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Abstract

Maternal stress, such as maternal obesity, can induce severe gestational disease and hormonal 

disorder which may disrupt fetal organ maturation and further cause endangered early or future 

health in offspring. During fetal development, glucocorticoids are essential for the maturation of 

organ systems. For instance, in clinical applications, glucocorticoids are commonly utilized to 

pregnant women with the risk of preterm delivery to reduce mortality of the newborns. However, 

exposure of excessive glucocorticoids at embryonic and fetal developmental stages can cause 

diseases such as cardiovascular disease and muscle atrophy in adulthood. Effects of excessive 

glucocorticoids on human health are well-recognized and extensively studied. Nonetheless, effects 

of these hormones on farm animal growth and development, particularly on prenatal muscle 

development, and postnatal growth, did not attract much attention until the last decade. Here, we 

provided a short review of the recent progress relating to the effect of glucocorticoids on prenatal 

skeletal muscle development and postnatal muscle growth as well as heart muscle development 

and cardiovascular disease during life course.
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INTRODUCTION

Early life events are critical to growth performance and health throughout the life course 

of an animal including human beings. Unfavorable maternal environmental changes are 
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associated with many types of abnormalities including cardiovascular disease, obesity, 

insulin resistance, and metabolic syndrome in offspring later life, which is known as 

the disease origins of adult disease or developmental programming (Barker et al., 1993; 

Friedrich, 2002; Boney et al., 2005). Developmental programming is defined that challenges 

during critical developmental windows cause deterministic consequences in developmental 

and health trajectory in later life. It is also called fetal programming since it occurs during 

embryonic and fetal development (Kwon and Kim, 2017). The study of fetal programming 

can be traced back to around a century ago (Cox et al., 2012), however, the concept was just 

defined by Dr. Barker about half century ago (Barker and Osmond, 1986). Since then, many 

studies in humans and animal models support the hypothesis that poor nutrition in utero, 

maternal stress (e.g., depression, anxiety, fatigue, toxic exposure), exogenously administered 

hormones (e.g., synthetic glucocorticoid, sGC), and other factors could change fetal 

structure, function, and metabolism, leading to a long-last effects on offspring throughout 

the whole life. Moreover, metabolic syndrome such as cardiovascular disease in humans and 

offspring growth performance in livestock are the mostly reported consequences of those 

adverse factors (Nathanielsz, 2006; Barker, 2007; Gicquel et al., 2008; Beauchamp et al., 

2015; Sand et al., 2019; Davies et al., 2021). Therefore, understanding of the underpinning 

mechanisms of fetal programming could provide cues to develop intervention strategies 

for poor postnatal growth performance in domestic animals and adult chronic diseases in 

humans caused by maternal stresses (Cox et al., 2012).

Glucocorticoids are the major stress hormones secreted by the adrenal gland in response 

to stress, which is regulated by the hypothalamic-pituitary-adrenal (HPA) axis (Gicquel et 

al., 2008). In the canonical signaling pathway, glucocorticoids function through binding 

glucocorticoid receptor (GR), which mainly localizes in the cytoplasm of cells and forms 

a protein complex including hsp90, hsp70, and p23 in the absence of the hormones. After 

binding with glucocorticoid, GR is dissociated from the complex and its nuclear localization 

signals are exposed. After GR is transported into nucleus, it regulates gene expression via 
direct binding with the glucocorticoid response element (GRE) of the targeted genes, or 

interacting with other transcriptional factors such as AP1, NF-κB, and STATs (Oakley and 

Cidlowski, 2013; Vitellius et al., 2018). Glucocorticoids play a very wide role in postnatal 

life including the regulation of homeostasis, growth, cell proliferation and differentiation, 

apoptosis, and metabolism (Fowden and Forhead, 2004; Grad and Picard, 2007; Cain 

and Cidlowski, 2015). However, glucocorticoids are also critically important in prenatal 

life in which these hormones are essential for the development and maturation of fetal 

organ systems such as respiratory system, neural system, endocrine system, gastrointestinal 

system, renal system, and muscle system (Agnew et al., 2018; Song et al., 2019a). A 

myriad of studies demonstrated that excessive endogenous glucocorticoids resulting from 

maternal stress or exogenous glucocorticoids due to antenatal treatment to reduce preterm 

delivery in pregnancy result in reduced birth weight, fetal growth restriction and adverse 

effects in adult life such as heart disease, metabolic syndrome, hypertension, and diabetes 

mellitus (Asztalos, 2012; Carson et al., 2016; Kemp et al., 2016; Agnew et al., 2018). In this 

short review, we mainly focused on discussing effects of glucocorticoids on striated muscle 

development and function including skeletal muscle and cardiac muscle. We first discussed 

the endogenous glucocorticoids synthesis and metabolism in fetuses. Then we discussed 
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effects of glucocorticoids on prenatal skeletal muscle development and postnatal muscle 

growth as well as prenatal heart muscle development and adult heart function. Lastly, we 

summarized the mechanism of glucocorticoids in the regulation of muscle reprogramming 

and provided some perspectives on future directions.

GLUCOCORTICOID SYNTHESIS AND METABOLISM IN THE FETUS

Regulation of fetal glucocorticoid synthesis and metabolism is a complex process, involving 

the HPA axis, the catalytic enzymes and the placenta. In humans, cortisol, one of the 

major forms of glucocorticoids peaks at 8–9 weeks of pregnancy, and then declines until 

undetectable at about 14 weeks of pregnancy (Parker et al., 1995; Goto et al., 2006). The 

serum cortisol levels stay low until the appearance of the surge in late gestation (Mesiano 

et al., 1993; Parker et al., 1995; Narasaka et al., 2001; Goto et al., 2006; Solano and Arck, 

2020). The first peak of serum cortisol level is corresponding to the expression of the 

HSD3B2, an enzyme that is responsible for the critical timing of cortisol synthesis early 

in gestation. The surge of serum cortisol in late gestation is a coordination of increased 

HSD3B2 expression, elevated fetal cortisol production, and maternal cortisol crossing the 

placenta (Parker et al., 1995; Narasaka et al., 2001; Busada and Cidlowski, 2017). Cortisol 

peak appears at earlier stage of pregnancy which is important to promote the implantation 

of embryo and the decidualization of the uterine wall, as well as suppresses the maternal 

immune rejection to embryo (Busada and Cidlowski, 2017), whereas the surge at late 

gestation of fetal life is vital to the maturation of lung and many other organ systems which 

is crucial to survive for a life after birth (Solano et al., 2016; Busada and Cidlowski, 2017).

