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Predicting dynamic cellular protein–RNA interactions by deep
learning using in vivo RNA structures
Lei Sun 1,2, Kui Xu1,2, Wenze Huang1,2, Yucheng T. Yang3,4, Pan Li1,2, Lei Tang1,2, Tuanlin Xiong1,2 and Qiangfeng Cliff Zhang1,2

Interactions with RNA-binding proteins (RBPs) are integral to RNA function and cellular regulation, and dynamically reflect specific
cellular conditions. However, presently available tools for predicting RBP–RNA interactions employ RNA sequence and/or predicted
RNA structures, and therefore do not capture their condition-dependent nature. Here, after profiling transcriptome-wide in vivo
RNA secondary structures in seven cell types, we developed PrismNet, a deep learning tool that integrates experimental in vivo RNA
structure data and RBP binding data for matched cells to accurately predict dynamic RBP binding in various cellular conditions.
PrismNet results for 168 RBPs support its utility for both understanding CLIP-seq results and largely extending such interaction data
to accurately analyze additional cell types. Further, PrismNet employs an “attention” strategy to computationally identify exact RBP-
binding nucleotides, and we discovered enrichment among dynamic RBP-binding sites for structure-changing variants
(riboSNitches), which can link genetic diseases with dysregulated RBP bindings. Our rich profiling data and deep learning-based
prediction tool provide access to a previously inaccessible layer of cell-type-specific RBP–RNA interactions, with clear utility for
understanding and treating human diseases.
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INTRODUCTION
RNA binding proteins (RBPs) play essential roles in regulating the
transcription, metabolism, and translation of cellular RNAs.1–4

Determining RBP binding profiles in different conditions and
elucidating their detailed regulatory mechanisms are critical for
understanding their functions. However, given the sheer number
of RBPs that account for close to 10% of the human proteome,5,6

establishing links between RBPs and their targets has been an
enormous challenge. To address this question, many high-
throughput technologies have been developed to profile and
predict RBP binding. Assays such as systematic evolution of
ligands by exponential selection (SELEX), RNAcompete, and RNA
Bind-n-Seq can characterize the sequence preferences of RBPs
in vitro,7–9 and methods like RNA immunoprecipitation (RIP) and
UV crosslinking followed by immunoprecipitation (CLIP) and
sequencing can identify RBP binding sites in vivo.10–13

In addition to the methods of direct measuring, other approaches
have been developed to model and predict RBP binding.
Traditionally, position-weight-matrices have been used to describe
RBP binding determinants and to predict RBP binding targets from
RNA sequences.14 Machine learning methods that integrate different
types of information also have been developed to more accurately
characterize the binding pattern of RBPs.15–17 More recently, deep
learning18 approaches have been successfully applied to model
protein–RNA interactions and predict RBP binding sites.19–24 For
example, DeepBind was developed to learn RBP binding preferences
from RNAcompete data using a deep neural network.20

Although these learning methods successfully capture RBP
binding preferences of primary sequence, their prediction
accuracies under different physiological states are limited because
the RNA sequence is independent of in vivo conditions. Over the
years, several methods have been developed to include RNA
structural features of RBP targets in their modeling, but these
structures were based on computational prediction rather than
in vivo analysis.15–17,24 Although RNA structure can be predicted
from sequence with some accuracy,25,26 the predictions do not
reflect the dynamic regulations by cellular trans-factors and
usually show substantial differences from in vivo structures.27,28

Thus, in vivo RNA structure data are essential for accurate
modeling and predictions of protein-RNA interactions in physio-
logically relevant contexts.
Here, we bridge this knowledge gap by determining

transcriptome-wide RNA secondary structures in multiple cell
types. We then integrate this experimentally-derived structure
information in the construction of a deep discriminative neural
network Protein-RNA Interaction by Structure-informed Modeling
using deep neural NETwork (PrismNet) that accurately models
and predicts RBP targets in vivo. We apply PrismNet to predict
how genomic variants affect RBP binding, especially in the
context of human diseases. Specifically, we focused on single
nucleotide variants that disrupt RNA structure (riboSNitches) and
are often associated with human disease, and discovered that
riboSNitches are enriched in dynamic, cell-type-specific RBP
binding sites.
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RESULTS
RNA structuromes in different cell types reveal the prevalence of
structurally variable sites and their association with dynamic RBP
binding
RNA structure is flexible, and this feature plays an instrumental
role in determining the varying protein–RNA interactions in
different cellular conditions.2,29,30 In vivo click selective 2′-hydroxyl
acylation and profiling experiment (icSHAPE) technology can be
used to determine the RNA structural dynamic across the whole
transcriptome.27 To characterize relationships between RNA
structure and RBP binding globally, we generated a comprehen-
sive resource of RNA secondary structures determined by icSHAPE
in seven cell types: K562, HepG2, HEK293, HEK 293T, HeLa, H9, and
mES cells (Fig. 1a; Supplementary information, Fig. S1a). These cell
lines were selected for our structure profiling experiments
because they all have rich RBP binding data from CLIP-seq
experiments (Supplementary information, Fig. S1a), thereby
enabling later integrative structural-and-interaction modeling of
RBPs in a matched cellular context.
On average, we obtained at least 200 million usable reads for

each library of two biological replicates after quality control,
totaling 4.4 billion reads (Supplementary information, Table S1).
We determined RNA secondary structures of the transcripts using
icSHAPE-pipe.31 Our data achieved high coverage of the global
transcriptomes (> 50,000 transcripts in human; >30,000 transcripts
in mouse) as well as high quality (RPKM Pearson correlation
coefficient > 0.97 between replicates) (Supplementary informa-
tion, Fig. S1a, b). For example, our icSHAPE profiling data on 18S
rRNA from different human cell lines were highly consistent
(Supplementary information, Fig. S1c) and agreed well with known
18S secondary structures from crystal structures (Supplementary
information, Fig. S1d, e).
Previously, we found that although RNA structure is relatively

stable across different subcellular locations, there are a large
number of structurally variable sites, many of which are hotspots
for post-transcriptional regulation processes including RBP bind-
ing and RNA modification.32 We found that this is also true when
comparing RNA structures across different cell lines, i.e., most of
the RNA structures are stable across all cell lines tested, but they
also contain a fraction of regions (3%–5%) that display substantial
structural variability (Fig. 1b, c; Supplementary information,
Fig. S2a–c and Table S2).
RBP binding can be affected by the diverse cellular environ-

ments so such binding is expected to be dynamic across cell
types. We re-analyzed available enhanced CLIP (eCLIP, all of the
eCLIP data were downloaded from ENCODE33) data and indeed
observed very different binding profiles for the same RBPs in
different cell lines. For example, on average, anywhere between
~20% and ~60% of the binding sites are shared between K562
and HepG2 cells (Fig. 1d; Supplementary information, Fig. S2c).
Importantly, we found these dynamic RBP binding sites are
associated with the RNA structurally variable sites between the
two cell types (Fig. 1b; Supplementary information, Fig. S2d). As an
example, HNRNPM is known to preferentially bind poly-U sites
with single-stranded structure.34 Indeed, the ratio of single-
(icSHAPE score > 0.8) vs double-stranded (icSHAPE score < 0.2)
regions for HNRNPM was 3.1:1 in HepG2 cells and was 3.8:1 in
K562 cells, confirming HNRNPM’s preference for binding to single-
stranded RNAs (ssRNAs). Notably, many HNRNPM binding sites
overlapped with RNA structurally variable sites, and we detected
reduced binding when these sites transitioned to a more double-
stranded conformation in HepG2 cells (Fig. 1b), exemplified by the
binding sites in the LSS and FAH transcripts in K562 cells (Fig. 1e;
Supplementary information, Fig. S2e). Overall, these data support
that RNA structure determines dynamic RBP binding interactions
in diverse cellular conditions. An implication from these results is
that the incorporation of in vivo RNA structural information into
platforms that model and predict RBP bindings (and their changes

across diverse cellular conditions) will enable more biologically
relevant predictions.

PrismNet accurately predicts cellular RBP binding by deep learning
using in vivo RNA structural data
We constructed PrismNet, a deep neural network to accurately
model and predict RBP binding, by integrating the in vivo RNA
secondary structure profiles that we generated with the aggre-
gated data for RBP binding sites. To ensure that the CLIP data sets
used in our study are of high-quality and consistent, we
downloaded the binding sites of 134 RBPs from the ENCODE
project,35 as well as 56 RBPs from POSTAR,36 yielding a total of 168
RBPs (Supplementary information, Fig. S1). Note that the binding
sites in these databases were generated using uniform pipelines,
thereby eliminating differences from various tools and pipelines
used by different labs in the original CLIP profiling studies. We also
investigated use of different cutoffs for binding peak numbers,
and found that using a set of the top 5000 ranking binding sites
yields the highest extent of overlap ratio between replicates
(Supplementary information, Fig. S3a). We therefore used the
5,000 most confident peaks from each CLIP experiment in training
and testing a PrismNet model to help remove noise while still
retaining a large number of binding peaks in the training dataset.
For each RBP with an available CLIP experiment, PrismNet

trained a model that evaluates every nucleotide position within a
binding site, and finally outputs a score for the whole binding site.
Importantly, in contrast to previous methods that have only
considered RNA sequences or which employ computationally
predicted RNA structures, PrismNet was designed to simulta-
neously learn protein–RNA interaction determinants from both
RNA sequence and in vivo structure data. As we show extensively
below, this simultaneous learning approach ultimately proved
vital for capturing the complex interplay between cell type-
specific changes in structures and interactions in vivo.
The icSHAPE structure scores of each nucleotide in the same cell

type of the CLIP experiment were encoded as a one-dimensional
vector, together with the four-dimensional one-hot-encoded
sequence as input (Fig. 2a). The PrismNet architecture uses a
convolutional layer, a two-dimensional residual block37 and a one-
dimensional residual block connected by max pooling to capture
sequence and structural determinants spanning large distances in
transcripts. A squeeze-and-excitation (SE) module38 is applied to
adaptively recalibrate convolutional channels for learning
channel-wise attention (Supplementary information, Fig. S3b). To
mitigate potential overfitting of PrismNet, we added dropout39

layers after every residual block, and other regularizers including
weight decay40 and early stopping in the training stage.
Importantly, we also applied SmoothGrad41 to enable the
enhanced saliency maps42 for the visualization and identification
of high attention regions (HARs), which are predicted to be the
exact locations of RBP binding nucleotides (Fig. 2a).
To demonstrate that PrismNet can accurately model the

sequence and structural basis of RBP binding, we performed a
proof-of-principle analysis with the RBP IGF2BP1, which plays
important roles in regulating RNA stability and localized transla-
tion.43 Recently, eCLIP uncovered 46,226 IGF2BP1 binding sites in
K562 cells.11 We trained PrismNet with this dataset and our
icSHAPE data also in K562 cells. We then applied this model to
predict the IGF2BP1 binding sites in HepG2 cells, using their
corresponding HepG2 icSHAPE data. The predictions were then
compared to the HepG2 eCLIP results from the same research
group, as the ground truth dataset. According to eCLIP, the EIF3F
transcript contains 14 IGF2BP1 binding sites in K562 cells, and 10
binding sites in HepG2 cells. We found that PrismNet correctly
predicted all 10 binding sites within the EIF3F transcript in HepG2
cells with no false positives, by using the model trained in K562
cells. In contrast, DeepBind,20 correctly predicted only 2 of the
10 sites, and RCK15 and GraphProt16 correctly predicted 8 of the
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10 sites (Fig. 2b). Interestingly, if we did not include RNA
secondary structure data in the training of PrismNet, the
sequence-only version correctly predicted only 7 of the 10 sites.
This indicates that in vivo RNA structure information obviously
improves the accuracy of PrismNet’s binding site prediction. This
fact was frequently reiterated in our analyses of predictions for
many other binding sites (Supplementary information, Fig. S3c).
We then systematically evaluated the prediction performance of

