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Neural networks regulate brain functions by routing signals. Therefore, investigating the

detailed organization of a neural circuit at the cellular levels is a crucial step toward

understanding the neural mechanisms of brain functions. To study how a complicated

neural circuit is organized, we analyzed recently published data on the neural circuit of

the Drosophila central complex, a brain structure associated with a variety of functions

including sensory integration and coordination of locomotion. We discovered that, except

for a small number of “atypical” neuron types, the network structure formed by the

identified 194 neuron types can be described by only a few simple mathematical rules.

Specifically, the topological mapping formed by these neurons can be reconstructed

by applying a generation matrix on a small set of initial neurons. By analyzing how

information flows propagate with or without the atypical neurons, we found that while the

general pattern of signal propagation in the central complex follows the simple topological

mapping formed by the “typical” neurons, some atypical neurons can substantially

re-route the signal pathways, implying specific roles of these neurons in sensory signal

integration. The present study provides insights into the organization principle and signal

integration in the central complex.

Keywords: central complex, neural networks, Drosophila, protocerebral bridge, topographical mapping

INTRODUCTION

Brain functions originate from interactions between neurons, which are strongly regulated by
signal routing in neural networks. To fully understand the neural mechanisms that underlie brain
functions, one must investigates the detailed organization of a neural circuit in single-neuron
resolution. Recent studies onDrosophila connectomemapping (Chiang et al., 2011; Lin H.-H. et al.,
2013; Takemura et al., 2013; Shih et al., 2015) provided an opportunity for high-resolution neural
circuit analysis. Among these studies, the release of the neuron innervation map in the central
complex (Lin C.-Y. et al., 2013; Wolff et al., 2015) is of particular interest for its potential role in
sensory-motor integration and memory.

The central complex is a brain structure that commonly exists in arthropods (Power, 1943;
Loesel et al., 2002; Homberg, 2008). In Drosophila, the central complex consists of five neuropils:
protocerebral bridge (PB), fan-shaped body (FB), ellipsoid body (EB), and a pair of noduli
(NO) (Supplementary Figure S1). The central complex is anatomically separated from other
brain regions by a glia sheath and makes relatively fewer direct contacts with sensory or
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motor centers. Instead, the central complex communicates with
other brain regions through the neighboring neuropils including
lateral triangle (LTR), caudalcentral protocerebrum (CCP),
caudal ventrolateral protocerebrum (CVLP), ventromedial
protocerebrum (VMP), and inferior dorsofrontal protocerebrum
(IDFP) (also called ventral body or lateral accessory lobe)
(Hanesch et al., 1989; Renn et al., 1999; Young and Armstrong,
2010b).

A number of studies have revealed the diversity in the
functions of the central complex (Wessnitzer and Webb, 2006;
Lin C.-Y. et al., 2013; Strausfeld and Hirth, 2013; Seelig and
Jayaraman, 2015). Specifically, the functions of the central
complex can be divided into three categories:

1. Sensory information integration. Studies on locusts revealed
that some PB neurons are selective to polarized light in the sky
in order to guide spatial orientation (Heinze and Homberg,
2007, 2009; Heinze et al., 2009; Heinze and Reppert, 2011;
Homberg et al., 2011). A recent study demonstrated the role
of EB in landmark orientation and angular path integration
(Seelig and Jayaraman, 2015).

2. Coordination of locomotion and high-level behavior.
Experiments have shown that lesions in the central complex
lead to various abnormalities in locomotion, such as walking,
flying, frequency of movements, and turning control (Strauss
and Heisenberg, 1993; Martin et al., 1999; Strauss, 2002;
Ridgel et al., 2006; Triphan et al., 2010). Other studies also
demonstrated the roles of the central complex in high level
behavior such as pursuing, responses to ethanol, courtship
behavior, as well as sleep and arousal (Strauss and Pichler,
1998; Sakai and Kitamoto, 2006; Kong et al., 2010; Ueno et al.,
2012).

3. Memory. Although memory in Drosophila has long been
associated with the mushroom body, recent studies have
begun to link the central complex with some types of memory
(Wu et al., 2007). Short-term memory of visual patterns has
been localized to specific types of FB neurons (Liu et al., 2006;
Neuser et al., 2008).

What are the neural circuit mechanisms that underlie such
diverse functionality of the central complex? While the answer
remains elusive, accumulating anatomical evidence of the central
complex indicates the highly structured nature of the neural
circuit organization (Hanesch et al., 1989; Heinze and Homberg,
2008; Young and Armstrong, 2010a,b), which provides insights
into the wiring principle of the central complex.

In the present study, we focused on a PB related circuit
because among the five neuropils of the central complex, PB
has the most detailed wiring diagram available, as described in
two recent optical imaging studies (Lin C.-Y. et al., 2013; Wolff
et al., 2015). Due to the limitation of the imaging resolution, these
studies described the connectivity between single neurons and
glomeruli rather than the synaptic connections between neurons.
However, the studies still revealed intriguing connectivity
patterns, which suggest an “electrical-circuit-like” wiring diagram
in the central complex (Lin C.-Y. et al., 2013; Wolff et al., 2015).
Such finding implies that the operational principles of the central
complex may be inferred by mathematical analysis of its circuit

organization. The PB related circuit consists of several classes of
neurons and each class is characterized by unique innervation
patterns between neuropils. The circuit has two general figures:
(1) two feedback loops. There are several classes of neurons
sending information back and forth between PB and EB as well
as between PB and IDFP. (2) Topographical mapping. In general,
two neurons that have their dendritic projections in the adjacent
regions also project their axons to the neighbor regions in the
target neuropils (Supplementary Presentation S1).

We set out to derive a mathematical representation of the
PB circuit described in Lin C.-Y. et al. (2013). We found that
the highly structured and topological innervation patterns can
be produced by simple mathematical rules. However, a small
portion of the neurons does not follow the regularity and cannot
be predicted by the rules. We further investigated these “atypical”
neurons and found that two of them substantially reroute signal
propagation in the network. The significance of rerouting and its
potential functions are also discussed in this paper.

METHODS

Neuropils and Subunits
In the present study we analyzed the central complex circuit
based on the data published in Lin C.-Y. et al. (2013). The
authors used MARCM (mosaic analysis with a repressible cell
marker) technique to collect images of neurons that innervate
PB inDrosophila. They further determined the accurate divisions
(called subunits) of each neuropil in the central complex and then
recorded the innervation sites for the axons and dendrites of each
neuron. A total of 662 images were collected. The neuron IDs
were listed in Lin C.-Y. et al. (2013) and most the images are
available in the FlyCircuit database (http://www.flycircuit.tw/).