In addition to glucocorticoid synthesis that determines the critical window of fetal 

glucocorticoid exposure, glucocorticoid metabolism controls gradients, or concentration 

of glucocorticoid in the fetus. Two enzymes 11β-hydroxysteroid dehydrogenase type 1 

(11β-HSD1) and 2 (11β-HSD2) play a primary role in glucocorticoid metabolism and are 

highly expressed in the uterus, placenta and fetal tissues (Solano et al., 2016; Sand et 

al., 2019). The enzyme 11β-HSD1 primarily converts the inactive form of glucocorticoid 

11-dehydrocorticosterone or cortisone to active form corticosterone in rodents or cortisol 

in human or livestock (Jamieson et al., 1995; Ricketts et al., 1998; Lamadé et al., 2021), 

while the 11β-HSD2 performs the opposite role as the 11β-HSD1 (Brown et al., 1993; 

McMullen et al., 2012; Chen et al., 2021). Interestingly, studies in mouse model showed 

that the 11β-HSD1 global depletion in dams did not influence fetal development, suggesting 

the role of 11β-HSD1 is not critical for normal fetal development (Kotelevtsev et al., 

1997). However, studies in a sheep model with inhibition of 11β-HSD1 indicated that 

regulation of local cortisol concentration was essential for fetal development (Brooks et 

al., 2015). These contradictory studies in different animal models suggest that further 

investigation of the function of 11β-HSD1 is warranted in fetal development. In contrast, 

the enzyme 11β-HSD2 plays an essential role in controlling the mobilization of high 

gradient of maternal glucocorticoid into low concentration of serum glucocorticoid in 

the fetus (Krozowski et al., 1995; Meyer and Novak, 2021) (Figure 1). This gradient of 

glucocorticoid concentration from maternal to fetal serum allows the fetus not to be exposed 

to high maternal glucocorticoid level (McMullen et al., 2012). Studies showed that the 

defect of the 11β-HSD2 in mice usually resulted in the exposure of the fetuses to high 
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level of corticosterone (another major form of glucocorticoids) in utero (Kotelevtsev et al., 

1999), and also the chronic maternal stress such as poor maternal nutrition could facilitate 

maternal serum corticosterone to overcome the 11β-HSD2 barrier and elevate the fetal 

serum corticosterone level in a rat model (Bingham et al., 2013). The consequences of the 

elevated fetal corticosterone levels can lead to retarded fetal and placenta growth as well as 

reprogramming of the fetus to predispose to high risk of metabolic syndrome throughout the 

life in animal models and in humans (Ferrari et al., 1996; Bingham et al., 2013; Reynolds 

et al., 2013). In addition, the change of the activity of the 11β-HSD isoforms 1 and 2 in the 

placenta can also cause the abnormal exposure of maternal glucocorticoids and thereby lead 

to abnormal gene expression and altered patterns of growth and development (McMullen et 

al., 2012). For example, treatment of 11βHSD2 inhibitor carbenoxolone on pregnant dams in 

rats had the similar effect with maternal low protein diet; both treatments led to the reduced 

birth weight, and hypertension in offspring (Langley-Evans, 1997). The life-long trajectory 

of muscle growth and development could be one of the consequences regulated by antenatal 

glucocorticoids exposure (Jobe, 2020).

EFFECTS OF GESTATIONAL GLUCOCORTICOID ON PRENATAL MUSCLE 

DEVELOPMENT AND POSTNATAL MUSCLE GROWTH

Skeletal muscle is formed during embryonic development. The formation of muscle cells 

or muscle fibers (also known as myogenesis) is a complex process and tightly regulated by 

myogenic regulatory factors (Myf5, MyoD, Myogenin, Mrf4), and many other genes (e.g., 

paired box transcription factors 3 (Pax3) and 7 (Pax7), Meox1/2, Foxc1/2) and signaling 

pathways (e.g., Wnt, FGF, IGF, HGF, BMP, Shh, Notch, p38 MAPK, NFAT) (detailed 

information can be referred to Bryson-Richardson and Currie, 2008; Eng et al., 2013; 

Chal and Pourquié, 2017; Asfour et al., 2018). There are two stages of myogenesis during 

prenatal muscle development, primary myogenesis, and secondary myogenesis. In livestock, 

for example, in swine fetuses, primary myogenesis occurs within about 38 days of gestation, 

and the secondary myogenesis takes place between 46 and 95 days of gestation (Wigmore 

and Stickland, 1983). During the primary myogenesis, primary muscle fibers are formed 

at early gestation stage which account for about 20% of total muscle fibers formed during 

prenatal myogenesis. Secondary muscle fibers are formed using primary muscle fibers as 

templates at fetal development stage. Secondary muscle fibers take up ~80% of total muscle 

fibers (Yan et al., 2013b). It is widely accepted that muscle fiber numbers are fixed after 

birth and postnatal muscle growth is mainly dependent on hypertrophy of existing muscle 

fibers (Yan et al., 2013b; Reynolds et al., 2019). In this regards, reduced muscle fiber 

number during prenatal muscle development will negatively impact postnatal muscle growth 

performance.

