

distractors
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Figure 1. A gradient of dopamine D1 receptors per neuron across the monkey cortex
(A) i: 109 cortical regions of the Julich Macaque Brain Atlas, identified by receptor and 

cytoarchitecture. ii:D1 receptor density. The receptor density shown here does not take into 

account differences in neuron density across areas.

(B) i: Collins et al., (2010) divided the macaque cortex into 42 slabs of tissue, here mapped 

on to the Yerkes19 surface. ii: neuron density across the cortex.

(C) i: injection sites for the studies of dendritic spine density by Elston (2007). ii: number of 

dendritic spines on the basal dendrites of layer III pyramidal cells.

(D) i: 40 injected areas in the retrograde tract-tracing database of Markov et al. (2014b). ii: 

cortical hierarchy.

(E) Circular embedding of the cortical hierarchical connectivity structure. Radial distance 

to the center represents the hierarchical position of the area, with the areas lowest in the 

hierarchy closest to the edge. Angular distance between areas represents the inverse of 

connectivity strength (fraction of labeled neurons - FLN), so that areas that are plotted at 

similar angles are more strongly connected to each other. Colors represent the angle on the 

circle. Clear visual and somatosensory hierarchies emerge from this circular embedding of 

the connectivity data (highlighted with arrows). Association areas lie at angles off the main 

visual and somatosensory hierarchies.
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(F) The density of D1 receptors divided by neuron density. Regions that have not yet been 

measured are shown in gray.

(G) There was a strong positive correlation between the D1 receptor density per neuron and 

the cortical hierarchy. The spatially corrected p value is the fraction of randomly generated 

surrogate maps with spatial smoothness matched to the hierarchy map that show a stronger 

Pearson correlation (negative or positive) with the D1 receptor map than the hierarchy map 

itself.

See also Figures S1 and S2.
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Figure 2. An inverted U relationship between D1 receptor stimulation and distributed 
frontoparietal delay period activity
(A) Left: local circuit design. The circuit contains two populations of excitatory cells (red 

and blue), each selective to a particular spatial location. The cell bodies (triangles) and 

dendrites (cylinders) are modeled as separate compartments. PV (green), CB/SST (purple), 

and CR/VIP (light brown) cells have characteristic connectivity patterns. Right: the local 

circuit is placed at each of 40 cortical locations (various colors). Cortical areas differ in (1) 

inter-areal connections, (2) spine count, and (3) dopamine D1 receptor density.

(B) Stimulation of D1 receptors affects the cortical circuit via (1) an increase in inhibition 

targeting the dendrites with a corresponding decrease in inhibition to the somata of 

pyramidal cells, (2) an increase in NMDA-dependent excitatory transmission for low to 

medium levels of stimulation, and (3) increasing adaptation for high levels of stimulation.

(C) Structure of the task. The cortical network was presented with a stimulus it had to 

maintain through a delay period.

(D) Left: mean firing rate in the frontoparietal network at the end of the delay period for 

different levels of dopamine release. Right: mean delay period activity of cortical areas as 

a function of dopamine release. All areas shown display persistent activity in experiments 

(Leavitt et al., 2017).

(E) Activity is shown across the cortex at different stages in the working memory task (left 

to right), with increasing levels of dopamine release (from top to bottom). Red represents 

activity in the excitatory population sensitive to the target stimulus. Very low or very high 
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levels of dopamine release resulted in reduced propagation of stimulus-related activity to 

frontal areas and a failure to engage persistent activity. Mid-level dopamine release enables 

distributed persistent activity.

(F) Time courses of activity in selected cortical areas. The horizontal bars indicate the timing 

of cue (red) input to area V1.

DA, cortical dopamine availability. See also Figures S3 and S4 and Video S1.