Many neuropils in Drosophila consist of multiple glomeruli,
which are the destinations of neuron processes and are
characterized by aggregated synapses. Based on the distributions
of glomeruli, Lin et al. further divided each of the five
neuropils of the central complex and the four pairs of
associated neuropils into 154 subunits (Lin C.-Y. et al.,
2013) (Supplementary Figures S1, S2). In the present study
we focused on the PB-innervating neurons described in Lin
C.-Y. et al. (2013) as they innervate most of the subunits
in the central complex. The associated neuropils IDFP, CCP,
CVLP, and VMP, which are divided into 18 subunits in
total, are not part of the central complex but receive
innervations from many PB-innervating neurons. Therefore,
these neuropils are included in the analysis (Supplementary
Figure S1).

Neuron Classification and Naming
In Lin C.-Y. et al. (2013), the authors classified all the 662 neurons
into 194 types, and each type of neurons have unique innervation
patterns at the subunit levels. The original classification in Lin
C.-Y. et al. (2013) was hierarchically organized with superclass
on top, followed by class, family, and then type at the lowest
rank. For the sake of simplicity, here we used only two levels
of classification: class (corresponds to superclass in Lin C.-Y.
et al., 2013) and type. The neuron class is defined based on the
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innervation patterns at the neuropil level while the neuron type
is defined based on the innervation at the subunit level. For
example, if neurons A and B both project from neuropils 1 to
2, but innervate different subunits, these two neurons belong
to the same class but they are of two different types. If the
neuron C projects from neuropils 2 to 3, it belongs to another
class which is different from that of the neurons A and B. In
general, neurons in the same class are characterized by similar
morphology. Note that due to the large size of FB, it is divided
into six horizontal layers and each layer contains eight subunits
(Lin C.-Y. et al., 2013). Neurons innervating different layers of
FB are also classified into different classes. Check Supplementary
Presentation S1 for the detailed innervation patterns of each
neuron class and its types. Each neuron is named by its class and
type (Supplementary Table S1). For example, EIP10 represents
the neuron of type number 10 in the EIP class. Except for the PB
LN class, which represents the PB local neurons, the class names
are given based on the neuropils innervated by the neurons with
an order indicating the flow of the information. For example, the
EIP class represents neurons that innervate EB with dendritic
domains and innervate IDFP and PB with axonal domains. See
Supplementary Table S1 for a detailed comparison between the
naming systems used in the present study and in Lin C.-Y. et al.
(2013).

Neuron Innervation Vectors and
Generation Matrices
We represent the innervation pattern of each type of neurons
by a 154-dimensional vector. Each dimension (element) of the
vector corresponds to one of the subunits in the central complex
and associated neuropils. See Supplementary Figure S2 for the
list and order of the subunits, and Supplementary Tables S2–
S3 for the complete innervation tables of each neuron. In each
dimension, the innervation type of the neurons is indicated by
a number between 0 and 3, with 0 for no innervation, 1 for
dendrites, 2 for axons, and 3 for axon/dendrite coexistence. For
example, CVP1 neuron innervates subunits R1 and R2 in PB, L
in CCP, and d-L in VMP, with axon in PB and dendrites in CCP
and VMP. The innervation vector of the CVP1 neuron can be
expressed by

PBR8-R1 CCP VMP

CVP1 =

(
︷ ︸︸ ︷

0 0 0 0 0 0 2 2 . . . . . . . . .

︷︸︸︷

0 1 . . ..
︷ ︸︸ ︷

0 0 1 0

)

.
(1)

Besides the elements explicitly indicated above, all other elements
(represented by the dots) in the vector are zero. We found
that neurons under the same class are often represented
by very similar innervation vectors with shifted elements in
some neuropils. For example, the innervation vector of CVP2
neuron is

PBR8-R1 CCP VMP

CVP2 =

(
︷ ︸︸ ︷

0 0 0 0 0 2 2 0 . . . . . . . . .

︷︸︸︷

0 1 . . ..
︷ ︸︸ ︷

0 0 1 0

)

.
(2)

where the innervations remain the same as CVP1 neuron in
CCP and VMP, but shifted to the left by one element in PB. A

similar trend can be observed for CVP3–CVP7 neurons, which
all have a left-shifted innervation pattern in PB with respect
to the lower-numbered neuron types and identical innervation
patterns in CCP and VMP. Based on the observations, we can
apply a generation matrix, or generator, to an initial neuron
(CVP1 in the case mentioned above) to generate the innervation
vectors for other neuron types in the same class. The generator
can be constructed using a permutation matrix in which only
a single “1” is presented in each column and row, and the rest
of the elements are 0’s. To construct generators for different
neuron classes, we need three major types of permutation
matrices:

1. Translation matrix (T): It shifts every number in a vector
equally by one or several elements. For example, the matrix
T(1,4) below shifts every number in the vector a up by one
element (equivalent to shifting to the left if the vector is
represented as a row vector):

T(1,4) × a =







0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0













0
1
2
3







=







1
2
3
0







(3)

where the superscript (1,4) indicates a
one-element shift for a four-dimensional
vector.

2. Mirror matrix (M): It reverses the order of the elements in a
vector, as if we take a mirror image of the innervation pattern
with respect to the midline. The matrixM below demonstrates
an example mirror matrix.

M× a =







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0













0
1
2
3







=







3
2
1
0







(4)

However, due to the arrangement of the subunit in
IDFP, NO, and VMP, the mirror matrix of these
neuropils requires special forms. Taking IDFP, for
example, its subunits are arranged in the following
order:

IDFP vector = (HBm-L, HBI-L, DSB-L, VSB-L,
↓ midline

RB-L, HBm-R, HBI-R, DSB-R,
VSB-R, RB-R)

A mirror matrix should map innervations between HBm-
R and HBm-L, HBI-R and HBI-L, and so on. Therefore,
the mirror generator for IDFP takes the following
form:

Frontiers in Neuroinformatics | www.frontiersin.org 3 April 2017 | Volume 11 | Article 26

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Chang et al. Topographical Mapping in the Central Complex Circuits

MIDFP = M(2) ⊗ I(5) =

[

0 1
1 0

]

⊗









1
1
1
1
1









=



















1
1
1
1
1

1
1
1
1
1



















, (5)

where
⊗

denotes the Kronecker product. The mirror matrix for
NO and VMP also takes the similar form.

Identity matrix (I): In some neuropils, different neuron types
in the same class innervate the same subunits without translation.
This pattern (called “standing”) can be described by an identity
matrix:

I× a =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






×







0
1
2
3







=







0
1
2
3







(6)

We describe how generators can be constructed by combining the
three matrix types in the Results Section.