The critical time window that affects the number of muscle fibers is during the fetal 

developmental stage because the majority of muscle fibers are formed during this stage 

(Allen et al., 1999; Yan et al., 2013b). Numerous evidence have shown that environmental 

changes in uterus, particularly, poor maternal nutrition influences prenatal skeletal muscle 

development and postnatal muscle growth in different species because skeletal muscle has 

less priority for nutrient partitioning by comparing to other organs like brain, heart, liver, 
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gut, and placenta (Zhu et al., 2006; Du et al., 2010). Thus, skeletal muscle development is 

especially vulnerable to nutrient availability (Reynolds et al., 2019). Studies in young and 

old sheep demonstrated that both maternal over- and under-nutrition resulted in reduced 

secondary muscle fiber numbers and an increase in the secondary to primary fiber ratio in 

late gestation fetal lambs as well as reduced muscle mass and muscle fiber cross-section area 

(Zhu et al., 2004, 2006; Fahey et al., 2005; Daniel et al., 2007; Huang et al., 2010; Yan et 

al., 2013a; Reed et al., 2014; Hoffman et al., 2016; Gauvin et al., 2020). Studies in pigs also 

showed that nutrition was a major factor for birthweight and muscle mass (Karunaratne et 

al., 2005; Jia et al., 2016). The larger offspring resulting from sufficient nutrition had more 

muscle fibers (Dwyer et al., 1994; Rehfeldt and Kuhn, 2006; Musser et al., 2007; Tilley et 

al., 2007). Meanwhile, studies in rodents and guinea-pigs also showed the similar effects 

of poor maternal nutrition on muscle fiber number from young offspring (Dwyer et al., 

1995). Several comprehensive reviews have summarized consequences of maternal nutrition 

on skeletal muscle development which will not be detailed here (Brameld and Daniel, 2008; 

Du et al., 2010; Rehfeldt et al., 2011).

The mechanisms of poor maternal nutrition in fetal development have been extensively 

studied. Some studies in sheep reported that both maternal nutrition restriction and maternal 

over-nutrition during early- to mid-gestation elevated fetal and newborn plasma cortisol 

concentrations (Smith et al., 2018; Ghnenis et al., 2021). Although glucocorticoid is a 

well-known catabolic protein acting on skeletal muscle, only few studies reported the effect 

of glucocorticoid exposure on fetal muscle growth and development. One study using rats 

as model showed that in utero dexamethasone (a synthetic glucocorticoid) exposure reduced 

fetal skeletal muscle mass (Gokulakrishnan et al., 2012). In this study, the author concluded 

that fetal exposure to dexamethasone reduced fetal growth independent of its effects on 

maternal food intake, but maternal food intake was additive, while other reports in rats 

indicated that the retarded fetal growth due to exposure to dexamethasone administration 

was because of the secondary impact of decreased maternal food intake (Woods and Weeks, 

2005; Woods, 2006). Later, a follow-up study from the same group in rats found that 

precocious exposure to dexamethasone in utero led to the relatively lower number of Pax7+ 

muscle progenitor cells but not distribution of these cells. The Pax7 induces the expression 

of myogenic regulatory factor genes Myf5 and MyoD (Olguín and Pisconti, 2012), and starts 

to express in dermomyotome of mature somites. The Pax7+ cells in mouse embryonic day 

12.5 restrictedly differentiate to lineage of muscle cell (Lepper and Fan, 2010). After birth, 

Pax7+ cells can also be activated and fused themselves to adjacent myofiber to promote 

hypertrophy or regeneration (Chal and Pourquié, 2017). This study concluded that the effect 

of in utero dexamethasone exposure on fetal myonuclear accretion was independent of mild 

restriction of maternal food intake (Gokulakrishnan et al., 2017). These findings demonstrate 

how gestational glucocorticoid contributes to postnatal muscle growth because satellite 

cells are important to postnatal muscle fiber hypertrophy. A recent study in pregnant ewes 

infused with cortisol indicated that chronic increases in maternal cortisol concentrations, as 

in maternal stress, altered gene expression that is associated with mitochondrial function 

and metabolism in skeletal muscle (Joseph et al., 2020). They did not observe significant 

changes of insulin signaling which is a potential target in skeletal muscle of in utero 
glucocorticoids exposure (Jellyman et al., 2012), but significantly changed free radicals 

Liu et al. Page 5

Front Anim Sci. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and cell apoptotic pathways (Joseph et al., 2020). Another study in sheep showed that 

the gene expression of the myosin heavy chain isoform IIX, was upregulated by cortisol 

infusion (Davies et al., 2021). This finding implies that gestational glucocorticoids may 

also affect the fiber type of fetal muscle in addition to fiber number (Gicquel et al., 2008). 

They also observed that in mitochondrial metabolism, mitochondrial content, biogenesis 

markers, substrate-specific respiration rates, abundance of electron transfer system complex 

I and adenine nucleotide translocator in skeletal muscle were increased in a muscle-specific 

manner when sheep fetuses were infused with cortisol during gestation (Davies et al., 2021). 

Although studies have been done extensively in adult muscle development and growth, few 

studies have been done in regard to the effects of gestational glucocorticoid on fetal muscle 

development. Therefore, further investigation will be guaranteed in the field in future.

EFFECTS OF PRENATAL GLUCOCORTICOIDS ON HEART MUSCLE 

DEVELOPMENT AND ADULT HEART DISEASE

It is well-known that glucocorticoids are critical for the maturation of organs and tissues 

before birth and elevated glucocorticoid level at late gestation is essential to prepare for birth 

(Schwab et al., 2012; Rog-Zielinska et al., 2013a; Fowden et al., 2016). However, a handful 

of evidence have shown that excessive prenatal glucocorticoid exposure results in long-term 

adverse cardiovascular diseases (Fowden et al., 2016). Clinically, antenatal glucocorticoid 

therapy is commonly used in women who have the risk of preterm birth during pregnancy. 

Glucocorticoid treatment for preterm birth reduces respiratory distress syndrome, cerebral 

hemorrhage and necrotising enterocolitis as well as incidence of neonatal death (Fowden 

et al., 1998; Agnew et al., 2018; McGoldrick et al., 2020). Unfortunately, about half of 

women who had the antenatal glucocorticoid treatment did not go preterm, and conversely, 

they deliver babies at or near term (Razaz et al., 2015; Kemp et al., 2016; MakhiJaffet 

al., 2016; Grzeskowiak et al., 2018). This will cause potential exposure of babies to 

excessive synthetic glucocorticoids in utero, and thus result in potential short- or long-term 

adverse effects associated with cardiovascular function. Researches have been conducted to 

understand how excessive prenatal glucocorticoids (endogenous or exogenous) reprogram 

heart muscle and impact cardiovascular health during life course.