PrismNet by using transcriptome-wide binding sites of all 168
RBPs, and comparing with other state-of-the-art computational

methods, including RCK,15 GraphProt,16 and DeepBind20 (Supple-
mentary information, Table S3). As mentioned above, DeepBind is
a deep learning model to predict RBP binding sites based on RNA
sequences alone; GraphProt models RBP binding sites based on
sequence and predicted structure with graph-kernel features; RCK
infers protein–RNA binding preferences using a k-mer-based
model with RNA sequences and predicted structure. For every
CLIP-seq dataset of an RBP, we split the binding sites into a
training and a test set and use the same sets to benchmark all of
the prediction methods. We observed that, overall, PrismNet
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achieved the highest prediction performance in terms of Area
Under the receiver operating characteristic Curve (AUC) and Area
Under the Precision-Recall Curve (AUPRC) (Fig. 2c, d; Supplemen-
tary information, Fig. S3d, e; P < 0.001, one-sided paired t-test).
And some RBPs showed dramatic performance improvement by
PrismNet (e.g., METAP2: PrismNet= 0.90 vs GraphPort= 0.65;
AUH: PrismNet= 0.89 vs GraphPort= 0.63; DDX55: PrismNet=
0.88 vs GraphPort= 0.65).

In vivo RNA secondary structure information is a critical input for
accurate prediction of RBP binding
To dissect how RNA sequence and structural information
contribute to the accurate predictions of PrismNet, we trained
the PrismNet model using different combinations of input data: (i)
sequence and experimentally-measured structure; (ii) sequence
only; (iii) experimentally-measured structure only; (iv) sequence
and structure predicted by RNAshapes;44 and (v) sequence and
randomly generated structure (Supplementary information,
Table S3). As expected, the model with sequence and
experimentally-measured structure (i) as input significantly out-
performed other models (Fig. 2e; Supplementary information,
Fig. S3f). Notably, PrismNet achieved better performance on
almost all RBPs over predictions based on sequence and
computationally predicted structures (iv) (Fig. 2f). It is also
interesting to note that PrismNet could fairly accurately predict
protein–RNA binding sites using RNA secondary structure data
only (iii), although the prediction accuracy was inferior to that only
using sequence data only (ii).
Unexpectedly, we observed comparable prediction perfor-

mance for the three models that use sequence data only (ii),
sequence data with predicted structures (iv), and sequence data
with randomly generated structures (v) (Fig. 2e; Supplementary
information, Fig. S3f, g). A recent study showed that predicted
structures did not improve the prediction performance of
protein–RNA binding if the deep learning models were appro-
priately designed.23 This finding is consistent with our results: a
good deep neural network can implicitly retrieve and use
sequence-embedded RNA structure information, just like inde-
pendent predictions. Incorporating separately predicted RNA
structures thus cannot further improve the prediction (Supple-
mentary information, Fig. S3h). However, it was surprising that
training PrismNet with randomly generated RNA structures did
not lead to a visible deterioration of prediction performance,
implicating that PrismNet is robust to the noise in the input RNA
structural data (Fig. 2e; Supplementary information, Fig. S3f). In
addition, we also found that PrismNet performance was robust
when using different ratios for positive vs negative ratios with
more negative samples (Supplementary information, Fig. S3i,
tested positive vs negative ratios included 1:1, 1:2, 1:3, 1:5, and
1:10), but slightly dropped for more positive samples (Supple-
mentary information, Fig. S3j, tested positive vs negative ratios
included 1:1, 2:1, 3:1, and 10:1).
Interestingly, the prediction upon inclusion of the experimen-

tally measured in vivo structural data was in general improved for

the RBPs having relatively poor predictions using sequence-only
models (Fig. 2g). The level of improvement by the provided RNA
structural information was associated with the type of RNA
binding domain in the RBPs (Fig. 2g; Supplementary information,
Fig. S3k). On the one hand, RBPs containing ssRNA-binding
domains, such as the RNA recognition motif (RRM, e.g., HNRNPC
and FUS) and the K homology (KH, e.g., HNRNPK and IGF2BP2)
domains, were more dependent on RNA sequence for target
recognition, and the prediction improvement from in vivo RNA
structure was less substantial as compared to RBPs containing
other domains (Supplementary information, Fig. S3k). On the
other hand, RBPs containing a double-stranded RNA (dsRNA)-
binding motif (dsRBM, e.g., SND1 and DGCR8) and helicase
domains (e.g., DDX42 and DDX55) were the least accurate in RNA
sequence-only predictions, and the improvement from RNA
structural information was the most dramatic. These data reveal
a trend indicating that RNA structure has a greater influence on
the accuracy of PrismNet’s predictions for dsRNA-binding domains
vs its predictions for ssRNA-binding domains.
We also noted that the predicted binding probability from

PrismNet correlated with the binding affinity determined from
CLIP experiments, as shown for different RBPs in K562 cells
(Pearson correlation coefficient= 0.42 for IGF2BP1, P= 0) (Fig. 2h;
Supplementary information, Fig. S3l, m). Although we only used
“1/0” labels to denote the binding and non-binding events in the
training dataset, PrismNet apparently learned a quantitative
model for RBP binding from the big data of sequence, structure,
and protein–RNA interaction. Unexpectedly, cell type-specific
binding sites (Fig. 1d) generally had lower predicted binding
scores compared to common binding sites (Fig. 2i, P= 0 for
unpaired t-test). It therefore bears emphasis that PrismNet’s ability
to predict dynamic RBP bindings with intermediate affinity should
make it a useful tool for identifying such cell type-specific
bindings.
Note that we have deployed all of the PrismNet models into a

queryable service for RBP binding predictions online (http://
prismnet.zhanglab.net/). This website should greatly facilitate
access to the PrismNet models and our results, including the
binding sites for both the PrismNet and experimental CLIP data for
all 168 RBPs, as well as associated RNA structure information for six
human cell lines.

PrismNet predictions reveal putative regulators in post-
transcriptional regulation events
Given PrismNet’s capacity as an accurate quantitative prediction
tool for studying RBP binding, we next asked whether the
predicted binding affinity for RBPs has any obvious relationship(s)
with RBP-mediated post-transcriptional regulation. Many of the
surveyed RBPs are splicing factors. To investigate the potential
concordance between predicted binding sites and alternative
splicing, we examined SRSF1, a splicing factor that functions
in both constitutive and alternative pre-mRNA splicing.45 There are
over 142,507 SRSF1 binding sites in HepG2 cells, detected
by eCLIP.11 We trained PrismNet with this dataset and the

Fig. 1 Association between RNA structural variations and dynamic RBP bindings can be used to predict RBP bindings in varying cellular
contexts. a Integrative modeling and prediction of RBP bindings by PrismNet using in vivo RNA structure information and RBP binding sites
from matched types of cells. PrismNet can be used to dissect and predict the perturbation effects of disease-associated genetic variations on
RBP binding. b Circos plot showing the relationship between RNA structural variations (ΔStructures) and dynamic RBP binding sites (ΔRBP) in
HepG2 and K562 cells. The transcripts in the region chr14:22,000,000–24,000,000 are magnified to illustrate that dynamic RBP binding sites are
overlapped with RNA structural variations. Numbers show the fraction of overlapped RBP binding sites for the indicated RBPs (e.g., 22/63, 22 is
the number of overlaps between ΔRBP and ΔStructures. 63 is the number of dynamic RBP binding sites (ΔRBP) in pairwise comparisons
between cell lines). c Bar plot of the ratio and the number of RNA structurally variable sites for all pairwise comparisons of the six indicated
human cell lines. d Stacked bar plots of the percentage of cell type-specific and common RBP binding sites in two cell lines from eCLIP
datasets: HepG2-specific (blue), K562-specific (red), as well as common binding sites (gray). e RNA structural and HNRNPM binding profiles in
HepG2 and K562 cell lines. Top, icSHAPE scores in the two cell lines for the LSS mRNA transcript; Middle, binding site of HNRNPM on the LSS
mRNA transcript (eCLIP); Bottom, RNA structural models of the HNRNPM binding sites on the LSSmRNA transcript in the two cell lines. Models
were constructed using RNAshapes with icSHAPE score constraints. Green dashed lines indicate the known HNRNPM poly-U binding motif.
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HepG2 RNA structural data. PrismNet was then able to predict
about 193,584 and 182,886 binding sites in HEK293T and K562
cells, respectively. 133,865 (~69%) of the binding sites in
HEK293T cells were shared in K562 cells (or ~73% of the bindings
sites in K562 cells were shared in HEK293T cells), suggesting a cell-
type-specific binding pattern for SRSF1 (Supplementary informa-
tion, Fig. S4a).

To determine if dynamic SRSF1 binding sites correlate with
alternative splicing, we examined the splicing levels of 12 exons
that contain cell-type-specific binding sites in their 5′ splice sites
(Supplementary information, Table S4). Indeed, we observed a
positive correlation between the differential affinity of the binding
sites and differential inclusion levels of these exons in K562 vs
HEK293T cells (Pearson correlation coefficient= 0.58, P= 0.04;
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Fig. 3a, left). Given that the SRSF1 protein has been experimentally
demonstrated to regulate RNA alternative splicing,45 our data
support the hypothesis that SRSF1 binding may functionally
contribute to exon inclusion during RNA processing.46 We further
used RNA-seq data to test all the exons with cell-type-specific
SRSF1 binding sites in their 5′ splice sites, and found that the
differential affinity of the binding sites was modestly correlated
with the differential splicing scores of the exons (Pearson
correlation coefficient= 0.200, P < 1.54e-21; Fig. 3a, right).