Construction of the Connection Matrix
To analyze how the PB circuit supports signal propagation in
the central complex, we first need to construct the connection
matrix, or adjacency matrix for the 194 neuron types (See
Supplementary Tables S4–S5 for the complete matrices). The
matrix was constructed based on the hypothesis that a neuron
innervating a given subunit with an axonal arbor forms synapses
with a neuron which innervates the same subunit with a dendritic
arbor. The hypothesis is based on the following considerations:

1. We estimated the envelopes that enclose the dendritic
or axonal arbors in several subunits for a number of
representative neurons and found the average size of the
envelope to be 15.63µm, which is comparable to the
average size of the subunits (=15.89µm) in PB, FB, and
EB (Supplementary Table S6). The result indicated that the
neuronal arbors inside a subunit are spatially overlapped,
suggesting a strong probability of synapse formation between
dendritic and axonal processes that innervate the same
subunit. We note that, however, a recent study on the
rodent neocortex suggested that the proximity between
axon and dendrite does not necessarily indicate synapse
formation between them (Kasthuri et al., 2015). Considering
the significant differences in the neuron morphology and
circuit organization between insects and mammals, it remains
to be tested whether this is the same case in Drosophila brain.

2. The subunits are basically glomeruli, which are known to
be the places with a high density distribution of synapses.

Moreover, the subunits were defined based on the Dlg
(discs-large) immunology. Dlg proteins play an essential role
in synaptic clustering of K+ channels and cell adhesion
molecules (Tejedor et al., 1997).

3. In insect brains, neurons (often unipolar neurons) have
their trunks (primary neurite) branch out into two or more
neurites. Each neurite projects to a specific neuropil and often
terminates in a glomerulus with arbors rich of spines/twigs
or boutons, which are known to be the main locations of
postsynaptic or presynaptic sites in the Drosophila brain,
respectively (Schneider-Mizell et al., 2016). Moreover, many
neurons only project to two glomeruli, one for dendrite
and the other for axon. If these neurons do not form
synapses in both glomeruli, no information can be received
or sent by the neurons. Therefore, axonal projections forming
synapses with dendrites in the same glomerulus has become a
basic assumption and has also been demonstrated in various
Drosophila studies (Träger et al., 2008; Olsen et al., 2010; Held
et al., 2016). It has also been shown in the central complex (Lin
C.-Y. et al., 2013) as well as in several other neuropils (Chou
et al., 2010; Liang et al., 2013) that neuronal terminals in the
glomeruli are expressed with large numbers of presynaptic
and/or postsynaptic markers.

Our goal here is to analyze how different neuropils communicate
with each other in the central complex. Hence, when we
constructed the connection matrix, we excluded the PB local
neurons, which only propagate signals within PB. Furthermore,
most of the PB local neurons innervate nearly every PB subunit,
leading to a nearly identical and uniform input to every subunit
from all other subunits. Although the exact function of these
local neurons is unknown, local neurons in many other nervous
systems exhibit similar large-field coverages and are known to
provide modulatory functions such as lateral inhibition, gain
control, or normalization (Cook and McReynolds, 1998; Olsen
and Wilson, 2008; Olsen et al., 2010). Hence, we hypothesized
that due to the possible role in global modulation, these local
neurons do not substantially bias the signal flows between
individual subunits in different neuropils, and therefore can be
excluded from the connection matrix.

Network Analysis
We performed several basic and novel analyses of the central
complex networks based on the connection matrices described
above. In the basic analyses we estimated the fundamental
properties of the PB networks, including the characteristic path
length, clustering coefficient, modularity, global efficiency, and
small-worldness, by using Brain Connectivity Toolbox (BCT)
(Rubinov and Sporns, 2010).

In the novel analyses we investigated the connection matrices
at the different propagation levels (Lin et al., 2014). The analysis
has been shown to reveal different efficiency in signal propagation
between various networks of similar small-world properties. It
also identified the functional modules associated with reflexive
behaviors and complex/social behaviors of C. elegans (Lin et al.,
2014). The propagation level is defined as the number of
intermediate neurons making up a path between the given input
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(source) and output (destination) nodes. For example, a path
I→A→B→O, which connects the neuron I and the neuron O
via the intermediate neurons A and B, is a path of propagation
level 2. Note that recurrent paths, which pass through the
same neurons multiple times, also count. Therefore, the path
I→A→B→A→B→O is counted as a level 4 path. We construct
the connection matrix Ml = m(i, j)l where m(i, j)l indicates the
number of paths that connect neurons i and j at the level l.

The advantage of analyzing the connection matrix Ml at
high levels is that it reveals neuron pairs that are connected by
strongly recurrent pathways, because m(i, j)l increases rapidly
when neurons i and j are connected through strongly recurrent
circuits (Lin et al., 2014). Theoretical studies have suggested
that recurrent neural networks are associated with a variety
of complex functions, including working memory, perceptual
decision, oscillation, and etc (Wang, 1999, 2002; Brunel, 2000;
Laje and Buonomano, 2013). Therefore, examining information
flows that go through strongly or weakly recurrent pathways in
a network may provide insights into its functional significance
from the theoretical perspective.

RESULTS

Mathematical Description of the
Innervation Patterns of the Central
Complex Neurons
We first plotted the circuit diagram of the central complex
for the PB-innervating neurons described in Lin C.-Y. et al.
(2013). The circuit diagram showed how neurons innervate the
154 subunits (Figure 1A and Supplementary Figure S1) in 12
neuropils (4 from the central complex and 8 from associated
regions) (Lin C.-Y. et al., 2013). We found that the neurons
exhibit highly structural and regular innervation patterns in the
central complex (Figure 1A). We adopted a simplified version of
the neuron classification proposed in Lin C.-Y. et al. (2013) by
classifying all neurons into 13 classes based on their innervation
patterns (Supplementary Table S1). Among the 13 classes, EIP,
CIVP, and CVP can be considered as the input neuron classes
of PB, while PEI, PEN, and PFNs (3 classes) and PFIs (4 classes)
are output classes, and PBLN is the class of local neurons of PB
(Figure 1B). Furthermore, the PEN and PEI neurons have axonal
projections in EB, where EIP neurons’ dendritic domains are
located. These neurons are likely to form feedback loops, which
suggest a strong interaction between PB and EB (Figure 1B).
The 13 classes can be further divided into 194 neuron types
according to their innervation patterns in the 154 subunits of
the 13 neuropils (see Methods for the naming of the neuron
classes and types). Each neuron type can be represented by a
154-dimensioned vector, which uniquely indicates the neuron’s
innervation pattern (see Methods).