During normal development, the heart experiences extensive morphological and geometrical 

changes shortly before birth and continuously after birth through cardiomyocyte hyperplasia 

and hypertrophy in adaptation to increased mechanical and functional needs. Glucocorticoid 

is a ligand of GR, a nuclear receptor that recognizes and binds to the GREs of the 

targeted DNA (Oakley and Cidlowski, 2013). Activated GR in mouse fetal heart promoted 

cardiac morphological and geometrical changes (Rog-Zielinska et al., 2013a,b, 2015). The 

GR null mice developed immature and small heart that had both impaired systolic and 

diastolic function similar to the preterm heart (Rog-Zielinska et al., 2013a,b). Interestingly, 

another study with specific depletion of GR in only mouse heart and vascular smooth 

muscle showed that mice exhibited systolic dysfunction in late gestation with abnormal 

sarcomeric ultrastructure (Rog-Zielinska et al., 2013b) similar to null GR mice. However, 

GR specific depleted mice had a normal size heart, suggesting glucocorticoids regulate heart 

development and function in other different ways in addition to GR-regulated structural and 
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functional changes. Researches also showed that excessive glucocorticoids due to antenatal 

synthetic glucocorticoid (dexamethasone) treatment altered feto-placental vasculature in 

human (Elfayomy and Almasry, 2014) which was supported by a subsequent study in the 

Hsd11b2 knockout mice. These mice had antenatal glucocorticoid excess and intrauterine 

growth restriction (IUGR) and showed immature heart development and cardiac dysfunction 

in late gestation. Rescue of feto-placental vasculature restored cardiac function (Wyrwoll 

et al., 2016). Impact of glucocorticoids on fetal cardiomyocyte maturation has also been 

investigated with in vitro cultures. Mouse fetal cardiomyocytes treated with corticosterone or 

dexamethasone showed early maturation structurally and functionally (Rog-Zielinska et al., 

2015). Studies in mice showed that Fetal heart development and maturation were impacted 

by mitochondrial metabolic capacity (Lai et al., 2008). Glucocorticoids can regulate fetal 

heart development and maturation through induction of PGC-1a, a key regulator for cardiac 

mitochondrial function through GR (Rog-Zielinska et al., 2015). Further, glucocorticoids 

can promote more active form of thyroid hormone T3 converted from T4 through inducing 

deiodinase 1 (D1) and D2 expression (Forhead and Fowden, 2014). Both glucocorticoids and 

thyroids are important hormones for fetal heart development and maturation by switching 

myofilament protein isoforms and increasing atrial natriuretic peptide (ANP) (Van Tuyl et 

al., 2004; Chattergoon et al., 2012). According to this mechanism, elevated glucocorticoid 

level at early gestation stage before the HPA axis starts to produce fetal thyroid hormones 

may have a compromised maturation of fetal organs by glucocorticoid along, which may 

impact more rodent fetal development than in humans or in sheep because thyroid hormones 

are synthesized earlier at mid-gestation in humans or sheep than in rodents at late gestation 

(Forhead and Fowden, 2014). This mechanism could be another important consideration 

for antenatal glucocorticoid therapy with a question about whether thyroid hormone should 

be administered with synthetic glucocorticoids or not. In addition, transient hyperoxia in 

neonatal rodent causes reduced cell number and increased cell hypertrophy which leads 

to a high risk for hypertrophic cardiomyopathy in adult life and vulnerability to pressure 

overload (Bertagnolli et al., 2014; Puente et al., 2014). Studies showed that glucocorticoids 

played a role in this process. Administration of dexamethasone to neonatal rats reduced 

cardiomyocyte number but increased cardiomyocyte hypertrophy (Gay et al., 2015).

The relationship between early and/or excessive exposure to glucocorticoid during 

pregnancy and impact of life course on cardiovascular disease is well-recognized. Also 

glucocorticoid is a widely accepted gatekeeper for the thrifty hypothesis of the fetal origins 

of diseases (Seckl and Holmes, 2007; Fowden et al., 2016). However, precise molecular 

and cellular mechanisms by which excessive glucocorticoid-induced cardiac remodeling 

and functional change in fetal development and its effects on cardiovascular disease later 

in life need be further explored. More information gained from the mechanistic studies 

will also help establish new antenatal glucocorticoid treatment protocol regarding optimal 

formulation, timing of dosage and efficacy at different gestational stages.
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POTENTIAL MECHANISMS OF GLUCOCORTICOIDS IN FETAL MUSCLE 

DEVELOPMENT

Fetal glucocorticoid level change occurs in several different ways. First of all, endogenous 

glucocorticoids need overcome the placental barrier through 11βHSD2 expressed on the 

placenta from the mother to the fetus (Chapman et al., 2013). However, studies showed that 

maternal stress in guinea pigs resulted in elevated level of cortisol in fetal serum, which 

subsequently caused fetal reprogramming including muscle formation and development 

(Dauprat et al., 1984) (Figure 1). Due to the low affinity of placental 11βHSD2 to 

synthetic glucocorticoid (sGC), sGC can readily cross the placenta to increase fetal serum 

glucocorticoid to have direct effect on fetal organs (McCabe et al., 2001). Secondly, 

glucocorticoids can play a direct role in regulating placental function (Figure 1). For 

example, both sGC and endogenous glucocorticoids promote expression and release of 

corticotropin-releasing hormone (CRH) from the placenta. Subsequently, CRH triggers both 

fetal and maternal HPA axis in humans (Torricelli et al., 2011). Further, this mechanism 

may differ for some species that do not produce CRH in placenta, which explains species 

differences in response to prenatal exposure to endogenous or exogenous glucocorticoids 

(Moisiadis and Matthews, 2014). The third action of glucocorticoids on placenta is placental 

growth restriction and altered placental vascularization and structure (Braun et al., 2013). 

These changes due to maternal stress alter fetal serum glucocorticoid level, and thus elicit 

many molecular and cellular processes related to cell growth and apoptosis, metabolism, 

inflammation, signal transduction, and transport (Wang et al., 2004) in fetal organ or tissue 

development including muscles. For example, one of the glucocorticoid targeted genes, 

tripartite motif containing 63 (Trim63), which encodes a E3 ubiquitin ligase muscle RING 

finger 1 (MuRF1), were upregulated in muscle atrophy (Waddell et al., 2008), implying that 

MuRF1 could be a mediator in fetal programming controlled by glucocorticoid.