In addition to alternative splicing, RBPs are also essential
regulators of translation and degradation.2,47 We explored
potential associations between the predicted binding sites and
translation efficiency48 as well as RNA half-life49 for all surveyed
proteins. Our analysis recovered many RBPs known to regulate
translation efficiency, including the well-studied IGF2BP pro-
teins,43 FXR150 and LIN28A51 (Fig. 3b). Focusing on LIN28A, a
well-known RBP that promotes translation,51 we found a positive
correlation between the binding score predicted by PrismNet and

Fig. 2 PrismNet predicts RBP binding in cellular conditions more accurately than methods which use only RNA sequence. a Model
architecture of PrismNet. The input features include RNA sequence encoded in the 4-dimensional one-hot encoding, and the use of icSHAPE
structural scores as the fifth-dimension. The neural network consists of multiple convolutional layers, squeeze-and-excitation (SE) networks,
and residual blocks to capture the joint sequence-and-structural determinants of RBP binding. The green arrows indicate the data flow during
network training, and the red arrows indicate the data flow during inference of HARs. b Predicted vs observed binding sites of IGF2BP1 on the
EIF3F transcript. Green/black, observed binding sites in K562/HepG2 cells by eCLIP, used as the training/ground truth reference data; Blue and
red indicate, respectively, true positive and false positive predictions in HepG2 cells, based on the models trained using K562 data. c “Circos
and violin” plot of the respective and overall AUC scores of PrismNet vs other methods, including RCK, GraphProt, and DeepBind, for all 256 of
the PrismNet models representing 168 human RBPs. ***P < 0.001 (one-sided paired t-test). d Violin plot of the overall AUPRC scores of
PrismNet vs other methods for all 256 of the PrismNet models for 168 human RBPs. ***P < 0.001 (one-sided paired t-test). e Violin plot of the
overall AUC scores of PrismNet models using different types of input data in all 256 PrismNet models of 168 human RBPs. ***P < 0.001 (one-
sided paired t-test). f Scatter plot of AUC scores of PrismNet models using in vivo structures vs computationally predicted structures. Each dot
represents an RBP. g Scatter plot of AUC improvements of PrismNet vs AUC scores of PrismNet models using only sequence information for
256 RBP models. Each dot represents an RBP model. RBPs are colored with their RNA-binding domains. RRM, RNA Recognition Motif; KH, K-
Homology domain; Zinc, zinc finger domain; dRBM, double-stranded RNA binding motif. h Density map of binding scores of IGF2BP1
predicted using PrismNet vs the observed binding scores from eCLIP experiments in K562 cells. i Violin plot of PrismNet-predicted binding
probabilities at the binding sites in K562 cells only, HepG2 cells only, or both. ***P < 0.001 (unpaired t-test).
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Fig. 3 The quantitative predictions about RBP binding from PrismNet correlate with known splicing, translation, and degradation
associated regulation events. a Pearson correlation of PrismNet-predicted differential SRSF1 binding and alternative splicing (difference of
the percent-splice-in (PSI) values, STAR Methods) between HEK293T and K562 cells. Left, experimentally derived alternative splicing scores of
12 exons; Right, transcriptome-wide RNA-seq data. b Pearson correlation between PrismNet-predicted RBP binding and translational efficiency
in HepG2 cells. Left, distribution of correlation coefficients of all RBPs with significance scores. Marked RBPs are known translation regulators.
Right, density plot of the predicted LIN28A binding scores vs translation efficiencies for the target transcripts. c Pearson correlation between
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the translation efficiency of the target transcripts (Pearson
correlation coefficient= 0.193, Fig. 3b; Supplementary informa-
tion, Fig. S4b). Moreover, we also tested many proteins that
stabilize RNA, such as LIN28B,52 FMR153 and SND1.54 We looked
into transcripts with predicted binding sites of SND1, a protein
that is known to regulate RNA half-life,54 and found that those
transcripts indeed showed increased stability (Fig. 3c; Supplemen-
tary information, Fig. S4c).
For each protein, we intersected the two sets of binding sites

from CLIP results and PrismNet predictions and split them into
three groups: (a) the overlap between the CLIP results and
PrismNet predictions (Common); (b) the set only predicted by
PrismNet (PrismNet-specific); (c) the set only in the CLIP results
(CLIP-specific). We then compared the correlations between
binding affinity and RNA half-life for the three groups, respectively
(Supplementary information, Fig. S4d, e). The Pearson correlation
coefficients for the “Common” and the “PrismNet-specific” sets
were greater than those for the “CLIP-specific” set, suggesting that
binding sites from PrismNet predictions may be more biologically
informative compared to raw CLIP data.
Furthermore, we constructed a Gradient Boosting Tree to predict

RNA half-life using all PrsimNet predicted RBP bindings in
HEK293T cells. This model was based on all RBPs, and achieved a
much higher correlation between the predicted and experimental
RNA half-life49 (Pearson correlation coefficient= 0.59, P= 0, Fig. 3d)
than when using the individual proteins. Excitingly, we observed
only a slight reduction in the correlation when we applied this
model directly to K562 cells55 (Pearson correlation coefficient=
0.47, P= 2.19e-181, Fig. 3e), indicating how PrismNet predicted
RBP bindings have the potential to be harnessed to generate
accurate predictions of post-transcriptional regulation events.
This analysis also identified many putative novel regulators of

RNA translation and half-life. For example, we found that ALKBH5
(an m6A eraser) may promote RNA translation, consistent with
previously reported data about how excessively deposited m6A
can reduce translation efficiency56 (Supplementary information,
Fig. S4f). SMNDC1, an alternative splicing regulator, may promote
RNA stability, consistent with a previous finding showing that
alternative splicing could be coupled with nonsense-mediated
mRNA decay57 (Supplementary information, Fig. S4g). These data
collectively support that PrismNet, and especially its quantitative
predictions of binding affinity, can aid studies of post-
transcriptional gene regulation, including the prioritization of
candidate post-transcriptional regulators and targets for further
experimental investigations.

PrismNet generates informative predictions about how structural
alterations will affect RBP binding
Saliency maps are innovative tools developed in the computer
vision field for visual attention retrieval.41 To characterize the
binding preferences of RBPs, we developed a computational
framework to capture the sequence and structural signatures of
each binding site using a saliency map. The regions in each site
that are important for RBP binding manifested as HARs in the
saliency map, with the quantification of the contribution of every
position to the binding. We used 20nt sliding windows to scan for
HARs and iteratively merged two HARs if they have at least 1nt
overlap. The lengths of the vast majority of HARs are within
20–40nt (Supplementary information, Fig. S5a). As a proof-of-
concept, we visualized the HARs of a splicing regulator, Rbfox2.
The highest attention regions (red, Supplementary information,
Fig. S5b) indicate that a change at these positions, in sequence or
structure, will result in the most dramatic changes in Rbfox2
binding probability. Our maps clearly revealed that HARs were
enriched for “GCAUG” within single-stranded structures, consistent
with previous studies of Rbfox2.58

HARs represent a theoretical model that quantifies the sequence
and structural contributions of a nucleotide to RBP binding.

It thus is important to separately assess their roles by experiments.
To date, experimental validations of binding motifs have mainly
considered how a sequence mutation affects RBP binding,20,59 so
here we focused on how a structural change may also influence
RBP binding beyond sequence alone.
We first used different melting-and-folding treatments to

perturb RNA structure without altering sequence. Briefly, for a
given RBP, we selected PrismNet-predicted RNA binding sites that
form hairpin structures (both in vivo and in vitro), with the HAR
residing on the stem. We heat-denatured the RNA fragment of the
binding site, and then either slow-cooled to allow refolding into
the hairpin structure or fast-cooled to retain single-stranded
conformation.60,61 For example, PrismNet predicted a double-
stranded binding site for SND1 in the transcript encoding
eukaryotic translation initiation factor 1 (EIF1) in human K562
cells (Fig. 4a; Supplementary information, Table S5). We found that
SND1 showed stronger affinity to the slow-cooled vs fast-cooled
RNA fragment, consistent with our earlier finding about the higher
affinity of SND1 for the double-stranded conformation (Fig. 4a).
Using this approach, we also validated the structural preferences
of TIA1 for single-stranded conformation (Fig. 4b). In addition, we
recently used PrismNet to predict a set of host RBPs that bind to
the SARS-CoV-2 RNA genome and regulate viral infectivity in
cells.62 We used the same melting-and-folding strategy, as well as
mutagenesis of the binding sites, and validated the binding and
structural preference of Interleukin enhancer-binding factor 3
(ILF3) for double-stranded RNA structure on SARS-CoV-2 viral
RNAs. All these data validated that PrismNet accurately predicted
the structural preference of different RBPs.
As an orthogonal approach to investigate the effect of structural

context of HAR, we perturbed the structure by mutating a distal
sequence outside of the binding nucleotides. TIA1 is known to
bind a poly-U sequence motif,63 and PrismNet discovered that the
motif must be in a single-stranded region for high affinity binding.
We also synthesized a host sequence fragment from the CANX
mRNA containing a TIA1 HAR (Supplementary information,
Table S5). Mutating the poly-U motif disrupted TIA1 binding, even
when the whole sequence was kept single-stranded by snap-
cooling, confirming the contribution of the poly-U sequence to
TIA1 binding. In contrast, a mutation at a distal site resulted in
diminished TIA1 binding only under assay conditions that promote
base-pairing with the poly-U sequence, further confirming that
TIA1 preferentially binds single-stranded poly-U sequences (Fig. 4c).
Overall, these results verify that PrismNet generates informative
predictions about how structural alterations will affect RBP binding.

Integrative motifs from PrismNet reveal mechanisms of RBP–RNA
recognition
We aggregated and aligned all HARs to obtain the binding
patterns for each RBP, defined as sequence-and-structure
integrative motifs (integrative motifs). We calculated the integra-
tive motifs for all the RBPs we had surveyed, and used a combined
logo to denote a motif by adding a structural component to the
nucleotide code (“P” for paired; “U” for unpaired; Supplementary
information, Table S6).64 The sequence component of the
integrative motifs that we discovered were highly consistent with
the known sequence preference of these RBPs as documented in
the ATtRACT database65 (e.g., GGA motif for SRSF1, poly-U motif
for U2AF2), and with those derived from sequencing experiments
by using k-mers enrichment66 or a recently reported method
called mCross67 (Fig. 5a; Supplementary information, Fig. S5c, d).
In addition to sequence preferences, all RBPs that we surveyed

exhibited preferences for specific RNA structures (Fig. 5a).
PrismNet predicted that 69% of RBPs (116 out of 168 proteins)
prefer single-stranded regions, consistent with previous
studies.17,68 Importantly, with the structural constraints, integra-
tive motifs had a much lower false positive rate in discovering true
RBP binding sites compared to sequence-only motifs (Fig. 5a;
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Supplementary information, Fig. S5e). For example, 52% (29644/
57282) and 25% (20056/79749) of the sites matched by the
integrative motif and the sequence-only motif were covered by
the experimental CLIP-seq data, respectively.
To systematically visualize and compare the sequence and

structural specificities for each RBP, we performed hierarchical
clustering of all associated integrative motifs. Interestingly, RBPs
involved in the same RNA regulatory pathway were generally
clustered together (Fig. 5b), which can be partially explained by
their similar integrative motifs. For example, RBPs preferring the GA
(AG/GAA) motifs in single-stranded RNAs were enriched for
regulators of alternative splicing and were clustered together,
including SRSF family proteins (e.g., SRSF1, SRSF7 and SRSF9) as well
as some HNRNPs (e.g., HNRNPA1, HNRNPM). Many RBPs that bind
to U-rich, A-rich or AU-rich motifs in single-stranded RNAs were
associated with RNA stability and also clustered together (Fig. 5b),
consistent with previous studies showing that the AU-rich elements
(AREs) in 3′ UTRs target host mRNAs for rapid degradation.50

Some RBPs have multiple binding patterns, i.e., integrative
motifs. For example, SRSF9 can bind to GUGGA in single-stranded
structures and CCGGGA in double-stranded structures, and RBM27
can bind to polyU sequence in single-stranded structures and to
UCCUC in double-stranded structures. These proteins generally
contain multiple RBDs with different binding preferences that
exert distinct regulatory roles.68,69 Overall, these observations
suggest that integrative motifs can capture the determinants of
RBP binding more accurately than canonical sequence motifs and
agree with the domain composition and biological functions of
the associated RBPs.