Within a class, neurons exhibit very similar innervation
patterns. Taking the PEN neurons for example, each neuron
extends its dendrite to a single PB subunit and projects
axons to two neighboring EB subunits and one NO subunit
(Figures 2A,B). The subunits innervated by the neuron type
PEN2 are adjacent to those innervated by PEN1. The regularity

FIGURE 1 | The partial central complex network formed by

PB-innervating neurons. (A) The innervation diagram of the network. Each

neuron type is represented by a color line with arrowheads for axonal

innervation and solid circles for dendritic innervation. Each color indicates a

specific neuron class. (B) The large-scale circuit diagram of the central

complex showing the relationship between neuron classes. The arrowheads

and solid circles are defined as in (A). EIP and CVP are input neuron classes

for their axonal innervation in PB while other classes are classified as output

neurons for their dendritic innervation in PB. The PB local neuron class is not

shown. The present study focuses on the recurrent circuits formed by EIP, PEI,

and PEN.

allows us to construct generators (generation matrices) which
describe the relationship between neuron types in the central
complex. The innervation vector of each neuron type can be
generated by applying the generators on the innervation vectors
of other neuron types. We constructed the generators based on
the following rules observed in most central complex neurons:

1. Isomorphism: The neurons of the same class innervate the
same subunits with the same polarity in a neuropil. There are
a few exceptions, which are described later.

2. Mirroring: For any given neuron type in the central complex,
there exists a contralateral neuron type which is the reflection
of the given neuron type with respect to the midline.
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FIGURE 2 | Typical and atypical innervation patterns of neurons in the central complex. (A) The innervation table for the PEN class. Each row represents the

innervation vector of a given PEN neuron type while each column indicates how a subunit is innervated by different neuron types (0 for no innervation, 1 for dendrite

(Continued)
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FIGURE 2 | Continued

and 2 for axon). Shaded neuron type indices indicate the types that were not observed but predicted in Lin C.-Y. et al. (2013). This neuron class demonstrates a

typical (or regular) innervation pattern. (B) The innervation diagram of the PEN class. Neuron types are labeled by black numbers and the subunits are in gray. The

relationship between the neuron types PEN1-PEN8 (numbers 1-8) can be described as shifting. The same relationship is observed for PEN9-PEN16. In addition,

PEN9-PEN16 are a mirroring of PEN1-PEN8, respectively. The arrowheads represent axons while the solid circles indicate dendrites. The somas are represented by

the empty circles. Dashed lines are neurons predicted in Lin C.-Y. et al. (2013). (C) A generator diagram of the PEN class showing how generators can be used to

produce one neuron type from others. The PEN class demonstrates a regular (or typical) innervation pattern with which all neuron types can be generated from one

initial neuron by recursive application of T orM generators. The rightward arrows indicate the effect of the generators labeled above the arrows while the leftward

arrows is for the generators labeled below. (D) Atypical innervation patterns of the PFN-FfN4 class. The type 2 neuron does not make a shift with respect to the type 1

as expected, but innervates the same FB unit (FBf-L4) as type 1. The type 5 neuron innervates two adjacent FB subunits while other neurons only innervate one.

3. Translation:Within the same class, the innervation pattern of
one neuron type can be produced from that of another neuron
type by shifting the innervated subunits to the adjacent ones.
In general, the neighboring neurons in the same class can be
obtained by shifting one subunit in PB and FB while shifting
two subunits in EB, and these rules apply to all classes. There
are a few exceptions, which are described later.

Due to the preservation of the translation rule across classes, we
can construct one local generator that works for every class in a
given neuropil. For example, for the neuropil PB, the translation
generator (shift matrix) TPB shifts every PB-innervating neuron
by one subunit:

TPB × PBR1 = T(1,16) × PBR1

=































1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1





























































0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0































=































0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0































= PBR2 (7)

where PBn indicates the PB portion of an innervation vector
of a neuron which projects to the ‘subunit n in PB. The same
convention is used for the portion of innervation vectors in
other neuropils. By constructing and combining the translation
generators for every neuropil, we can obtain a global translation
generator T for the central complex:

T = TPB ⊕ TFB ⊕ TEB ⊕ INO ⊕ IIDFP ⊕ ICCP ⊕ ICVLP ⊕ IVMP

(8)

where ⊕ is the direct sum operator. Neurons in the same class
generally innervate the same subunits in the neuropils, NO, IDFP,
CCP, CVLP, and VMP, and hence can be described by identity

matrices. However, a closer inspection revealed that the EIP class,
which transmits signals into PB, exhibits a special pattern of
innervation in IDFP by innervating one of the two subunits, DSB
and VSB, alternatively (see Supplementary Presentation S1 for
a detailed description of the innervation patterns). The PB LN
class, which is the only PB interneuron class, also exhibits an
innervation patterns that is different from other classes. Based
on the observations, we constructed three global translation
generators, one for PB input, one for PB output, and the other for
PB interneuron classes. The only differences between the three
generators lie in the two neuropils, PB and IDFP:

PB input: Tin =

PB

T(1,16)

FB

⊕
i = a,...,f

T(1,8)

EB

⊕
i = A,O,C,P

T(2,16)⊕

NO

I(8)

⊕

IDFP

TIDFP−EIP⊕

CCP

I(2) ⊕

CVLP

I(2) ⊕

VMP

I(4)

PB output: Tout =

PB

T(1,16)

FB

⊕
i= a,...,f

T(1,8)

EB

⊕
i=A,O,C,P

T(2,16)⊕

NO

I(8)

⊕

IDFP

I(10)⊕

CCP

I(2) ⊕

CVLP

I(2) ⊕

VMP

I(4)

PB inter : Tinter =

PB

TPB−PBLN

FB

⊕
i= a,...,f

T(1,8)

EB

⊕
i=A,O,C,P

T(2,16)

⊕

NO

I(8)⊕

IDFP

I(10)⊕

CCP

I(2) ⊕

CVLP

I(2) ⊕

VMP

I(4)

(9)

A detailed description of the translation generators in each
neuropil is given in Table 1A and Supplementary Presentation
S1 online.

Similarly, we can also construct a global mirror generator
to describe the relationship between each neuron and its
contralateral counterpart.

M = MPB ⊕MFB ⊕MEB ⊕MNO ⊕MIDFP ⊕MCCP ⊕MCVLP

⊕MVMP

=

PB

M(16)

FB

⊕
i= a,...,f

M(8)

EB

⊕
i=A,O,C,P

M(16)⊕

NO

M(2) × I(4)

⊕

IDFP

M(2) × I(5)⊕

CCP

M(2)⊕

CVLP

M(2) ⊕

VMP

M(2) × I(2)

(10)

A detailed description of the mirror generators in each neuropil
is given in Table 1B.
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TABLE 1A | The translation generators required by each neuron class in each neuropil.

T PB FB EB NO IDFP CCP CVLP VMP

a b c d e f A O C P

PB LN TPB−PBLN
∗2

CIVP∗1

CVP T(1,16) I(2) I(4)

EIP T(1,16) T(2,16) T(2,16) T(2,16) TIDFP−EIP
∗2

PEI T(1,16) T(2,16) I(10)

PEN T(1,16) T(2,16) I(8)

PFN-FdN2 T(1,16) T(1,8) I(8)

PFN-FeN3 T(1,16) T(1,8) I(8)

PFN-FfN4 T(1,16) T(1,8) I(8)

PFI-IRB T(1,16) T(1,8) T(1,8) I(10)

PFI-IHBl T(1,16) T(1,8) I(10)

PFI-IHBm T(1,16) T(1,8) T(1,8) T(1,8) T(1,8) I(10)

PFI-IL+R−HBm
∗1

*1: Neurons in CIVP and PFI-IL+R−HBm classes can be fully described by mirror generators and do not require the translation generator.