Epigenetics is increasingly accepted as a potential mechanism of glucocorticoid action on 

fetal development through the regulation of gene expression (Moisiadis and Matthews, 

2014).

Over the past decades, more and more evidence show that epigenetics regulates 

reprogramming of fetal organ systems such as cardiovascular system. Expression of a 

handful of genes (e.g., Nr3c1/2, Crh, Pomc, and Hsd11b2) in regulating HPA axis can be 

regulated through DNA methylation and histone modification by glucocorticoids (Newell-

Price, 2003; Alikhani-Koopaei et al., 2004; Weaver et al., 2004; Mueller and Bale, 2008; 

De Filippis et al., 2013; Ferreira et al., 2021). DNA methylation is critical for vertebrate 

heart development and maturation through a number of processes such as gametogenesis 

and hematopoiesis (Patterson et al., 2010; Smith and Meissner, 2013; Gilsbach et al., 2014; 

Martinez et al., 2015). For an instance, DNA methylation inhibitor 5-AZA suppressed 

the regulation of dexamethasone in binucleation at day 4 postnatally and proliferation 

at day 7 postnatally, resulting in increased cardiomyocyte number at the heart of day 

14 postnatally. This study suggested the relationship between glucocorticoids and DNA 

methylation in muscle cell proliferation and differentiation in a developing rat heart (Gay et 

al., 2015). Another study in rats found that maternal stress like maternal hypoxia reduced 
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GR expression through DNA methylation and 5-AZA treatment reversed hypoxia-induced 

promotor methylation and restored GR expression (Xiong et al., 2016). Subsequent study 

from the same group found that DNA methylation bridged prenatal hypoxia and epigenetic 

regulation of GR expression in adult offspring in rats (Lv et al., 2019; Song et al., 2019b). 

In addition to DNA methylation, glucocorticoids can also regulate histone modifications 

and miRNAs. Increasing evidence show that miRNAs regulate generation of glucocorticoids 

in adrenal gland and in contrast, glucocorticoids also regulate cell survival, proliferation, 

and function partially through regulation of miRNA expression (Clayton et al., 2018). For 

example, in humans, miRNA-30c-5p and miRNA-125b-5p regulated expression of genes 

involved in cardiomyogenesis or cardiac function via glucocorticoid-mediated signaling 

pathway (Wang et al., 2014).

In addition to epigenetic regulation, glucocorticoids also play a role in the regulation of 

muscle metabolism. As an energy consuming tissue, striated muscle particularly requires 

the normal mitochondrial activity and glucose metabolism (Figure 1). The gestational 

glucocorticoids level in sheep was found to be closely correlated with the increase in 

mitochondrial oxidative phosphorylation capacity of skeletal muscle (Davies et al., 2020). 

Gestational exposure of glucocorticoids led to increased mitochondrial content, biogenesis 

markers, substrate-specific respiration rates, and abundance of electron transfer system 

complex I and adenine nucleotide translocator in a muscle-specific manner (Davies et 

al., 2021). Adverse maternal environment not only impacted the β-cell development and 

growth in fetal pancreas (Gicquel et al., 2008), also altered the response to insulin in 

other organs including cardiac and skeletal muscle through the mediation of glucocorticoids 

(Norris et al., 2011; Blanco et al., 2014; Ferreira et al., 2021). Muscle normally contributes 

around 75% of the post-prandial glucose utilization which depends on the embedding 

of glucose transporters 1 (GLUT1) and 4 (GLUT4) into membrane of myocytes in an 

insulin-sensitive manner (dos Santos et al., 2012; Blanco et al., 2014; Kondash et al., 

2020). In both skeletal and cardiac muscle, expression of GLUT1 and GLUT4 was elevated 

after dexamethasone treatment in utero (Meyer and Zhang, 2007; Wyrwoll et al., 2008; 

Jellyman et al., 2012; Blanco et al., 2014), implying that the glucose metabolism of fetal 

muscle is impacted by glucocorticoids. However, another research in rats suggested that 

dexamethasone exposure indirectly restricted the glucose availability of fetus, because they 

found the glucose transport to the fetus had no significant change but glucose utilization 

of maternal tissues was competitively increased (Norris et al., 2011). Moreover, calcium-

handling genes (Meyer and Zhang, 2007; Agnew et al., 2019), oxidative stress related 

genes (Joseph et al., 2020), the genes Mstn (Jia et al., 2016), Pik3r1 (Kuo et al., 2012), 

Trim63 (Waddell et al., 2008), Bmp4, Tbx3, Acadm, and Nkx2-6 (Peng et al., 2018), 

were all found to be regulated by altered glucocorticoid level during fetal programming. 

Among them, gene Pln which encodes a protein regulates the activity of cardiac muscle 

sarcoplasmic reticulum Ca2+-ATPase (Kosmidis et al., 2015), Pik3r1, which mediates the 

glucose metabolism in response to insulin in myotubes (Kuo et al., 2012), and Trim63 which 

is associated with skeletal muscle atrophy (Waddell et al., 2008) have been proved to contain 

glucocorticoid response elements. Some other genes, such as Mstn (Jia et al., 2016), Bmp4, 

Tbx3, Acadm, and Nkx2-6 (Peng et al., 2018) are controlled by glucocorticoid through 

epigenetic modifications.
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PERSPECTIVES AND FUTURE DIRECTIONS

Numerous evidence reported in human and livestock as well as animal models suggested 

that glucocorticoids are key mediators and gatekeeper in fetal programming. The altered 

gestational glucocorticoid levels induced by adverse maternal environment reprogram the 

development, growth, and function of fetal skeletal and cardiac muscle through altered 

HPA axis. At the molecular and cellular level, glucocorticoid action is involved in a 

complex signaling network including epigenetic regulation, mitochondrial activity, glucose 

metabolism, cell cyclin, and differentiation. However, the molecular mechanism of the life-

course or even trans-generational effect in myocytes controlled by aberrant glucocorticoid 

level is far from being fully understood. Which co-activators of glucocorticoid receptor 

participate in the regulation of fetal programming remains to be defined. Regulation of 

posttranscriptional process in fetal programming has not been well-studied yet. A lot of 

work still need to be done in future studies. Understanding of these fundamental questions 

would help develop intervention strategies to prevent adverse offspring outcomes. Targeting 

to glucocorticoids and their downstream molecules may provide specific intervention 

methods to improve farm animal production and performance as well as human health.