HARs predicted by PrismNet represent evolutionarily conserved,
functionally impactful sites
An integrative motif of an RBP displays some degree of flexibility
in sequence and/or structural contents at each position (Fig. 5b).
Variations beyond the tolerance level may disrupt RBP binding
and consequently lead to dysregulation. Indeed, using both the
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PhyloP and PhastCons scores from UCSC,70,71 we found that the
HARs predicted by PrismNet are more evolutionarily conserved
than the overall transcripts (P= 0, one-sided Student’s t-test;
Fig. 6a; Supplementary information, Fig. S6a).
SNP density is also an indicator of evolutionary conservation.72

We analyzed the enrichment of SNPs at HARs vs the whole
transcript. We initially separated the HARs into three groups
according to their attention in primary sequence and/or
secondary structure. Briefly, for each binding site, the regions
with both high attention sequence and structure components in
PrismNet belong to the “sequence & structure” group; the regions
with only high attention sequence or structure component
respectively belong to the “sequence only” or “structure only”
group. We then calculated an odds ratio for each group to
represent the enrichment of SNPs in HARs over background
random positions for every RBP.

We first considered the common SNPs in the dbSNP database73

and found that all three groups showed a depletion of common
SNPs for most RBPs (P < 0.05, permutation test, Fig. 6b). Further-
more, while the groups of “sequence only” and “structure only”
showed comparable odds ratios, HARs in the group of “sequence
& structure” were generally more depleted of SNPs (odds ratio:
0.60 (sequence & structure) vs 0.78 (sequence) or 0.75 (structure),
P < 0.001, one-sides t-test). We confirmed these results using the
common SNPs from the 1000 Genomes catalog74 (P < 0.05,
permutation test, Supplementary information, Fig. S6b).
Next, we investigated the enrichment of rare variants, which are

often deleterious in human populations.75 We found that the
HARs of most RBPs are enriched for rare SNVs (P < 0.05, Fisher’s
exact test; Fig. 6c; Supplementary information, Fig. S6c), suggest-
ing that the variants within HARs tend to disrupt the functionality
of the predicted binding sites. And again, the “sequence &
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structure” group showed higher enrichment than the other two
groups (P < 0.05, one-sided Student’s t-test, Fig. 6c). To deconvo-
lute conservation (and SNVs) based on functional sites vs RBP
binding sites, we repeated the analysis by separating RBPs by
function (splicing, translation, degradation). We found no obvious
differences in any of these analysis between the three separate
functional groups of RBPs (Supplementary information, Fig. S6d–f).
Together, these data suggest that the HARs, particularly with both
sequence and structure signatures, are evolutionary conserved
and depleted of common SNPs, and tend to harbor deleterious
rare mutations.
We thus further explored the relationship of variants in HARs

with human disease. Indeed, genetic mutations deposited in the
ClinVar database are enriched in HARs, especially in the “sequence
& structure” group (Fig. 6d). Recently, large-scale neurogenomic
studies have identified a large number of expression quantitative
trait loci (eQTL) SNPs and de novo mutations associated with
psychiatric disorders including autism spectrum disorder (ASD),
schizophrenia (SCZ), and bipolar disorder (BD).76,77 In these
studies, the effects of the identified variants were mostly
explained by their ability to alter chromatin structure and TF
binding. Interestingly, we found that these variants were also
more enriched within the HARs (Fig. 6e). The odds ratios varied for
RBPs within each disorder, with some specific RBPs exhibiting
stronger enrichment (Fig. 6f). For example, RBFOX2, SND1, and
FMR1 binding sites were frequently disrupted by ASD-associated
variants, consistent with the roles of these proteins as revealed by
previous studies.78–80 Notably, again, the “sequence & structure”
HAR group showed relatively higher levels of enrichment for these
psychiatric disorder-associated variants than the other HAR
groups. These results support that analyzing mutations within
the PrismNet HARs can informatively nominate putative RBP
regulators and targets in complex human disorders.

RNA structure-disruptive variants (RiboSNitches) are associated
with dynamic RBP binding and disease
To further investigate the relationship between mutations in the
predicted HARs and human disease, we focused on riboSNitches, a
special class of SNPs or SNVs in which different alleles exhibit
distinct foci RNA structures81,82 (Supplementary information,
Fig. S7a). RiboSNitches are typically identified by allele-specific
structural analysis in the same cells or cells from closely-related
individuals.81 Here we developed a novel pipeline to uncover
potential riboSNitches by comparing RNA structures at SNP sites
among different alleles, and identified thousands of putative
riboSNitches for each pair of cell lines (Fig. 7a; Supplementary
information, Table S7). We intersected this dataset with the
riboSNitches identified in a previous study in human lympho-
blastoid cell lines81 and found a significant overlap (Supplemen-
tary information, Fig. S7b), confirming the validity of the dataset.
Notably, these riboSNitches are strongly associated with dynamic

RBP binding (Fig. 7a, b). For every RBP in every pair of cell lines, we
intersected the riboSNitches with the PrismNet-predicted dynamic
binding sites. We found that most of these riboSNitches are located
in a dynamic binding site of at least one RBP (Fig. 7a). And for most
RBPs, their dynamic binding sites are enriched with riboSNitches,
particularly for those RBPs with a preference for double-stranded
structures (e.g., DGCR8, SND1) (Fig. 7b).
Many of the riboSNitches are also disease-associated variants

from the ClinVar database.83 Strikingly, most of these disease-
associated riboSNitches are located in dynamic RBP binding sites
(Supplementary information, Fig. S7c and Table S7). Compared to
variants that do not affect RNA structure, riboSNitches were
enriched for disease-associated RBP-binding-disruptive mutations,
both at the global level and at the level of individual RBPs (Fig. 7c).
Note that this analysis only considered synonymous variants
because we wanted to avoid impacts from possible protein
truncations or frame shifts.

To clarify the regulatory relevance of riboSNitches in the context
of disease association, we focused on a putative riboSNitch in the
pyridoxamine 5′-phosphate oxidase (PNPO) gene for further
validation. This riboSNitch corresponds to a synonymous G-to-A
mutation (c.552 G > A; p.184 Leu > Leu) that has been associated
with epilepsy, a severe neurological disorder.84 We found that
HEK293 contains both alleles, whereas K562 contains the G allele
(Supplementary information, Fig. S7d). The locus was indeed a
riboSNitch, with very different RNA structures in the two cell lines
(Fig. 7d, e). We then used PrismNet to scan each RBP for its
binding probability at this local region and found that TARDBP
had a much stronger binding affinity in K562 cells than in HEK293
cells (Fig. 7f; binding probability: 0.658 in K562 vs 0.028 in
HEK293), consistent with the experimental CLIP-seq data (Supple-
mentary information, Fig. S7e; K562: GSM2423707, GSM2423708;
HEK293: DRX012638, DRX012639). TARDBP has been implicated in
pre-mRNA splicing85 and we noticed that the PNPO exon
containing this riboSNitch exhibited a dramatically reduced
inclusion rate in HEK293 cells (Fig. 7g; P < 0.05, t-test). Interestingly,
knockdown of TARDBP in K562 cells resulted in substantially
reduced PNPO exon inclusion, in line with the phenotype of
disrupted TARDBP binding in HEK293 cells (Fig. 7h; Supplementary
information, Fig. S7f and Table S5). Collectively, these data indicate
that riboSNitches, by disrupting the local RNA structure and/or
directly altering RBP binding interactions, may help explain how
disease-associated synonymous mutations can disrupt normal
post-transcriptional regulation.

DISCUSSION
A substantial body of work has attempted to map RBP binding
profiles to gain a more complete and mechanistic understanding
of RNA regulation.1–4 Target recognition by RBPs has been found
to be remarkably precise in vivo, yet this recognition apparently
typically involves a limited primary RNA sequence space that is
rich in low-complexity motifs.29,86,87 Binding site predictions with
these low-complexity motifs inevitably contain many false
positives. Local RNA structure of RBP binding sites is known to
functionally impact the specificity of RBP recognition; however,
previous predictive models have not included information for
in vivo RNA structure. Here, we resolved these issues by
generating a large dataset of RNA structural profiles across diverse
mammalian cell lines. Our RNA structurome data show that RNA
structure displays a significant amount of cell line-dependent
variability, strongly suggesting its likely strong influence on the
accuracy and relevance of model-based predictions of cell line-
specific RBP binding. We implemented these insights into a deep
neural network, PrismNet, constructed upon the large amount of
cell line-specific RBP binding and RNA structurome data in vivo
from matched cell lines. PrismNet learns protein–RNA interaction
models and was therefore able to very accurately predict RBP
binding in diverse cellular conditions.
Excitingly, we observed higher replicate correlations for binding

sites from PrismNet predictions as compared with CLIP experi-
ments, and also observed higher correlations between PrismNet
predictions with experimentally determined post-transcriptional
gene regulation events as compared with raw CLIP data. Both
trends indicate that PrismNet-predicted output represents a refined
set of putative binding sites, and suggest that use of PrismNet will
give researchers a higher probability of identifying truly functionally
impactful post-transcriptional regulators. Illustrating this application
area, we showed how PrismNet output can be used for predicting
RBPs likely to function in regulating translation efficiency and RNA
half-life. Importantly, it bears emphasis that many RBPs are known
to be multi-functional. Indeed, we also found that the SND1,
LIN28B, and CPSF6 proteins apparently influence both translation
efficiency per se and mRNA half-life. In addition, we observed that
MOV10, IGF2BP1-3, and LIN28A were associated with translation
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efficiency, but the only functions reported to date for these proteins
are related to mRNA half-life.88–90

The PrismNet model also allows us to dissect the relative
contributions of RNA primary sequence and secondary structure.
We verified that the change of RNA structure alone could affect RBP
binding, once again highlighting RNA structure affects the dynamic

regulation of RBP binding in vivo. Applying PrismNet models will
support accurate predictions about how RBP bindings vary together
with RNA structural changes in new physiological contexts. More
broadly, our results also illustrate the promise of deep learning
models for integrative data analysis and providing biological
insights, rather than merely serving as black box classifiers.
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By extracting features from a big dataset of binding sites with
sequence and structural information, PrismNet learns a quantita-
tive model of specificity determinants using the saliency map, in
which the contribution of every position can be visualized. More
importantly, with the model, PrismNet can predict mutations with
severe consequences on RBP binding, and automatically dissect
the perturbation effects resulting from the disruption of normal
sequence and/or structure patterning. We identified and validated
mutations in the PrismNet HARs that are strongly deleterious in
the human population, and are implicated with potentially
important roles in complex human disorders.
Much work remains to be done to understand post-

transcriptional regulation in different physiological contexts,
particularly in disease-relevant conditions where mutations affect
RNA structure and RBP binding. SNPs with allele-specific RNA
structures, i.e., riboSNitches, are an emerging topic of great
interest with ample opportunities for discovery. Although some
candidates were found associated with diverse human disorders
and phenotypes,81 we still do not understand the mechanistic
basis of such correlations. We here comprehensively surveyed the
associations of mutations with dynamic RBP binding and also
human disease. Our study can support pursuit of the fascinating
hypothesis that mutation–disorder associations may result from
dysregulation of RBP binding.
Three recent publications have explored the use of allele-

specific analyses with CLIP-seq data to identify SNPs that
potentially modulate protein–RNA interactions.67,91,92 It is intri-
guing that these studies collectively revealed the apparently
paradoxical finding that sometimes increased allele specific
binding is not associated with gain of putative RBP motifs. Our
study supports a related speculation: perhaps an increase in allele-
specific binding is a consequence of improved structural context
for RBP binding by riboSNitches. This idea could be explored in
the future by embedding PrismNet within pipelines for allele-
specific analyses of RBP bindings. This should support further
refining of sequence-and-structure integrative motif characteriza-
tion, and would likely facilitate elucidation of the specific
pathologic influence(s) of dysregulated intrinsic sequences and/
or structure, helping candidate prioritization for hypothesis-driven
investigations on complex diseases. To this end, more RNA
secondary structure profiles from disease-related tissue types will
be valuable for dissecting the mechanisms of riboSNitches in a
specific disease or phenotype context. Another important and
further step would be to discover small molecule drugs that could
potentially target RNA in a structure-specific manner.93 Together,
the enhanced understanding of the regulatory mechanisms that
govern the formation of RNA structure and its interaction with
other biomolecules may pave the way to discovery of innovative
therapeutic modalities for treating human disease.