*2: PB LN and EIP neurons require special generators in PB and IDFP, respectively. The special generators are described in Supplementary presentation S1.

Taking the PEN class for example, we can generate the PEN2
neuron type by applying T on PEN1 orM on PEN10:

T× PEN1 =














TPB

TFB

TEB

INO
IIDFP

ICCP
ICVLP

IVMP





























PBR1
FB0

EBR8L8
NOL1

IDFP0
CCP0
CVLP0
VMP0















=
















T(1,16) × PBR1
T(1,16) × FB0

T(2,16) × EBR8L8
I(8) × NOL1

I(10) × IDFP0
I(2) × CCP0
I(2) × CVLP0
I(4) × VMP0
















=















PBR2
FB0

EBL6L7
NOL1

IDFP0
CCP0
CVLP0
VMP0















= PEN2 (11)

or

M× PEN10 =














MPB

MFB

MEB

MNO

MIDFP

MCCP

MCVLP

MVMP





























PBL2

FB0

EBR6R7

NOR1

IDFP0
CCP0
CVLP0
VMP0















=















MPB × PBL2

MFB × FB0

MEB × EBR6R7

MNO × NOR1

MIDFP × IDFP0
MCCP × CCP0

MCVLP × CVLP0
MVMP × VMP0















=















PBR2

FB0

EBL6l7

NOL1

IDFP0
CCP0
CVLP0
VMP0















= PEN2.

(12)

All PEN neurons on the ipsilateral side can be constructed by
recursively applying the global translation generator on an initial
neuron type (PEN1 or PEN16, Figure 2C). In addition, every
PEN neuron can be constructed by applying the global mirror
generator on the corresponding neuron on the contralateral side
(Figure 2C):

PEN2 = T× PEN1

PEN3 = T× PEN2 = T2 × PEN1
...

PEN8 = T× PEN7 = T7 × PEN1
PEN9 = M× PEN1
PEN10 = M× PEN2 = M× T× PEN1

= T−1 × PEN9 = TT × PEN9 = TT ×M× PEN1
...

(13)

In summary, except for a small number of atypical neuron types
(described below), the innervation patterns of all PB-innervated
neurons can be generated from 17 initial neuron types (three
for the PB LN class, two for both the CVP and EIP classes, and
one for each of the rest 10 classes) with four global generators
(one mirror and three shift generators) (See Supplementary
Presentation S1 online for a detailed description of each neuron
class, the initial neurons, and the corresponding generators).
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TABLE 1B | The mirror generators used by each neuron class in each neuropil.

M PB FB EB NO IDFP CCP CVLP VMP

a b c d e f A O C P

PB LN M(16)

CIVP M(16) M(2)

CVP M(16) M(2) M(2)×I(2)

EIP M(16) M(16) M(16) M(16) M(2)×I(5)

PEI M(16) M(16) M(2)×I(5)

PEN M(16) M(16) M(2)×I(4)

PFN-FdN2 M(16) M(8) M(2)×I(4)

PFN-FeN3 M(16) M(8) M(2)×I(4)

PFN-FfN4 M(16) M(8) M(2)×I(4)

PFI-IRB M(16) M(8) M(8) M(2)×I(5)

PFI-IHBl M(16) M(8) M(2)×I(5)

PFI-IHBm M(16) M(8) M(8) M(8) M(8) M(2)×I(5)

PFI-IL+R−HBm M(16) M(8) M(8) M(8) M(8)

Total M(16) M(8) M(8) M(8) M(8) M(8) M(8) M(16) M(16) M(16) M(16) M(2)×I(4) M(2)×I(5) M(2) M(2) M(2)×I(2)

Atypical Innervation Patterns
Some neurons do not obey the translation rule described by
the global translation generators. We called these neurons
“atypical.” Taking the PFN-FfN4 class for example, neurons that
innervate adjacent units in PB also innervate the adjacent units
in FB (Figure 2D). However, the type 2 and type 5 neurons
in PFN-FfN4 class do not obey such a translation rule, and
exhibit atypical innervation patterns in FB (Figure 2D). We
investigated all atypical neurons and found that most of the
atypical innervations can be classified into the two following
patterns:

1. Splitting: In many neuron classes (PFN for example), each
neuron innervates only one subunit in PB, FB, and NO.
However, some neurons display different patterns from their
peer neurons by innervating two subunits in PB or FB.

2. Standing: In PB/FB-innervating neuron classes, some neurons
do not obey the translation rule and innervate the same
subunits in PB or FB as the adjacent neuron types.

The splitting innervation pattern can be produced by a split
generator, S, which is the sum of an identity matrix and a shift
matrix. Taking the type 5 neurons in the PFN-FfN4 class for
example, the FB component of this neuron type can be generated
from the type 4 neurons by applying a translation generator and
then a split generator:

SA, FB × TFB × (PFN− FfN4)4FB =














1 1
1 1
1 1
1 1
1 1
1 1
1 1

1 1





























1
1
1
1
1
1
1

1





























0
0
0
0
0
2
0
0















=















0
0
0
2
2
0
0
0















= (PFN− FfN4)5
.
FB

The standing innervation pattern can be produced by a
backward-translation generator, B, which is the inverse of the
translation generator. Taking the FB component of the type 1
neurons of the PFN-FfN4 class again for example:

BFB × SFB × (PFN− FfN4)1FB =














1
1
1
1
1
1
1
1





























1
1
1
1
1
1
1

1





























0
0
0
0
0
0
2
0















=















0
0
0
0
0
0
2
0















= (PFN− FfN4)1FB

Since most atypical neurons can be described by the two special
patterns, we can also construct the special generators for the
atypical neurons (see Supplementary Presentation S1 online).
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TABLE 2 | Network properties of the observed and model networks in comparison with the random and C. Elegans networks.

Characteristic path length Global efficiency Clustering coefficient Modularity Small-worldness

Observed Network 3.2068 0.1433 0.0563 0.4130 ± 0.0128 1.4687± 0.1097

Model Network 3.3021 0.1409 0.0479 0.4194± 0.0020 1.4061± 0.1220

The values of modularity and small-worldness were calculated based on 1,000 trials and are presented as mean ± standard deviation.

Note that two of the atypical neurons (type 9 and type 18)
in the EIP class cannot be described by either the splitting or
standing innervation type. EIP neurons typically innervate three
consecutive EB subunits with axonal terminals at the center and
dendritic terminals on the sides. Instead, the two atypical EIP
neurons innervate only one EB subunit with terminals of the
mixed type (axon and dendrite).