FUNDING

This work was supported by the NIH HD101870, Wisconsin Alumni Research Foundation (AAH4884), University 
of Wisconsin Foundation (AAH5964), USDA-NIFA Hatch project (WIS04005), and USDA-NIFA 2014-01982.

REFERENCES

Agnew EJ, Garcia-Burgos A, Richardson RV, Manos H, Thomson AJW, Sooy K, et al. (2019). 
Antenatal dexamethasone treatment transiently alters diastolic function in the mouse fetal heart. J. 
Endocrinol 241, 279–292. doi: 10.1530/JOE-18-0666 [PubMed: 31013474] 

Agnew EJ, Ivy JR, Stock SJ, and Chapman KE (2018). Glucocorticoids, antenatal corticosteroid 
therapy and fetal heart maturation. J. Mol. Endocrinol 61, R61–R73. doi: 10.1530/JME-18-0077 
[PubMed: 29720513] 

Alikhani-Koopaei R, Fouladkou F, Frey FJ, and Frey BM (2004). Epigenetic regulation of 11 beta-
hydroxysteroid dehydrogenase type 2 expression. J. Clin. Invest 114, 1146–1157. doi: 10.1172/
JCI21647 [PubMed: 15489962] 

Allen DL, Roy RR, and Edgerton VR (1999). Myonuclear domains in muscle adaptation and 
disease. Muscle Nerve 22, 1350–1360. doi: 10.1002/(SICI)1097-4598(199910)22:10<1350::AID-
MUS3>3.0.CO;2-8 [PubMed: 10487900] 

Asfour HA, Allouh MZ, and Said RS (2018). Myogenic regulatory factors: The orchestrators 
of myogenesis after 30 years of discovery. Exp. Biol. Med 243, 118–128. doi: 
10.1177/1535370217749494

Asztalos E (2012). Antenatal corticosteroids: a risk factor for the development of chronic disease. J. 
Nutr. Metab 2012:930591. doi: 10.1155/2012/930591 [PubMed: 22523677] 

Barker DJP (2007). The origins of the developmental origins theory. J. Intern. Med 261, 412–417. doi: 
10.1111/j.1365-2796.2007.01809.x [PubMed: 17444880] 

Barker DJP, Godfrey KM, Gluckman PD, Harding JE, Owens JA, and Robinson JS 
(1993). Fetal nutrition and cardiovascular disease in adult life. Lancet 341, 938–941. doi: 
10.1016/0140-6736(93)91224-A [PubMed: 8096277] 

Barker DJP, and Osmond C (1986). Infant mortality, childhood nutrition, and ischaemic heart disease 
in england and wales. Lancet 327, 1077–1081. doi: 10.1016/S0140-6736(86)91340-1

Liu et al. Page 10

Front Anim Sci. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Beauchamp B, Thrush AB, Quizi J, Antoun G, McIntosh N, Al-Dirbashi OY, et al. (2015). 
Undernutrition during pregnancy in mice leads to dysfunctional cardiac muscle respiration in adult 
offspring. Biosci. Rep 35, 1–10. doi: 10.1042/BSR20150007

Bertagnolli M, Huyard F, Cloutier A, Anstey Z, Huot-Marchand JÉ, Fallaha C, et al. (2014). 
Transient neonatal high oxygen exposure leads to early adult cardiac dysfunction, remodeling, 
and activation of the Renin-Angiotensin system. Hypertension 63, 143–150. doi: 10.1161/
HYPERTENSIONAHA.113.01760 [PubMed: 24166752] 

Bingham BC, Sheela Rani CS, Frazer A, Strong R, and Morilak DA (2013). Exogenous prenatal 
corticosterone exposure mimics the effects of prenatal stress on adult brain stress response 
systems and fear extinction behavior. Psychoneuroendocrinology 38, 2746–2757. doi: 10.1016/
j.psyneuen.2013.07.003 [PubMed: 23937971] 

Blanco CL, Moreira AG, McGill-Vargas LL, Anzueto DG, Nathanielsz P, and Musi N (2014). 
Antenatal corticosteroids alter insulin signaling pathways in fetal baboon skeletal muscle. J. 
Endocrinol 221, 253–260. doi: 10.1530/JOE-13-0504 [PubMed: 24756099] 

Boney CM, Verma A, Tucker R, and Vohr BR (2005). Metabolic syndrome in childhood: Association 
with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 115, e290–e296. 
doi: 10.1542/peds.2004-1808 [PubMed: 15741354] 

Brameld JM, and Daniel ZCTR (2008). In utero effects on livestock muscle development and body 
composition. Aust. J. Exp. Agric 48, 921–929. doi: 10.1071/EA08017

Braun T, Challis JR, Newnham JP, and Sloboda DM (2013). Early-life glucocorticoid exposure: the 
hypothalamic-pituitary-adrenal axis, placental function, and long-term disease risk. Endocr. Rev 
34, 885–916. doi: 10.1210/er.2013-1012 [PubMed: 23970762] 

Brooks K, Burns G, and Spencer TE (2015). Biological roles of hydroxysteroid (11-Beta) 
Dehydrogenase 1 (HSD11B1), HSD11B2, and glucocorticoid receptor (NR3C1) in sheep 
conceptus elongation. Biol. Reprod 93:38. doi: 10.1095/biolreprod.115.130757 [PubMed: 
26085523] 

Brown RW, Chapman KE, Edwards CR, and Seckl JR (1993). Human placental 11 beta-
hydroxysteroid dehydrogenase: evidence for and partial purification of a distinct NAD-dependent 
isoform. Endocrinology 132, 2614–2621. doi: 10.1210/endo.132.6.8504762 [PubMed: 8504762] 

Bryson-Richardson RJ, and Currie PD (2008). The genetics of vertebrate myogenesis. Nat. Rev. Genet 
9, 632–646. doi: 10.1038/nrg2369 [PubMed: 18636072] 