MATERIALS AND METHODS
Cell culture and NAI-N3 modification in cells
Human HEK293 cells, HEK293T cells, K562 cells, HeLa cells, and
HepG2 cells were bought from Cell Bank, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences. The mouse
embryonic stem cell (mES) line E14T was a gift from the lab of
Xiaohua Shen, Tsinghua University. Human embryonic stem cell
(hES) line H9 was a gift from the lab of Kehkooi Kee, Tsinghua
University. HeLa, HEK293, HEK293T, and HepG2 cells were cultured
in DMEM medium supplemented with 10% FBS at 37 °C with 5%
CO2 in 15 cm plates to gain ~80%–90% confluency. K562 cells
were cultured in RPMI 1640 medium supplemented with 10%
FBS at 37 °C with 5% CO2 in 15 cm plates to reach ~2 × 107 cells.
mES E14T cells were cultured as described previously.94 Briefly,
mES E14T cells were grown at 37 °C with 5% CO2 in 10 cm plates in
complete ESC culture medium (DMEM supplemented with 15%
heat-inactivated FCS (fetal calf serum), 1% of nucleoside mix

(Millipore), 0.1 mM nonessential amino acid, 2 mM Glutamax, 0.1
mM 2-mercaptoethanol and supplied with 1000 U/ml recombi-
nant leukemia inhibitory factor). hES cells were cultured as
described previously.95 Briefly, hES cells were grown at 37 °C with
5% CO2 in 10 cm plates in knockout serum replacer (KSR) plus
bFGF medium (knockout DMEM, supplemented with 20% knock-
out serum replacer, 0.1 mM nonessential amino acids, 0.1 mM β-
mercaptoethanol,1 mM L-glutamine, and 4 ng/mL recombinant
human bFGF (R&D systems)).
All cells were collected at ∼80%–90% confluency and washed

by PBS buffer. Cells were then treated with the icSHAPE reagent
NAI-N3 with rotation at 37 °C for 5 min according to published
protocol.96

RNA extraction and rRNA depletion
RNA extraction and rRNA depletion for all human and mouse cells
were performed as previously described96 with the following
modifications. Cell pellets were heated at 50 °C for 5 min in 1 mL
Trizol LS (Life Technologies) to improve the efficiency of RNA
extraction. Cell lysates were purified by following the QIAGEN RNA
cleanup protocol, and rRNA depletion was performed following
the DynabeadsTM mRNA DIRECTTM kit (invitrogen) protocol. To
improve the purification of polyA RNA, polyT probe selection was
performed three rounds and validated using an Agilent 2100
Bioanalyzer.

icSHAPE library construction and sequencing
icSHAPE sequencing libraries were constructed from rRNA-
depleted RNA samples as previously described96 with the
following modifications. To sequence the libraries on the HiSeq
X system, we designed new oligonucleotides of the linker, reverse
transcription (RT) primer, and P5/P7 amplification PCR primers as
follows. Note that the experimental barcodes are for different
libraries located on PCR primers, rather than on RT primers.
The linker of NAI-N3 modification samples:
/5rApp/AGATCGGAAGAGCACACGTCT/3ddC/;
the linker of DMSO control samples:
/5rApp/AGATCGGAAGAGCACACGTCT/3Biotin/;
RT primer:
/5phos/DDDNNNNNNNNNNAGATCGGAAGAGCGTCGTGGA/

iSp18/GGATCC/iSp18/CAGACGTGTGC,
D= A/G/T and N= A/T/G/C are random barcodes to discrimi-

nate PCR duplicates;
P5-Solexa PCR primer:
5′-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACG

ACGCTCTTCC-3′;
P7-Solexa PCR primer:
5′-CAAGCAGAAGACGGCATACGAGATCGAGGCTGGTGACTGG

AGTTCAGACGTGTGCTCTTCCGATCT-3′.
Here the underlined “CGAGGCTG” is the specific experimental

barcode to distinguish different libraries. Libraries of all cell lines
were sequenced on the HiSeq X system to ~200 million reads per
replicate.

Immunoblotting and RT-qPCR and PCR
Immunoblotting was used to verify RNA pull-down results,
performed with antibodies for proteins SND1 (Proteintech), TIA1
(Proteintech) and GAPDH (Abcam). Elution samples of RNA pull-
down were boiled at 95 °C for 10 min, followed by immunoblot-
ting as previously described.32

RT-qPCR was performed to assess splicing differences with
primers designed across two exons as previously described
(Fig. 3a).97 PCR was also performed to measure the splicing
differences of different isoforms (Fig. 7g, h). We also verified site
specific mutations in the genome with PCR and sanger sequen-
cing (Supplementary information, Fig. S7d).
All the primers used in this study are in Supplementary

information, Tables S4 and S5.
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RNA pull-down
RNA pull-down assays were performed as previously described98

with the following modifications. For folded RNA, 1 μL (100 μM)
RNA oligonucleotides were refolded by heating at 90 °C for 2 min,
and then incubated at 30 °C for 5 min.98 For single-stranded RNA,
to minimize the secondary structure, 1 μL (100 μM) RNA was
heated to 90 °C for 2 min followed by snap cooling on ice.43

Human K562 cells (1 × 107, for TIA1 and SND1 proteins) were lysed
in lysis buffer (150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.5 mM
DTT, 50 mM pH 7.5 Tris-HCl, 0.1% sodium deoxycholate) with 10 μL
phosphatase inhibitor cocktail (Promega), 2.5 μL SUPERase•In
RNase Inhibitor (Life Technologies), then the cell lysate was
incubated with the RNA probes. To inhibit RNA refolding during
incubation, RNA (10 μL) and cell lysate (1 mL) were incubated at 4 °
C for 30 min, then another 30 min incubation at 4 °C with 50 μL
pre-washed MyOneC1 streptavidin beads added.98 The beads
were washed with pre-cooled high salt buffer (50 mM Tris-HCl, pH
7.5, 1 M NaCl, 1% TRITON X-100) once and pre-cooled low salt
buffer (50 mM Tris-HCl, pH 7.5, 150mM NaCl, 5 mM EDTA) twice at
4 °C, with each wash for 2 min. Proteins were eluted (30 μL) with
low salt buffer at 95 °C for 10 min. The eluted protein samples (8
μL) were quantified by immunoblotting with its specific antibody
as previously described. Control samples were prepared identically
to the lysate samples, with the exception that no RNA
oligonucleotides were added (Fig. 4).
The wide type and mutation sequences of SND1-binding probes

and TIA1-binding probes are in Supplementary information,
Table S5.

RNA interference
siRNAs against TARDBP and FUS (Supplementary information,
Table S5) were transfected into K562 cells using Lipofectamine
RNAiMAX (Life technologies, Carlsbad, CA) following the manu-
facturer’s instructions. Cells were grown at 37 °C with 5% CO2 for
48 h with siRNA transfection. The efficiency of siRNA knock down
was validated by qPCR and (Supplementary information, Fig. S7f)
and the splicing pattern of PNPO transcript was validated by PCR
(Fig. 7h; Supplementary information, Table S4).

icSHAPE score calculation and quality control
To process icSHAPE sequencing data and calculate icSHAPE
structure scores, we used icSHAPE-pipe, which is an updated version
of the original icSHAPE bioinformatics pipeline.31,96 In brief, raw
reads were first collapsed to remove PCR duplicates and trimmed to
remove adapters. Then, the processed reads were mapped to the
human (hg38) and mouse (mm10) genomes, respectively, using
STAR99 with the default parameters31 (Supplementary information,
Table S1). icSHAPE scores were then calculated using icSHAPE-pipe.
To ensure data quality, we only retained the icSHAPE scores for
those nucleotides with read depth higher than 100.
To validate data quality, we calculated the Pearson correlation

coefficients of replicate libraries for each cell line, as well as the
agreement between our icSHAPE scores and the crystal structure
of the human 18S rRNA using the AUC of the Receiver Operating
Characteristic (ROC) curve line (Supplementary information,
Fig. S1b–e).
Finally, the icSHAPE scores can be visualized at the following

sites: http://prismnet.zhanglab.net/, with backups at: human,
https://genome.ucsc.edu/s/sunlei/PrismNet_icSHAPE_hg38; mouse,
https://genome.ucsc.edu/s/sunlei/PrismNet_icSHAPE_mm10.

Structurally variable site analysis
To define a structurally variable site (Fig. 1b; Supplementary
information, Fig. S2a, b), first we estimated the random noise of
icSHAPE scores using replicates. We computed the scores using
icSHAPE-pipe for each replicate, and calculated the L1 distance for
each nucleotide between replicates. We aggregated all the L1
distances from the seven cell lines, which were used as the

background distribution of the technical variations of icSHAPE
scores. We defined the cutoff to be the top 5% of the L1 distances
as the threshold of random noise (ΔSnoise).
For each transcript, we split it into sliding windows (window

size: 20nt, window step: 1nt), and compared the structural scores
from two cell lines to identify structurally variable windows based
on the two scores, as a significance score, as well as an average L1
distance score.
To calculate the significance score, we first defined a nucleotide

with an icSHAPE score difference larger than ΔSnoise as a
structurally variable nucleotide. We then counted the number of
structurally variable nucleotides within each window. We assumed
that this number follows a binomial distribution, and then
calculated a significance score (P < 0.05) for each window to
define structurally variable windows by Binomial test (see below).
We also calculated the average L1 distance of the 20 nucleotides
for each window. We aggregated these average distances from all
pairs of cell lines, which were used as the distribution of window-
wise structural variations. We defined the cutoff to be the top 10%
of the average L1 distances, which was used as the second
threshold (ΔL1) for the identification of structurally variable
windows. Finally, only a window with an average L1 distance
larger than ΔL1 and also with a significance score lower than 0.05
was defined as a structurally variable window. We merged all the
overlapped windows into disjointed structurally variable sites for
each transcript. All structurally variable sites are shown in
Supplementary information, Table S2.