Impacts of the Atypical Neurons on the
Network Structure
The existence of the atypical neurons is particularly interesting.
We argue that the atypical neurons likely characterize special
functional requirements in addition to the general functions
formed by the “typical” neurons (see Discussion). To further
investigate this issue, we studied how atypical neurons alter
the properties of the central complex network. To this end,
we compared several commonly used measures of network
structures between the “observed” and the “model” networks.
The “observed network” is the one described in Lin C.-Y. et al.
(2013), (as summarized in the Supplementary Table S1), while
the “model network” was created solely by applying the global
generators (Equations 9, 10) to the initial neurons in each class.
Therefore, the main difference between the model and observed
networks lies in the existence of the atypical innervation patterns.
The observed network consists of 194 neuron types and the
modeled network consists of 172 neuron types. Out of the 194
neuron types in the observed network, 46 are atypical neuron
types (see Supplementary Figure S3 online) and the rest 148
are typical types which are shared between the observed and
model networks. The detailed description of the observed and the
modeled networks is given in the Supplementary Presentation S1
online.

We first analyzed several basic network properties (Rubinov
and Sporns, 2010; Kaiser, 2011), including characteristic path
length (Watts and Strogatz, 1998), global efficiency (Watts and
Strogatz, 1998; Latora andMarchiori, 2001), clustering coefficient
(Holland and Leinhardt, 1971; Watts and Strogatz, 1998),
modularity (Newman, 2004), and small-worldness (Humphries
and Gurney, 2008). We discovered that except for the smaller
clustering coefficient in the model network, the two networks are
very similar with each other (Table 2).

The network structure analysis, based on the conventional
network features, is not sensitive to the presence/absence of
the atypical neurons. We hypothesize that although the global
structural properties examined in the foregoing analysis may not
be altered by the presence of atypical neurons, they are still likely
to change certain network properties which can be revealed by
analyzing information propagation in the network. To this end,

we examined the connection matrices at high propagation levels
(Lin et al., 2014) (see SectionMethods). We discovered that while
the connection matrices of the observed and model networks are
very similar at the low propagation levels (levels 0 and 1), the
difference between the two networks dramatically increases at
the high levels (level 2 and above) (Figures 3A,B). To elaborate
upon the differences between the connection matrices of the
two networks, we further examined the portion of the matrices
formed by PB input and output neurons (Figures 3C,D). This
portion of the matrices shows how signals entering PB from the
input neurons travel to the output neurons. The input neurons
comprise the EIP and CVP classes, while the output neurons
comprise 9 neuron classes including PEN, PEI, PFN (three
classes), and PFI (four classes). For the observed network, several
highly connected neuron pairs emerge at the propagation level 3
with path numbers up to 80, characterizing information hotspots
of the network. In contrast, no hotspot is observed in the model
network at the same level.

The influence of the atypical neurons on the path numbers is
interesting, but what is the impact on information propagation
and what does it mean to circuit functions? Large path numbers
at the high levels have been shown to be the result of
feedback (recurrent) connections (Lin et al., 2014). Given that
the input neuron class EIP receives strong feedback from the
output neuron classes PEN and PEI in EB (Figure 1B), we
conjectured that the increase of the path numbers in the observed
network mainly results from the atypical neuron-dependent
strengthening of the feedback circuits between EB and PB. To
test this conjecture, we traced how a signal propagates in the
circuit with and without the atypical neurons. We first selected
one subunit in PB and started from neurons with dendrites
innervating this subunit. By assuming that a signal can propagate
from a neuron to all its downstream neurons, we traced the
signal starting from a selected PB subunit for several levels
of synaptic transmissions and counted the number of hits in
each subunit. A hit in a subunit is defined as an input, or the
arrival of a signal, from one neuron. We repeated the process
for each PB subunit and discovered that while starting from
some PB subunits yields minor or no difference between the
observed and model networks, starting from the medial (PB L1
and PB R1) and from the most lateral (PB L8 and R8) subunits
produces a distinct number of hits between the two networks
(Figure 4). The observed network exhibits a large number of
hits in the PB medial (R1 and L1) subunits as well as in some
EB (R8 and L8) subunits, while the model network does not.
The result suggests that the existence of the atypical neurons
strengthens the recurrent circuit between specific regions of PB
and EB. This observation is particularly interesting when we
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FIGURE 3 | Connection matrices at different propagation levels for, (A). The observed network and, (B). the model network. The vertical axis represents the

index of the source neuron types while the horizontal axis is for the destination neuron types. The order of the neuron type index follows that in Supplementary Table

S1 but with local neurons (PB LN) removed. So there are only 184 neuron types presented in the matrices. Each element in the matrices indicates the number of

paths (represented by the color) connecting the source and destination neuron types at the given propagation levels. In general, the number of paths increases with

the level for both networks as expected. However, the difference between the two networks increases dramatically at the higher levels. The observed network has

large maximum path numbers, which is more than twice of that in the model network at the propagation level 3. The white lines separate the PB input neurons (before

the lines) from the PB output neurons (after the lines). The red rectangles outline the portion of the matrices shown in (C) for the observed and (D) for the model

networks. In (C,D), horizontal white lines separate two classes of input neurons (from top to down: CVP and EIP) and the vertical white lines separate output neuron

classes (from left to right: PEI, PEN, PFN, and PFI). The red rectangle marks the region formed by EIP->PFI-IHBI classes, where the largest path number in the

observed network is located.
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FIGURE 4 | Information propagation in the EB-PB feedback loop. (A) If starting from the subunits R1 and L8 of PB (the first panel from the left) in the observed

network, a signal quickly propagates to the central and lateral subunits in PB via EB after two levels of propagation. Colors indicate the number of hits by the signal in

each subunit. (B) In the model network, the same starting subunit leads to a much smaller hit number. (C) If we start from L5 and R4 subunits in PB, the signal

propagates between L5, R4, and neighboring PB subunits via EB. (D) Same as in c but for the model network. The model network exhibits the same propagation

pattern and number of hits as those in the observed network.

consider some of the known functions of the central complex (see
Discussion).

With further examination, we discovered that the difference
between the two networks in terms of the maximum path
number (as shown in Figure 3) and the pattern of information
propagation (as shown in Figure 4) are mainly caused by a pair
of atypical EIP neuron types (EIP8 and EIP17) (Figures 5A,B).