Froudist-Walsh et al. Page 53

Neuron. Author manuscript; available in PMC 2021 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Inter-areal connectivity and D1 receptor density underlie working memory activity and 
performance
(A) There is a strong overlap (18 of 19, 95%) between the pattern of persistent activity seen 

experimentally (Leavitt et al., 2017) and that predicted by the model.

(B) The results of 10,000 simulations using shuffled inter-areal connections (green), 

10,000 simulations using shuffled patterns of D1 receptor expression (orange), and 10,000 

simulations using shuffled patterns of dendritic spine counts (purple). The position on the x 

axis denotes the overlap between the simulated delay activity pattern and the experimental 

activity pattern identified by Leavitt et al. (2017) for each simulation based on shuffled 

anatomical data. The red vertical line denotes the overlap between the simulation based on 

the real anatomy data and the experimental results. The bottom half of the image shows 

the results of individual simulations based on shuffled anatomical data. The top half of the 

image shows the densities. The pattern of inter-areal connections was the most important 

determinant of the working memory activity pattern. The p value is calculated as the fraction 

of simulations based on shuffled anatomical data that produce a delay activity pattern that 

overlaps with the experimental data as well as (or better than) the original simulation.

(C) Lesions to areas such as 46d and LIP led to reduced delay-period firing across for all 

levels of dopamine release. Following some lesions (such as to area 8B), an optimal level 
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of D1 receptor stimulation could restore close to normal working memory activity in the 

remaining network.

(D) The level of disruption to distributed working memory activity following lesions to each 

area, quantified as the total loss of working memory activity in the frontoparietal network 

summed across all dopamine release levels.

(E) The percent loss of delay period activity throughout the cortex following a lesion to each 

area.

(F) The percent loss of delay period activity following progressively bigger lesions to frontal 

and parietal areas.

(G) The percent of failed trials, across all dopamine levels, on a working memory task with a 

distractor following lesions to each cortical area.

(H) Lesions to areas with a higher D1 receptor density tended to have a larger effect on 

working memory activity.

D1R, D1 receptor density. See also Figure S5 and Tables S7 and S8.

Froudist-Walsh et al. Page 55

Neuron. Author manuscript; available in PMC 2021 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. A dopamine-dependent shift between distractible activity-silent and distractor-resistant 
persistent activity states
For a Figure360 author presentation of this figure, see https://doi.org/10.1016/

j.neuron.2021.08.024.

(A) i: task structure. A target stimulus was followed by a delay and a probe stimulus. ii: 

for mid-level dopamine release, activity relating to the target stimulus propagated from V1 

through the hierarchy and was maintained in persistent activity throughout the frontoparietal 

network. Top: firing rates on the surface (left) and in selected areas (right). Bottom: synaptic 

efficacy. iii: for low-level dopamine release, activity (top) in response to the stimulus was 
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transient in visual and some frontoparietal areas. There was no persistent activity through the 

delay period. However, in response to the probe stimulus, activity representing the original 

target stimulus was regenerated throughout the frontoparietal cortex. Bottom: the memory 

for the stimulus was stored as an increase in synaptic efficacy through the delay period, 

mostly in connections from sensory areas.

(B) i: task structure. A target stimulus was followed by a delay period, a distractor, another 

delay period, and a probe stimulus. ii: for mid-level dopamine release, target-related activity 

was maintained in persistent activity throughout the frontoparietal network throughout the 

delay period through the distractor until the end of the trial. iii: for low-level dopamine 

release, frontoparietal activity related to the most recent stimulus (i.e., the distractor) was 

regenerated during this probe stimulus.

See also Figure S6.
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Figure 5. Dopamine increases distractor resistance by shifting the subcellular target of inhibition
(A) Task structure. A target stimulus was followed by a delay, a distractor stimulus, and 

another delay period.

(B) For mid-level dopamine release, persistent target-related activity (red) was present in the 

frontoparietal network through the delay and the distractor until the end of the trial. Each 

cortical area contains populations of excitatory, CB/SST, and CR/VIP cells that respond 

to the target stimulus (E1, CB/SST1, and CR/VIP1), separate populations sensitive to the 

distractor stimulus (E2, CB/SST2, and CR/VIP2), and PV cells.