RBP binding site data collection and processing
RBP binding sites from CLIP-seq were collected from POSTAR and
ENCODE (eCLIP).35,100 In total, we collected 269 CLIP-seq datasets
for 56 RBPs from POSTAR,100,101 as well as 392 eCLIP datasets for
134 RBPs from ENCODE.35 To ensure that the CLIP data sets used
in our study are of high-quality and consistent, we downloaded
the binding sites from the ENCODE project and a published
database (POSTAR), in which the binding sites have been
generated using a uniform pipeline; that is, we did not use the
binding site data from the original publications (as called by
different labs using various tools, pipelines, and parameters).
For a RBP with CLIP experiments in different cell lines, we

constructed a PrismNet model for each cell line separately. For a
RBP with multiple CLIP experiments in one cell line, we only chose
one experiment of the highest quality (first filtered by the number
of experiment replicates, then ranked by average sequencing
depth among replicates). For any CLIP experiment of more than
one replicate, we combined the overlap binding sites from all
replicates. Specifically, we performed replicate normalizations,
summing up and then merging them to use all the information of
each replicate. The scores of each peak were normalized to [0, 1].
Overlapping binding peaks (at least 1nt) were then merged with
the summed peak signals to yield a single peak.
We defined each resulted peak as a binding site. The length of a

binding site was unified to 101 nt, where a region shorter than 101
nt was expanded from the middle to both sides and a longer
region was cut from both sides to the middle. Finally, the top 5000
binding sites with the highest signals and at least 40% icSHAPE
scores coverage were kept for the training and testing of
PrismNet, as positive samples.
For each RBP, we also generated a negative sample of binding

sites by randomly selecting 10,000 regions of 101 nt from the
whole transcriptome, with at least 40% of icSHAPE score coverage
and avoiding binding regions. For both the positive and negative
samples, we randomly split them into training set and validation
set by 4:1 to be used in PrismNet, respectively. To test the
influence of using different ratios of positive vs negative reference
sets, we tested this ratio with 1:1, 1:2, 1:5, and 1:10 to train
PrismNet models and validated their performance. Finally, the
positive vs negative ratio of 1:2 was used for model training.
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Definition of dynamic RBP binding sites and its association with
structurally variable sites
For each RBP, we intersected and defined the set of common and
dynamic RBP binding sites for a pair of cell lines, where overlapped
binding sites was defined as common binding sites, and the other
binding sites (i.e., only in one cell line) was defined as dynamic
binding sites. To avoid technology noise between different CLIP
protocols, we defined common and dynamic RBP binding sites
between eCLIP datasets for the same RBP in different cell lines.11

Then, to analyze the relationship of each RBP dynamic binding
sites with structurally variable sites, we only retained the binding
sites with icSHAPE scores in both HepG2 and K562 cell lines. We
calculated the number of overlapping regions between dynamic
binding sites and structurally variable sites. Then, for a back-
ground distribution, we randomly selected the same number of
regions from the transcripts with icSHAPE scores and counted the
numbers of random regions intersecting with structurally variable
sites. This process was repeated 1000 times. The P value of the
enrichment was estimated by the rank of the number of
overlapping regions between dynamic binding sites and structu-
rally variable sites in the re-sampled distribution.

Input data of PrismNet
For each 101 nt region, we labeled it as “1” if it is a positive sample
or “0” if a negative one. We encoded the sequence with the one-
hot encoding (A, C, G, U, 4-dimension), and combined it with the
structure scores as the fifth dimension (icSHAPE values ranging
from 0 to 1, 1-dimension). Missing icSHAPE scores (Null) were
dubbed with “-1”. The labels and encodings were the input of
PrismNet training (see below).

PrismNet architecture
The input data of PrismNet are denoted as S, including N samples,
where each sample s 2 S is an RNA region of length L= 101
nucleotides (nt). As mentioned above, each nucleotide corre-
sponds to a sequence-and-structure vector of D= 5 dimensions.
So, we encode S as a tensor X 2 RN ´ L ´D and the binding
probability of Y 2 RN is computed by:

Y ¼ PrismNetðXÞ
PrismNet is then defined by the following set of functions.

PrismNet Xð Þ ¼ σ FC fR fS fCðXÞð Þð Þð Þð Þ
σ is a sigmoid function, FC is a fully connection layer, and fC, fs, fR
are the formulation of the convolutional block, the squeeze-
excitation block (SE)102 and the residual blocks defined in this
work37 respectively, which are defined as follows:

fCðxÞ ¼ ReLU BN ConvK;P xð Þ� �� �

fS xð Þ ¼ x � SEðxÞ

fR xð Þ ¼ ResidualBlock1ðAvgPoolðResidualBlock2ðxÞÞÞ
In fC, ReLU is a rectifier linear unit activation function.103 BN

denotes a batch normalization layer:104

ReLU xð Þ ¼ max 0; xð Þ

bx ¼ BN xð Þ ¼ γ
x � E xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var xð Þ þ ϵ

p
 !

þ β

γ and β and are the learnable parameter vectors of size C (the
channel of the input tensor). E(x) and Var(x) are the mean and the
variance over the mini-batches. ϵ is a value added to the
denominator for numerical stability. During training, the batch
normalization layer keeps running estimates of the computed

mean and variance, which are then used for normalization during
evaluation. The running estimates are kept with a default
momentum (m= 0.1), finally, the normalized x is combined by
the current estimation bx with the weight m and the previous
estimated bxp by the trained batches with the weight (1 − m).
Mathematically, the update rule is:

bx0 ¼ ð1�mÞ ´bxp þm ´bx
The ConvK,P denotes the 2d-convolutional layers with a

learnable kernel K 2 RC ´ l ´ d and a padding P ¼ pl; pdð Þ, where
pl ¼ l�1

2 ; pd ¼ d�1
2 , which makes the output shape of the

convolution layer the same as the input. These kernels were
designed to detect local sensitive regions per RBP binding, and
resulted in the feature map F ¼ ConvK ;P Xð Þ, where

Fn;c;i;j ¼
Xl
i¼1

Xd
j¼1

Wc;i;j � xn;i�pl ; j�pd

xn;i�pl ; j�pd ¼
Xn;i�pl ; j�pd

0

if pl < i < l þ pl and pd < j < d þ pd
otherwise

�

In fS, the squeeze-excitation block, acts as a channel-wise self-
attention to enable dynamic motif detection with weight recalibra-
tion. ⊗ refers to the channel-wise multiplication between the input
and the learned C-dimensional vector by SE block. The SE block first
squeezes the global sequence context information into a channel
statistic by using a global average pooling function fsq, and then
excite it to a set of channel weights scaled between 0 and 1 by
applying a nonlinear transformation fex with two fully connection
layers and a ReLU activation function defined as follows:

SE xð Þ ¼ σðfexðfsq xð ÞÞÞ

bz ¼ fsq zð Þ ¼ 1
L ´D

XL
i¼1

XD
j¼1

z i; jð Þ

fex bzð Þ ¼ W2 ReLU W1bzð Þð Þ
σ is the sigmoid function, W1 2 R

C
r ´C and W2 2 RC ´ C

r are the
learnable parameters of the two fully connection layers, r is the
dimension reduction ratio.
In fR, ResidualBlock1 and ResidualBlock2 are the residual blocks

with 1d and 2d convolutional kernels, respectively.37 Residual-
Block2 aims at learning the sequence and structure combined
patterns, and ResidualBlock1 is designed to learn the spatial
context features where the precise binding sites localization are,
and AvgPool is a average pooling layer to pool the 2d feature
maps into the 1d vectors. The formulation of the residual block is
defined below:

ResidualBlockiðxÞ ¼ ReLUðx þ IðxÞÞ

I xð Þ ¼ B3 ReLU B2ðReLUðB1ðxÞÞÞð Þð Þ

BjðxÞ ¼ BN Convj xð Þ� �
Where i 2 f1; 2g denotes the 1- or 2-dimensional residual block in
which the inner convolutional and batch normalization layer are
also in the i-dimension.
The final binding probability Y is the output of a sigmoid layer

which transform the predicted binding score of the FC layer output.

Training of PrismNet
In total, we trained 256 PrismNet models for 168 human proteins
(Supplementary information, Table S3), using the input data as
described above (in the section “Input data of PrismNet”).
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The training of a PrismNet model seeks to learn the parameters
to minimize the loss function, which is the L2 regularization on all
parameters and the binary cross entropy loss between the target
labels T and predictions Y, over the training set.

LossðT ; YÞ ¼ � 1
N

XN
i¼1

pc � ti � log yi þ 1� tið Þ � log 1� yið Þ½ � þ λ Wj j2

Where ti is the target label; yi is the predicted binding probability;
W represents all the parameter of PrismNet; N is the batch size in
training stage. The model parameters are optimized by the
optimizer Adam,105 an extension to the stochastic gradient
descent algorithm that performs a form of learning rate annealing
with adaptive step-sizes in a computationally efficient way with
little tuning on hyper-parameters. In addition, we adopted a
warmup scheme106 with a linear scaling rule for adjusting learning
rates to overcome optimization challenges early in training.
The L2 norm on all parameters acts as the weight decay term

that reduces overfitting in a training model. To avoid overfitting,
batch normalization and dropout are applied in the network, and
early stopping is adopted in training. A batch normalization layer
follows after each convolutional layer and a dropout layer follows
after each residual block. Early stopping is applied to train
PrismNet automatically, which stops the training procedure as
soon as the performance on the validation dataset is no longer
improved after Nes epochs.
Because PrismNet formulates the RBP binding prediction as a

binary classification problem and the datasets are mostly
imbalanced, area under the receiver operating characteristic curve
(AUROC) was is selected as the measure, which performed better
than the loss function. Only the parameter values of the best
AUROC model on the validation data were saved.

PrismNet hyperparameters
PrismNet hyperparameters were tuned experientially, through
sequential exploration of the hyperparameter space over the
training data set. The parameter tensor shape of each convolu-
tional, pooling, and full connection layer is labeled in Supple-
mentary information, Fig. S3a, and the settings of other
parameters are as follows:
Dimension reduction ratio. The dimension reduction ratio of

squeeze-excitation block was 2.
Dropout probability. Dropout followed after each residual block

with the probabilities 0.5 and 0.3.
L2 norm penalty. We set the penalty weight λ= 1e-6.
Batch size. We used batch size 64 for all the experiments.
Learning rate. The base learning rate was 0.001.
Positive weight in Loss Function. The positive weight pc in loss

function was 2.
Training epochs. We trained each model with the maximal

epoch 200. The training procedure was stopped when no
improvements in the latest Nes= 20 epochs by early stopping.
Initial weights. We initialized weights with Kaiming

initialization.107

Gradients clipping. The gradients were clipped by max norm
below 5.0.

Whole transcriptome RBP binding prediction and evaluation
PrismNet models of 168 human RBPs were then used to predict
these RBPs’ binding sites in the whole transcriptome of all six
human cell lines with their specific structures. All transcripts with
icSHAPE scores were split into sliding windows (window size:
101nt, window step: 20nt) as the model input. The sliding
windows with binding probability ≥ 0.5 in each cell line were
defined as predicted binding sites.
For evaluation, we compared PrismNet prediction probabilities

with the CLIP-seq binding sites in the validation set, using the
AUROC measure.

To evaluate the quantitative predictions of PrismNet, we first
transformed the RBP binding probability (P) into an RBP predicted
binding score (S) using the following reverse sigmoid.