The influence of the EIP8 and EIP17 in the path number can
be demonstrated by performing the “lesion” and “rescue” tests
(Figures 5C,D). By removing (mimicking the lesion experiment
in neurophysiological studies) only the two neuron types, EIP
8 and EIP 17, from the observed network, we found that
the information hotspots no longer present in the high-level
connection matrices (Figure 5C). Moreover, we could partially
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FIGURE 5 | The unique impact of the atypical neurons EIP8 and EIP17 on the central complex network. (A) The EIP8 neuron type in the observed network

innervates the medial PB subunits. (B) In contrast, the predicted EIP8 in the model network innervates the lateral PB subunits. The EIP17 neuron is a mirroring of EIP8

in both networks. (C) Removing EIP8 and EIP17 from the observed network completely abolishes the information hotspots at the propagation level 3. (D) Interestingly,

the hotspots can be partially “rescued” at the level 3 in the model network by adding the atypical neurons EIP8 and EIP17 back. In order to visualize the detailed

changes, here we only show a small portion (corresponds to the red rectangle in Figures 3C,D) of the connection matrix. (E) The distribution of path numbers at the

propagation level 3 between every pair of neurons for observed, model, lesioned, and rescued networks. The distributions for the observed and rescued networks

both exhibit a long tail, characterizing the existence of neuron pairs with high path numbers. (F) The effects of different neuron types on the maximum path number at

the propagation level 3. By removing a single neuron type (blue) or a neuron type together with its contralateral counterpart (red) one at a time from the observed

network, we discovered that only EIP8 and EIP17 cause the most significant reduction in the maximum path number, more than any other neuron types. (G) The

locations of the axonal terminals are crucial for the effect of EIP8 and EIP17 on the path number. By randomly allocating the two axonal terminals of EIP8 in PB and

keeping the EIP17 neuron symmetric to EIP8, we observed that only in their native terminal locations, EIP8 and EIP17 neurons lead to the highest maximum path

numbers. The vertical and the horizontal axes indicate the positions of the axonal terminals in PB (index of PB subunit). The number in each small square labels the

maximum path number of the network at the level 3 with the indicated terminal positions. The diagonal represents the condition in which the EIP8 and EIP17 neurons

only innervate one single PB subunit.

rescue the hotspots in the model network by only adding the two
atypical neuron type back to it (Figure 5D).

In addition to the impact of EIP8 and EIP17 on the hotspots
as shown in Figure 5, the impact of the two neuron types on the
entire network can be better seen by examining the distributions

of the path numbers of all neuron pairs of the networks. We
found that with the two atypical neuron types (in observed and
rescued networks), the distribution of the path number exhibits
a long tail (Figure 5E). In contrast, without the two neuron
types (in the model or in the lesioned network), the networks
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exhibit much narrower and short-tailed distributions.We further
investigated whether any other neuron type produces a similar
impact on the network in terms of the path numbers. To this
end, we removed an arbitrary neuron type and its contralateral
counterpart from the observed network and calculated its
maximum path number at the propagation level 3. We found
that while removal of some pairs of neuron types reduced the
maximum path number with various degrees, the removal of
EIP8 & EIP17 led to the most severe reduction of the maximum
path number (from 80 to 26, Figure 5F).

The impact of the two atypical neuron types, EIP8 and EIP17,
on the information propagation is evident based on the present
analyses. We next asked why the atypical innervation patterns
of these neuron types cause such an impact on information
propagation. Compared to other typical EIP neuron types, EIP8
and EIP17 have two unique features in their innervation patterns:
(1) their axons project to two subunits instead of only one as do
other EIP neurons, and (2) their axons project to PB L1 and PB
L2, instead of to PB L8 or PB R8 as predicted by the generators.
To evaluate how the impact of the two neurons may originate
from their unique features, we recorded the maximum path
number in the input-output matrix (as shown in Figures 3C,D)
at the propagation level 3 while relocating the axonal terminals
of EIP8 to arbitrary PB subunits (as shown by dashed arrows
in Figure 5A). We kept EIP17’s projections symmetric to those
of relocated EIP8 axons. We found that the two neuron types
yield the largest maximum path number with their original
innervation pattern and all axonal terminal relocations led to
smaller maximum path numbers (Figure 5G). Interestingly, the
innervation pattern predicted by the generators (corresponds
to the upper right corner of the matrix) yields the smallest
path numbers among all possible configurations. The functional
implication of the unique innervation patterns of the two atypical
neuron types is discussed in the Discussion.

DISCUSSION

In the present study, we demonstrated a novel approach in
neural circuit analysis for the central complex. We showed that
the innervation patterns of the PB-innervating neurons can
be largely described (or predicted) by only a few generators
with a small set of initial neuron types, except for the atypical
ones. We investigated the atypical neurons and found that they
greatly enhance the recurrent connections in the network. This
difference is mainly contributed by a pair of atypical neuron
types, EIP8 and EIP17, which exhibit a unique innervation
pattern that propagates signals between the medial and lateral PB
subunits via EB.

Does the unique innervation pattern of EIP8 and EIP17
carry any specific function that is distinct from other typical
neurons? Although detailed neural functional experiments are
required in order to answer the question, some hints may be
obtained by considering a number of earlier studies, which
revealed the role of locust PB in encoding polarization of lights
(Heinze and Homberg, 2007; Heinze et al., 2009; Homberg et al.,
2011). According to these studies, the E-vector of polarized light,

FIGURE 6 | Possible role of the neurons EIP 8 and 17 in integrating

sensory information. (A) A schematic of E-vector selectivity in PB. The blue

arrows indicate the orientation of E-vector of polarized light selected by each

of the 16 PB subunits observed in locust (Heinze and Homberg, 2007, 2009;

Heinze et al., 2009; Homberg et al., 2011). Each polarization direction is

selected by two contralateral subunits except for the vertical direction, which is

selected by two lateral and two medial subunits (red ovals). (B) Example of

recurrent circuits between PB and EB. Assuming that a signal starts from PB

R6, as indicated by the orange arrow, a strong recurrent signal propagation is

quickly established between PB R6, PB L3, and several EB subunits. Note

that in locust, R6 and L3 are selective to the same polarized light direction. (C)

A special recurrent circuit involving the atypical neurons EIP8 and EIP17.

Assuming PB R8 as the starting subunit of a signal (orange arrow), it

propagates to EB R8 and L8, and then quickly reaches the medial PB subunits

R1 and L1. In a few steps, a strong recurrent signal propagation is established

between PB R8, R1, L1, L8, and several EB subunits. Note that in locust, all of

these four PB subunits are selective to the vertically polarized light.

represented in an angular coordinate system, is encoded in PB,
which has a linear structure (Figure 6A). The E-vector angle
encoded by each PB subunit is represented in a mirroring fashion
between the left and right sides of PB. Under such a mapping,
each E-vector angle is encoded by two subunits, one from each
side of PB. Therefore, the information processed by the two sides
of PB, in particularly by the subunits that encode the same E-
vector angle, has to be exchanged to some degree in order to

Frontiers in Neuroinformatics | www.frontiersin.org 14 April 2017 | Volume 11 | Article 26

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Chang et al. Topographical Mapping in the Central Complex Circuits

maintain the integrity of spatial perception. Indeed, this is what
the recurrent connections between PB and EB offer (Figure 6B).
Each PEN or PEI neuron sends information from PB to EB, in
which EIP neurons feed the information back to the PB subunits
which encode the same E-vector angle in both sides. However,
the situation becomes more complicated when we consider the
vertical E-vector, which is encoded by four subunits at both ends
of each side of PB (Figure 6A, red ovals). The circuits formed by
the PEN/PEI/EIP would not be capable of offering the connection
between the four subunits if EIP 8 and EIP17 follow the “typical”
pattern as predicted by the generators. By projecting to the two
medial subunits instead of the predicted lateral subunits, the
atypical EIP8 and EIP17 provide strong connections between
the four subunits that encode the vertical E-vector (Figure 6C).
We stress that it is not clear whether PB-innervating neurons
in Drosophila encode polarization of lights like those in locusts
do. Nevertheless, the unique innervation pattern of the atypical
neurons EIP8 and EIP17 may suggest a role in maintaining
the integrity of sensory information. This speculation requires
rigorous tests in future experimental studies.