Busada JT, and Cidlowski JA (2017). Mechanisms of glucocorticoid action during development. Curr. 
Top. Dev. Biol 125, 147–170. doi: 10.1016/bs.ctdb.2016.12.004 [PubMed: 28527570] 

Cain DW, and Cidlowski JA (2015). Specificity and sensitivity of glucocorticoid signaling in 
health and disease. Best Pract. Res. Clin. Endocrinol. Metab 29, 545–556. doi: 10.1016/
j.beem.2015.04.007 [PubMed: 26303082] 

Carson R, Monaghan-Nichols AP, DeFranco DB, and Rudine AC (2016). Effects of antenatal 
glucocorticoids on the developing brain. Steroids 114, 25–32. doi: 10.1016/j.steroids.2016.05.012 
[PubMed: 27343976] 

Chal J, and Pourquié O (2017). Making muscle: skeletal myogenesis in vivo and in vitro. Dev. 144, 
2104–2122. doi: 10.1242/dev.151035

Chapman K, Holmes M, and Seckl J (2013). 11β-hydroxysteroid dehydrogenases: intracellular 
gate-keepers of tissue glucocorticoid action. Physiol. Rev 93, 1139–1206. doi: 10.1152/
physrev.00020.2012 [PubMed: 23899562] 

Chattergoon NN, Giraud GD, Louey S, Stork P, Fowden AL, and Thornburg KL (2012). 
Thyroid hormone drives fetal cardiomyocyte maturation. FASEB J. 26, 397–408. doi: 10.1096/
fj.10-179895 [PubMed: 21974928] 

Chen Y, Xia X, Fang M, Chen G, Cao J, Qu H, et al. (2021). Maternally derived low glucocorticoid 
mediates adrenal developmental programming alteration in offspring induced by dexamethasone. 
Sci. Total Environ 797:149084. doi: 10.1016/j.scitotenv.2021.149084 [PubMed: 34303245] 

Clayton SA, Jones SW, Kurowska-Stolarska M, and Clark AR (2018). The role of microRNAs in 
glucocorticoid action. J. Biol. Chem 293, 1865–1874. doi: 10.1074/jbc.R117.000366 [PubMed: 
29301941] 

Liu et al. Page 11

Front Anim Sci. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cox LA, Glenn JP, Spradling KD, Nijland MJ, Garcia R, Nathanielsz PW, et al. (2012). A genome 
resource to address mechanisms of developmental programming: Determination of the fetal sheep 
heart transcriptome. J. Physiol 590, 2873–2884. doi: 10.1113/jphysiol.2011.222398 [PubMed: 
22508961] 

Daniel ZCTR, Brameld JM, Craigon J, Scollan ND, and Buttery PJ (2007). Effect of maternal dietary 
restriction during pregnancy on lamb carcass characteristics and muscle fiber composition. J. 
Anim. Sci 85, 1565–1576. doi: 10.2527/jas.2006-743 [PubMed: 17296773] 

Dauprat P, Monin G, Dalle M, and Delost P (1984). The effects of psychosomatic stress at the end of 
pregnancy on maternal and fetal plasma cortisol levels and liver glycogen in guinea-pigs. Reprod. 
Nutr. Dev 24, 45–51. doi: 10.1051/rnd:19840105 [PubMed: 6709956] 

Davies KL, Camm EJ, Atkinson EV, Lopez T, Forhead AJ, Murray AJ, et al. (2020). Development and 
thyroid hormone dependence of skeletal muscle mitochondrial function towards birth. J. Physiol 
598, 2453–2468. doi: 10.1113/JP279194 [PubMed: 32087026] 

Davies KL, Camm EJ, Smith DJ, Vaughan OR, Forhead AJ, Murray AJ, et al. (2021). Glucocorticoid 
maturation of mitochondrial respiratory capacity in skeletal muscle before birth. J. Endocrinol 251, 
53–68. doi: 10.1530/JOE-21-0171 [PubMed: 34321363] 

De Filippis B, Ricceri L, Fuso A, and Laviola G (2013). Neonatal exposure to low dose corticosterone 
persistently modulates hippocampal mineralocorticoid receptor expression and improves 
locomotor/exploratory behaviour in a mouse model of Rett syndrome. Neuropharmacology 68, 
174–183. doi: 10.1016/j.neuropharm.2012.05.048 [PubMed: 22709945] 

dos Santos JM, Benite-Ribeiro SA, Queiroz G, and Duarte JA (2012). The effect of age on glucose 
uptake and GLUT1 and GLUT4 expression in rat skeletal muscle. Cell Biochem. Funct 30, 191–
197. doi: 10.1002/cbf.1834 [PubMed: 22125125] 

Du M, Tong J, Zhao J, Underwood KR, Zhu M, Ford SP, et al. (2010). Fetal programming of skeletal 
muscle development in ruminant animals. J. Anim. Sci 88:2311. doi: 10.2527/jas.2009-2311 
[PubMed: 20348374] 

Dwyer CM, Madgwick AJA, Ward SS, and Stickland NC (1995). Effect of maternal undernutrition 
in early gestation on the development of fetal myofibres in the guinea-pig. Reprod. Fertil. Dev 7, 
1285–1292. doi: 10.1071/RD9951285 [PubMed: 8848601] 

Dwyer CM, Stickland NC, and Fletcher JM (1994). The influence of maternal nutrition on muscle 
fiber number development in the porcine fetus and on subsequent postnatal growth. J. Anim. Sci 
72, 911–917. doi: 10.2527/1994.724911x [PubMed: 8014156] 

Elfayomy AK, and Almasry SM (2014). Effects of a single course versus repeated courses of antenatal 
corticosteroids on fetal growth, placental morphometry and the differential regulation of vascular 
endothelial growth factor. J. Obstet. Gynaecol. Res 40, 2135–2145. doi: 10.1111/jog.12466 
[PubMed: 25163747] 

Eng D, Ma H-Y, Gross MK, and Kioussi C (2013). Gene Networks during Skeletal Myogenesis. ISRN 
Dev. Biol 2013, 1–8. doi: 10.1155/2013/348704