S ¼ �ln
1
P
� 1

� �

Then we calculated Pearson correlation coefficients between
predicted binding score and the eCLIP peak signal (CLIP binding
score) from CLIPper11 (Fig. 2h).
We predicted the binding probability of the common and

dynamic RBP binding sites between HepG2 and K562 cells. Then
we compared the binding probability of dynamic RBP binding
sites (binding sites in K562 cell only or HepG2 cell only) and
common RBP binding sites and calculated the P value using one-
sided Student’s t-tests.

Comparison of PrismNet with other methods
We compared the prediction performance of PrismNet with RCK,
GraphProt, and DeepBind16,20,108 using AUROC and area under the
precision-recall curve (AUPRC) measures. RCK, GraphProt, and
DeepBind were trained with their default settings on the same
training samples used for PrismNet, and were evaluated the same
way as PrismNet.
We also compared the prediction performance of PrismNet with

four PrismNet-variants respectively using the following inputs:
only RNA sequences (input shape: 101 × 4), only icSHAPE RNA
structural data (input shape: 101 × 1), RNA sequences and
computationally predicted RNA structural data (input shape:
101 × 5), RNA sequences and shuffled icSHAPE RNA structural
data (input shape: 101 × 5). All four of these PrismNet variants
were trained and evaluated on 256 models representing 168
human RBPs the same way as for PrismNet.
To evaluate the model performance for datasets comprising

different ratios of positive vs negative samples, we trained and
validated the PrismNet model with a series of datasets, all having
the same positive sites, but differing in the numbers of negative
sites. Specifically, the examined ratios of positive vs negative sites
included 1:1, 1:2, 1:3, 1:5, 1:10, 2:1, 3:1, and 10:1 to train different
RBP model and to validate their performance with AUROC.
To further compare the binding sites of CLIP data and prediction

by PrismNet and DeepBind (Fig. 2b; Supplementary information,
Fig. S3c), we trained models using DeepBind, PrismNet, and an
iteration of PrismNet which only employed RNA sequence
information as input, in each case using IGF2BP1 binding sites in
the K562 eCLIP data. The human genome was split into 1M bins
(without overlap) and we counted the number of binding sites in
the K562 eCLIP data. We then applied these models to predict the
binding sites for the IGF2BP1 protein across the HepG2 transcrip-
tome by DeepBind, PrismNet, and PrismNet with only RNA
sequence information, also using a sliding windows strategy.
Finally, we examined the overlap of binding sites between the K562
experimental data and the predicted sites from the three prediction
models (Fig. 2b; Supplementary information, Fig. S3c).

Correlation analysis between PrismNet predicted RBP binding and
splicing
To obtain the SRSF1 binding difference in HEK293T and K562 cells,
the transcriptome-wide binding sites of SRSF1 were predicted
using PrismNet and compared between the two cell lines (Fig. 3a).
First, the splicing differences of the 12 targeted exons with

predicted differential SRSF1 binding between HEK293T and K562
cells were quantified using RT-qPCR. The test primers are in the
Supplementary information, Table S4. For each possible splice
event (e.g., an exon skip event), we calculated a percent-splice-in
(PSI) value. This PSI is the ratio of normalized reads (indicating
inclusion of a transcript element) over the total normalized reads
for that event (both inclusion and exclusion).
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Then for the transcriptome-wide splicing difference between
HEK293T and K562, we built icSHAPE control libraries (DMSO-
treated) in HEK293T and K562 cells to be used as common RNA-
seq data. The sequencing reads were pre-processed the same
way as the icSHAPE libraries (cutting adaptors and removing
duplicates), and were aligned to the human genome (hg38)
using Bowtie2 with default parameters.109 Then the mapped
reads were used to calculate the splicing difference between
HEK293T and K562 using SUPPA2.110 To exclude the difference of
different types of alternative splicing events, we only considered
the transcripts with skipped exons and SRSF1 binding difference
in the 5′ of the exon. We then calculated Pearson correlation
coefficients between the difference of PrismNet-predicted SRSF1
binding probability and the splicing difference between HEK293T
and K562 cells.

Correlation analysis between PrismNet predicted RBP binding
score and RNA half-life and translation efficiency
The pre-calculated RNA half-life data from HEK293 cells49 and
translation efficiency data from HepG2 cells48 were downloaded
from previous studies. Briefly, the RNA half-life data were based
on metabolic labeling of nascent RNA with the photoactivatable
ribonucleoside analog 4-thiouridine, and the translation effi-
ciency data were measured using Ribo-seq in the cell lines. The
transcriptome-wide binding sites of all RBPs were predicted by
PrismNet in the matched cell lines (HEK293, HepG2) based on
the corresponding RNA structure data (Fig. 3b, c). For one RNA
with several binding sites, we used the maximum of these
binding probabilities to represent the RBP binding probability of
this RNA. The RBP binding probability (P) is then transformed
into RBP predicted binding score (S) by the following reverse
sigmoid.

S ¼ �ln
1
P
� 1

� �

The Pearson correlation coefficients with P values between RBPs
predicted binding score and RNA translation efficiency as well as
half-life were calculated using R (https://www.r-project.org/).
We intersected the CLIP binding sites with PrismNet predicted

binding sites in HEK293 and defined the “CLIP-specific”, “Com-
mon” and “PrismNet-specific” binding sites. For the RNA with
“Common” and “PrismNet-specific” binding sites, we calculated
the Pearson correlation coefficients with P-values between RBPs
predicted binding score and RNA half-life. For the RNA with “CLIP-
specific” binding sites, we calculated the Pearson correlation
coefficients between RBPs CLIP binding score and RNA half-life.
(Supplementary information, Fig. S4d, e).
To further analyze to relationship between RBP binding and

RNA translation and stability regulation, we classified the RNAs
into a Strong binding group (binding probability ≥ 0.8), a Medium
binding group (0.5 ≤ binding probability < 0.8) and a Low or non-
binding group (binding probability < 0.5). Then we calculated the
cumulative distribution function of the translation efficiency or the
half-life of different group RNAs. The P value was calculated by
Student’s t-tests.

RNA half-life prediction model
To further analyze the RNA half-life regulation by multiple RBPs,
we constructed a Gradient Boosting Tree model to predict the
RNA half-life by using the predicted binding scores of the 168
RBPs. We downloaded the RNA half-life datasets for HEK293 and
K562 cells49,55 and predicted the 168 RBP prediction binding
scores for their transcriptomes. Here using an L2 regularized
Gradient Boosting Tree model, we trained and validated
performance for HEK293 cells. Subsequently, we then used model
trained in HEK293 cells to predict the RNA half-life in HepG2 cells
by using the RBP prediction binding score in HepG2 cells.

Then, we examined the Pearson correlation coefficients between
the experimental half-life data and the Gradient Boosting Tree
predicted half-life data.

Saliency map
PrismNet used the saliency map as an “attention” strategy to
highlight the nucleotide regions that are particularly influential to
the decision whether the input is positive or negative. In the
inference stage, a saliency map is generated by SmoothGrad,41

which could produce sharpened visual coherence of sequence
and structure logo by averaging the gradient made from many
tiny perturbations of a given input x through guided
backpropagation111

When a sample x 2 RL ´D was fed into PrismNet, the binding
score y 2 R1 and the gradient g(x) with respect to x were
computed simultaneously by,

g xð Þ ¼ ∂PrismNet xð Þ
∂x

bM xð Þ ¼ x � 1
n

Xn
1

g x þ N 0; σ2
� �� �

Where ∂PrismNet xð Þ represents the gradient of PrismNet. The size
of g xð Þ 2 RL ´D is the same as the input x. In general, g(x)
represents how much difference a tiny change in x would be
made to the binding score and highlights key regions where
motifs appear. For producing much sharper motif, n samples were
generated by add a small gaussian noise N 0; σ2ð Þ with standard
deviation σ. � denotes element-wise multiplication.

High attention region finding
For each putative RBP binding site (in length of 101 nt), we split it
into sliding windows (window size: 20 nt, window step: 1 nt), and
calculated the average of both sequence and structure response
signal from the smoothed saliency map.41 The sliding window
with the highest response signal was defined as the high attention
region (HAR). We used 20 nt sliding windows to scan for a HAR
region and iteratively merged two HARs if they have at least 1nt
overlap.

Integrative motif construction
To minimize noise in the binding data, only the binding sites with
a predicted binding probability > 0.8 were kept for the construc-
tion of integrative motifs of each RBP. The same sliding window
strategy by which HAR were identified in the saliency map was
applied with the following modification to obtain more precise
motif containing regions: we only retained 20% of the sliding
windows with the highest attention signals and merged the
overlapped windows, resulting in a list of windows of high
attention. Notably, some RBP binding sites might contain long
HARs (for example, longer than 20 nt. Fig. 4a) or more than one
separating HARs (Supplementary information, Fig. S5a). And, for
an RBP with more than one PrismNet models in different cell
types, we combined all PrismNet HARs.
We then enumerated the sequence-and-structure patterns of all

k-mers (k= 6) in these windows. For each position, the sequence
component was the nucleotide, while the structure component
was labeled as “U “for unpaired nucleotide, representing an
icSHAPE value ≥ 0.233 (0.233 is the median of all icSHAPE scores),
and “P” for paired with an icSHAPE value < 0.233. The similar k-
mers (at most one mismatch or shift for sequence, at most two
mismatches or shifts for structure) were combined to build the
sequence and structure integrative motif (Fig. 5a; Supplementary
information, Fig. S5b, c), resulting a sequence PWM of 4 × 6 matrix
(pij, where i= 1, 2, 3, 4 corresponding to A, C, G, U, and j is
site index, 1 ≤ j ≤ 6) and a structure PWM of 2 × 6 matrix (prj, where
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r= 1, 2 corresponding to U, P, and j is site index, 1 ≤ j ≤ 6).

X4
i¼1

pij ¼ 1

X2
r¼1

prj ¼ 1

The weight (W) of each integrative motif to represent the motif
proportion was defined by the k-mer frequency in target
integrative motif for all k-mers. We further used TOMTOM112 to
calculate the pairwise similarity of the motifs and combined
similar ones (P value < 0.05).112 If there were no enriched motifs in
the binding sites, the weights of motifs should be equal. For the
top 10 highest weight motifs of each RBP, we compared
the weight of each motif to 10% (i.e., assuming that the weights
of the 10 motifs are equal) to calculate the motif enrichment and
then filtered for the significantly enriched motifs (P value < 0.05,
Fisher’s exact test). All the motifs we called are shown in
Supplementary information, Table S6. In this way, we constructed
1–3 motifs for each RBP.