One may ask, if the two atypical neuron types EIP8 and EIP17
are so crucial to the network structure, wouldn’t loss of them
cause a catastrophic damage to the whole network? We suggest
that this is not the case if each neuron type consists of multiple
neurons as redundancy. An anatomical study has reported the
existence of isomorphic neurons in several neuron types in the
central complex (Young and Armstrong, 2010b). Whether the
EIP class also possesses isomorphic neurons for each of its neuron
types remains to be verified experimentally.

Beside the atypical neurons, the discovery of a simple rule (the
generators) that can be used to produce the major part of the
circuit is also significant. Intuitively, one would think that the
connectivity of the central complex network should be described
by a host of connection rules because the network consists
of more than a dozen neuron classes which exhibit different
projection patterns across several neuropils. To our knowledge,
this is the first demonstration that the connectome of a brain
region can be reduced to a set of deterministic equations at the
single neuron level. From the development point of view, it is a
cost-saving strategy if the genetic system only needs to encode the
rule for circuit construction and the innervation patterns of the
initial neurons instead of encoding the pattern of every neuron.

A recent study on the central complex neuroanatomy of
Drosophila suggested an updated circuit (Wolff et al., 2015). In
the study, the authors identified two medial PB subunits, which
were previously not identified. They also suggested an updated
segmentation of PB which contains 9 layers instead of 6 layers, as
described in Lin C.-Y. et al. (2013). However, most neuron classes
described in Lin C.-Y. et al. (2013) are identified in Wolff et al.
(2015). The general innervation patterns for most neuron classes
were also confirmed by Wolff et al. (2015), except for the EIP
type, which is claimed to have only dendritic domains presented
in EB. These new findings do not go against the idea of neural
network generators proposed in the present study. However,
since the Wolff et al. (2015) did not provide detailed type-by-
type innervation patterns for all neuron classes such as Lin C.-Y.
et al. (2013) did, it is difficult to fully update the proposed

mathematical description of the central complex network at the
current stage. But based on the data provided in Wolff et al.
(2015), their updated circuit can be easily incorporated into our
system by adding new elements to the innervation vectors and
modifying the initial neurons.

In the present study, we identified the significance of specific
network nodes, i.e., atypical neurons, by the propagation level
analysis. The analysis is very effective for neural networks (Lin
et al., 2014). Typical network analyses focus on the level 0
propagation (direct connections). However, neural networks
are highly recurrent, and theoretical studies have suggested
that some functions are associated with strong interactions
between neurons in recurrent circuits (Wang, 1999, 2002; Brunel,
2000; Laje and Buonomano, 2013). Therefore, by calculating
the number of paths at the high propagation levels, which
characterize recurrent circuits, we may be able to gain insights
into the functional significance of specific neurons which do
not seem to be special when only looking at their direct
connections. Taking working memory for example, a prevalent
theory suggests that working memory is encoded in persistent
neural activity supported by strong local feedback excitation and
global inhibition (Compte et al., 2000; Constantinidis andWang,
2004). Indeed, the three neuron classes, EIP, PEN, and PEI,
form local excitation between individual EB and PB subunits,
while the EB ring neurons (not described in the present study)
(Hanesch et al., 1989), which innervate all subunits in individual
EB rings, may play roles in global inhibition. Interestingly, this
argument is consistent with a recent experimental study in
which persistent activity bumps that encode spatial orientation
memory were observed in EB (Seelig and Jayaraman, 2013,
2015). The matrix generator approach described here greatly
helps us with the construction of a computational model in
a follow-up study which reproduces some of the observations
reported in Seelig and Jayaraman (2015). However, we caution
that one should not assess the functions of a neural circuit
only based on the anatomical data because static connections
do not provide sufficient information about functions due to
the dynamical nature of neurons and synapses (Seung, 2011;
Alivisatos et al., 2012; Bargmann and Marder, 2013). Any
theoretical study on neural circuit functions should be conducted
based on experimental observations from both anatomical and
functional studies.

The matrix representation presented in this study was
constructed by visual inspection and this is relatively
straightforward for a small and structured network such as
the central complex. To generalize our mathematical approach
for other larger neural networks, we are developing a software
tool to extract various connectivity patterns from arbitrary
networks based on graph theory and statistics. The tool will
help people to inspect whether there are hidden and statistically
significant connectivity patterns embedded in a neural network
that is visually complex and random.

It is interesting that our analysis on network properties
revealed small clustering coefficient and small-worldness for
both observed and model networks, indicating that they are not
well fit by the classic small-world model. The result is not so
surprising considering recent reports which suggested that the
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neural networks may not be so “small” as commonly noted and
the small-worldness of a neural network is influenced by the
techniques used to acquire and analyze the data (Muller et al.,
2014; Hilgetag and Goulas, 2016).

In the present study, we did not identify the impact of other
atypical neurons on the signal propagation. This is because those
atypical neurons are part of the one-way circuit from PB to FN
or from FN to IDFP, and the direct feedback circuit from FN to
PB or EB is not yet identified. We believe that once the detailed
description of the recurrent circuit between FN and PB or EB is
fully available, one can also discover the importance of these PFN
and PFI atypical neurons by using the same analysis presented
here.

There are a few limitations of the mathematical approaches
introduced in the present study. The generation matrices provide
a very concise way to describe the structure of a network.
However, this approach is not suitable for networks that do
not have clear topographical organization. The propagation level
analysis helps to locate the sub-circuits that are potentially
interesting from the theoretical perspective. However, the
approach cannot identify their exact functions.

In conclusion, the present study is significant in several
aspects: (1) it demonstrates how a neural circuit can be largely
constructed from simple mathematical rules, which suggests the
simplicity in the design principle behind complicated neural
circuits, (2) it provides an effective measure (the path numbers
at the high propagation levels) for evaluating the impact of

single neurons on the signal propagation, and, (3) it shows that
the atypical neurons play crucial roles in routing information
propagation in the central complex.
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