(B and C) Throughout the delay period and distractor stimulus, activity in CR/VIP1 is 

higher than in CB/SST1, leading to disinhibition of the E1 dendrite. In contrast, activity in 

CR/VIP2 is slightly lower than in CB/SST2, leading to inhibition of the E2 dendrite.

(D) We transiently inactivated CB/SST2 populations in the frontoparietal network during 

presentation of the distractor stimulus. On trials in which CB/SST2 populations were 

inhibited, the network became distractible.

(E) We removed the dopamine modulation of somatic and dendritic inhibition while leaving 

the effects of dopamine on NMDA-dependent excitation and adaptation unchanged.

(F and G) Without the dopamine-dependent switch toward dendritic inhibition, the network 

became distractible, with distractor-related activity dominating at the end of the trial.
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(H) Consistently across dopamine levels, higher somatic and lower dendritic inhibition were 

associated with distractible working memory (blue). In contrast, lower somatic and higher 

somatic inhibition were associated with distractor-resistant working memory (red). High 

dendritic and high somatic inhibition result in no persistent activity (white). The levels of 

dendritic and somatic inhibition associated with the standard dopamine modulation used in 

the rest of the paper are marked by a black square.

See also Figure S7.
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Figure 6. Reward-dependent learning of dopamine release appropriately engages persistent 
activity mechanisms to enable reversal learning
(A) We designed a simplified VTA model and connected this bidirectionally to the large­

scale cortical model. The VTA contained dopaminergic and GABAergic neuron populations. 

Dopamine was released dynamically depending on dopaminergic neuron activity. The 

strength of cortical inputs to VTA dopaminergic and GABAergic cells was updated at the 

end of each trial on the basis of trial outcome and choice.

(B) We simulated a task with two cues (red and blue) followed by a probe stimulus. 

The rewarded stimulus changed every 30 trials. Following each switch, after a few trials, 

the network learns to store the appropriate stimulus in distributed persistent activity. This 

depends on high dopamine release in response to the rewarded stimulus and low release in 

response to the unrewarded stimulus.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

D1R/neuron data This paper BALSA:

40 area connectivity data This paper CORE-NETS:

Cortical representation of anatomical data This paper BALSA: https://balsa.wustl.edu/study/7qKNZ

Spine count data Guy Elston (Elston, 2007) https://doi.org/10.1016/B0-12-370878-8/00164-6

Neuron density data Jon Kaas (Collins et al., 2010) https://doi.org/10.1073/pnas.1010356107

Experimental models: Organisms/strains

Cynomolgus macaque (Macaca 
fascicularis)

Labcorp (Covance) https://drugdevelopment.labcorp.com/

Cynomolgus macaque (Macaca 
fascicularis)

Noveprim group, Ebene, Mauritius 
Camarney SL-Noveprim Europe, 
Camarles-Tarragona, Spain

http://www.noveprimgroup.com/

Rhesus macaque (Macaca mulatta) Silabe, Centre de Primatologie 
Université Louis Pasteur, Strasbourg, 
France; Station de Primatologie de 
Rousset, Rousset-sur Arc, France

https://primatologie.unistra.fr/; http://
www.celphedia.eu/en/centers/primatologie-rousset

Software and algorithms

Large-scale dynamical model simulation 
and analysis software

This paper Zenodo: https://doi.org/10.5281/zenodo.5507279

Python programming language Python RRID: SCR_008394

MATLAB 2019a Mathworks RRID: SCR_001622

BrainSMASH statistical testing of 
spatially autocorrelated brain maps

Burt et al. (2020) https://github.com/murraylab/brainsmash

MATLAB Gifti toolbox Guillaume Flandin https://github.com/gllmflndn/gifti
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