Motif comparison and scanning
We used TOMTOM to compare our integrative motifs from
PrismNet (only the sequence component of the motif) with other
motifs in the ATtRACT database. Then, we filtered out the motifs
with long length (> 10nt) and kept the ones with the most
significant Q value (with the requirement to be < 0.05) as the
corresponding motif to a PrismNet “integrative” motif. Specifically,
for IGF2BP1, as the ATtRACT database only contains one motif, we
still included this motif (AAGCACCCGUU) for further analysis
although the matching Q value is not significant (Fig. 5a).
For a sequence motif of a RBP from the ATtRACT database, we

used the FIMO tool from the MEME suite “fimo --verbosity 1 --text
SRSF1.motif HepG2_hg38_Transcriptome_icSAHPE.fa > SRSF1_mo-
tif_site.txt” to scan the whole transcriptome using the associated
PWM matrix for each motif and predicted a binding site for a motif
match.14,65 (Fig. 5a; Supplementary information, Fig. S5d). The ratio
of overlapped sites between the output of the scanning sites and
the binding sites from eCLIP results of the RBP was then used for
evaluating a given motif. To compare with motif scanning of the
integrative motifs, we limited the analysis only to those transcripts
that were covered by icSHAPE scores.
For a sequence-and-structure integrative motif, the motif

scanning was also performed as FIMO algorithm description with
the following modification (Fig. 5a; Supplementary information,
Fig. S5d). Again, we classified the structure of each nucleotide into
“paired” (denoted as P) and “unpaired” (denoted as U) according
to their icSHAPE score (P: icSHAPE score < 0.233, U: icSHAPE
score ≥ 0.233). A log-likelihood ratio score (R, log10 of the
likelihood ratio of motif existing on specific position) for each
integrative motif with respect to each position of sequence and
structure in transcripts was calculated:

R ¼ log10
Y6
j¼1

pij
a6
j¼1

prj

 !

pij is the probability of specific sequence nucleotide (i= 1, 2, 3, 4
corresponding to A, C, G, U) in position j. prj is the probability of
specific structure pattern (r= 1, 2, corresponding to U, P) in
position j.
To convert these scores into P values, six nucleotides sites

covered by icSHAPE scores was randomly sampled from the whole
transcriptome for 200,000 times and log-likelihood ratio scores of
these sites were calculated as the random distribution.P value is
then defined as the rank of R in the random distribution.

Integrative motif clustering
For all significant (i.e., P value < 0.05) sequence and structure
integrative motifs of the RBPs with available functional annota-
tions (splicing, stability, or translation) and an RNA binding
domain (RRM, KH domain, Zinc finger domain, and double-
stranded RNA binding domain, etc.),113 we calculated the
Euclidean distance between each pair of motif matrixes to
measure their similarity:

Euclidean distance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4
i¼1

X6
j¼1

p1ij � p2ij
� 	2

þ
X2
r¼1

X6
j¼1

p1rj � p2rj
� 	2vuut

We then used hierarchical clustering for motif clustering.

Conservation analysis of HARs
For each RBP, we used the sliding window strategy to identify
HARs in the binding sites, for sequence HARs and structure HARs
respectively. For each binding site, if the sequence and structure
HARs are overlapped, they will be classified into sequence and
structure combine groups (“Sequence & Structure”); otherwise,
they will be distributed into sequence-only (“Sequence only”) or
structure-only (“Structure only”) groups.
To quantify the sequence conservation of HARs, we calculated

the conservation score distribution by using the
PhastCon100 score114 and the PhyloP20way score114 for all HARs
for comparing against the distribution of the conservation score in
all transcripts (Fig. 6a; Supplementary information, Fig. S6a). We
also included the sequence conservation of the experimental RBP
CLIP sites as controls. Differences in sequence conservation scores
between HARs and all transcripts were assessed using one-sided
Student’s t-tests.

Enrichment analysis of common SNPs in HARs
To analyze the SNP density of HARs (Fig. 6b; Supplementary
information, Fig. S6b), we used the predefined common SNPs in
the dbSNP database,73 and we defined common SNPs in the 1000
Genomes Catalog as those single nucleotide variant sites with
major alternative allele frequency > 5%.74 In the whole transcrip-
tome, we identified 2,909,183 common SNPs from dbSNP and
428,569 common SNPs from the 1000 Genomes Catalog.
We counted the number of common SNPs positioned within

HARs. Then, for a background distribution, we randomly selected
the same number of regions from the whole transcriptome and
counted the numbers of common SNPs in these random regions.
This process was repeated for 1000 times. The enrichment of
common SNPs in HARs compared to the mean of random
distribution was calculated as

Enrichment ¼ Number of Common SNP in HARs
Average Number of Common SNP in random regions

The P value of the enrichment was estimated by the rank of
Number of Common SNP in HARs in the random distribution. The
enrichment of common SNPs in the experimental CLIP sites was
also calculated as a positive control. The P value of difference of
enrichment between different group HARs was calculated by one-
sided Student’s t-tests.

Enrichment analysis of rare SNVs in HARs
To measure the rare SNVs in HARs (Fig. 6c; Supplementary
information, Fig. S6c), we used dbSNP73 and 1000 Genomes
data.74 In the whole transcriptome, we identified 32,739,071 rare
SNVs from dbSNP by excluding all common SNPs, and 6,181,362
rare SNVs for 1000 Genomes as single nucleotide variant sites
with major alternative allele frequency values < 0.05%. As above,
we also randomly selected the same number of regions from the
whole transcriptome and counted the numbers of rare SNVs in
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these random regions. The enrichment (odds ratio) of rare SNVs
in HARs compared to common SNVs (as above) was calculated
as:

Odds ratio ¼
Number of Rare SNVs in HARs

Average Number of Rare SNVs in RandomRegions
Number of Common SNPs in HARs

Average Number of Common SNPs in RandomRegions

The P value of the enrichment was estimated using Fisher’s
exact test. The enrichment of rare SNVs in the experimental CLIP
sites was also calculated as positive control. The P value of
difference of enrichment (Odds ratio) between different group
HARs was calculated by one-sided Student’s t-tests.

Enrichment analysis of ClinVar variations in HARs
To analyze disease-associated variants in HARs (Fig. 6d), we used
the ClinVar database.83 We basically repeated the process in the
above two sections, but replaced common SNPs/rare SNVs
with ClinVar variants. The enrichment of ClinVar variants in
HARs comparing to the mean of random distribution was
calculated as:

Enrichment ¼ Number of ClinVar variants in HARs
Average Number of ClinVar variants in random regions

The P value of the enrichment was estimated by the rank of
Number of ClinVar variants in HARs in the random distribution.

Enrichment analysis of psychiatric disorder-associated mutations
in HARs
To analyze psychiatric disorder-associated mutations in HARs
(Fig. 6e, f), we used the datasets in two PsychENCODE Consortium
studies that generated a panel of mutations associated with
autism spectrum disorder (ASD), schizophrenia (SCZ), and bipolar
disorder (BD)).76,115 We repeated the analysis process in the above
sections, by using these psychiatric disorder-associated mutations.
The enrichment of psychiatric disorder-associated mutations in
HARs compared to the mean of a random distribution was
calculated as:

Enrichment ¼ Number of disorder-associated mutations in HARs
Avergae Number disorder-associated mutations in random regions

The P value of the enrichment was estimated by the rank of
Number of disorder-associated mutations in HARs in the random
distribution.

RiboSNitch discovery
To define a putative riboSNitch, we first identified all single
nucleotide variants (SNVs) with different alleles in any two human
cell lines, using the RNA-seq data of the icSHAPE DMSO
libraries.96,116 We quality controlled and mapped the sequencing
reads using icSHAPE-pipe. For each pair of cell lines, we called
genomic variants from the mapping results using Broad’s Genome
Analysis Toolkit (GATK).117

For a SNV site, we defined it as a putative riboSNitch if it has
different alleles in a pair of cell lines, and also has different RNA
structures (i.e., there is a structurally variable site in the local
region. See the section “Structurally variable site analysis” for the
definition of a structurally variable site) (Fig. 7a; Supplementary
information, Fig. S7a). All defined riboSNitches are presented in
Supplementary information, Table S7. The other SNVs with
different alleles but conserved structures between each pair of
cell lines (i.e., SNVs not in a structurally variable site) were defined
as variations of stable structure (VSSs).
We compared our list of riboSNitches with a dataset (Wan)

previously identified among human lymphoblastoid cell lines
(GM12878, GM12891, and GM12892),81 by intersecting the two
sets in each pair of cell lines (Supplementary information, Fig. S7b).

The enrichment (Odds ratio) of the riboSNitch overlapping was
calculated as:

Odds ratio ¼
Number of riboSNitches overlapped withWan

Number of riboSNitches not overlapped withWan
Number of SNVs overlapped withWan

Number of SNVs not overlapped withWan

The P value of the enrichment was estimated using Fisher’s
exact test.

Enrichment analysis of riboSNitches in dynamic RBP binding sites
To analyze the relationship between riboSNitches and RBP
binding (Fig. 7b), we first used PrismNet to predict
transcriptome-wide RBP binding sites of all RBPs in the six human
cell lines as described in the above section “Whole transcriptome
RBP binding prediction and evaluation”. For each pair of cell lines,
sliding windows with predicted binding probability ≥ 0.5 in both
cell lines were defined as predicted common binding sites, while
those with predicted binding probability ≥ 0.5 in only one cell line
were defined as dynamic binding sites.
For each pair of cell lines, we intersected the riboSNitches and

predicted dynamic binding sites and counted the number of
overlapping riboSNitches (Fig. 7a). The enrichment (Odds ratio) of
riboSNitches in dynamic binding regions compared to common
binding regions was calculated as:

Odds ratio ¼
Number of riboSNitches in dynamic binding sites

Number of riboSNitches not in dynamic binding sites
Number of riboSNitches in common binding sites

Number of riboSNitches not in common binding sites

The P value of the enrichment was estimated using Fisher’s
exact test.

Analysis of relationship between riboSNitches and human disease
To analyze the relationship between riboSNitches and disease, we
counted the number of riboSNitches being disease-associated
variants from the ClinVar database (Supplementary information,
Fig. S7c, left-bottom triangle and Table S7). As most of the
riboSNitches are in dynamic RBP binding sites, we also counted
the number of disease-associated riboSNitches located in dynamic
RBP binding sites (Supplementary information, Fig. S7c, up-right
triangle).
To analyze the potential role of riboSNitches in RBP binding and

disease (Fig. 7c), we calculated the enrichment (odds ratio) of
riboSNitchs in HARs associated with ClinVar variants, compared to
variations of stable structure (VSSs):

Odds ratio ¼
Number of riboSNitches associated with ClinVar variants in HARs

Number of riboSNitches not associated with ClinVar variants in HARs
number of VSSs associated with ClinVar variants in HARs

number of VSSs not associated with ClinVar variants in HARs

The P value of the enrichment was estimated using Fisher’s
exact test.

TARDBP CLIP data analysis
To obtain TARDBP binding profiles in K562 and HEK293 cells
(Supplementary information, Fig. S7e), we downloaded the CLIP
data from a previous study (K562: GSM2423707, GSM2423708.
HEK293:DRX012638, DRX012639).36 All sequenced reads were
mapped to the human transcriptome (hg38) using bowtie2 with
the following parameters (--local --non-deterministic –norc --local).
We used samtools to remove potential duplicate reads that
mapped to the same transcriptome location and used IGV for
visualization and analysis.118,119

DATA AVAILABILITY
The accession number for the icSHAPE sequencing data of all cell lines reported in
this paper is GSE145805. The scripts of PrismNet model architecture used in this
project are available from github (https://github.com/kuixu/PrismNet), The scripts of
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all downstream analysis used in this project are available from github (https://github.
com/huangwenze/PrismNet_analysis). A queryable service for RBP binding predic-
tions online of all PrismNet models is available from the website (http://prismnet.
zhanglab.net/).
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