Fahey AJ, Brameld JM, Parr T, and Buttery PJ (2005). The effect of maternal undernutrition before 
muscle differentiation on the muscle fiber development of the newborn lamb. J. Anim. Sci 83, 
2564–2571. doi: 10.2527/2005.83112564x [PubMed: 16230653] 

Ferrari P, Obeyesekere VR, Li K, Wilson RC, New MI, Funder JW, et al. (1996). Point mutations 
abolish 11 beta-hydroxysteroid dehydrogenase type II activity in three families with the 
congenital syndrome of apparent mineralocorticoid excess. Mol. Cell. Endocrinol 119, 21–24. 
doi: 10.1016/0303-7207(96)03787-2 [PubMed: 8793850] 

Ferreira AS, Galvão S, Gaspar R, Rodrigues-Neves AC, Ambrósio AF, Matafome P, et al. (2021). 
Sex-specific changes in peripheral metabolism in a model of chronic anxiety induced by prenatal 
stress. Eur. J. Clin. Invest, 1–12. doi: 10.1111/eci.13639

Forhead AJ, and Fowden AL (2014). Thyroid hormones in fetal growth and prepartum maturation. J. 
Endocrinol 221, R87–R103. doi: 10.1530/JOE-14-0025 [PubMed: 24648121] 

Fowden AL, and Forhead AJ (2004). Endocrine mechanisms of intrauterine programming. 
Reproduction 127, 515–526. doi: 10.1530/rep.1.00033 [PubMed: 15129007] 

Liu et al. Page 12

Front Anim Sci. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fowden AL, Li J, and Forhead AJ (1998). Glucocorticoids and the preparation for life after birth: 
are there long-term consequences of the life insurance? Proc. Nutr. Soc 57, 113–122. doi: 10.1079/
PNS19980017 [PubMed: 9571716] 

Fowden AL, Valenzuela OA, Vaughan OR, Jellyman JK, and Forhead AJ (2016). Glucocorticoid 
programming of intrauterine development. Domest. Anim. Endocrinol 56, S121–S132. doi: 
10.1016/j.domaniend.2016.02.014 [PubMed: 27345310] 

Friedrich MJ (2002). Epidemic of obesity expands its spread to developing countries. JAMA 287, 
1382–1386. doi: 10.1001/jama.287.11.1382-JMN0320-2-1 [PubMed: 11903011] 

Gauvin MC, Pillai SM, Reed SA, Stevens JR, Hoffman ML, Jones AK, et al. (2020). Poor maternal 
nutrition during gestation in sheep alters prenatal muscle growth and development in offspring. J. 
Anim. Sci 98:skz388. doi: 10.1093/jas/skz388 [PubMed: 31875422] 

Gay MS, Li Y, Xiong F, Lin T, and Zhang L (2015). Dexamethasone treatment of newborn rats 
decreases cardiomyocyte endowment in the developing heart through epigenetic modifications. 
PLoS ONE 10:e0125033. doi: 10.1371/journal.pone.0125033 [PubMed: 25923220] 

Ghnenis AB, Odhiambo JF, Smith AM, Pankey CL, Nathanielsz PW, and Ford SP (2021). A 
heretical view: rather than a solely placental protective function, placental 11ß hydroxysteroid 
dehydrogenase 2 also provides substrate for fetal peripheral cortisol synthesis in obese pregnant 
ewes. J. Dev. Orig. Health Dis 12, 94–100. doi: 10.1017/S2040174420000112 [PubMed: 
32151296] 

Gicquel C, El-Osta A, and Le Bouc Y (2008). Epigenetic regulation and fetal programming. 
Best Pract. Res. Clin. Endocrinol. Metab 22, 1–16. doi: 10.1016/j.beem.2007.07.009 [PubMed: 
18279777] 

Gilsbach R, Preissl S, Grüning BA, Schnick T, Burger L, Benes V, et al. (2014). Dynamic DNA 
methylation orchestrates cardiomyocyte development, maturation and disease. Nat. Commun 
5:5288. doi: 10.1038/ncomms6288 [PubMed: 25335909] 

Gokulakrishnan G, Chang X, Fleischmann R, and Fiorotto ML (2017). Precocious glucocorticoid 
exposure reduces skeletal muscle satellite cells in the fetal rat. J. Endocrinol 232, 561–572. doi: 
10.1530/JOE-16-0372 [PubMed: 28096434] 

Gokulakrishnan G, Estrada IJ, Sosa HA, and Fiorotto ML (2012). In utero glucocorticoid exposure 
reduces fetal skeletal muscle mass in rats independent of effects on maternal nutrition. Am. J. 
Physiol 302:R1143–52. doi: 10.1152/ajpregu.00466.2011

Goto M, Piper Hanley K, Marcos J, Wood PJ, Wright S, Postle AD, et al. (2006). In humans, early 
cortisol biosynthesis provides a mechanism to safeguard female sexual development. J. Clin. Invest 
116, 953–960. doi: 10.1172/JCI25091 [PubMed: 16585961] 

Grad I, and Picard D (2007). The glucocorticoid responses are shaped by molecular chaperones. Mol. 
Cell. Endocrinol 275, 2–12. doi: 10.1016/j.mce.2007.05.018 [PubMed: 17628337] 

Grzeskowiak LE, Grieger JA, and Clifton VL (2018). Strategies towards improving pharmacological 
management of asthma during pregnancy. Pharmacol. Res 130, 85–92. doi: 10.1016/
j.phrs.2017.12.019 [PubMed: 29278745] 

Hoffman ML, Peck KN, Forella ME, Fox AR, Govoni KE, and Zinn SA (2016). The effects of poor 
maternal nutrition during gestation on postnatal growth and development of lambs. J. Anim. Sci 
94, 789–799. doi: 10.2527/jas.2015-9933 [PubMed: 27065149] 

Huang Y, Yan X, Zhao JX, Zhu MJ, McCormick RJ, Ford SP, et al. (2010). Maternal obesity 
induces fibrosis in fetal myocardium of sheep. Am. J. Physiol 299, 968–975. doi: 10.1152/
ajpendo.00434.2010

Jamieson PM, Chapman KE, Edwards CR, and Seckl JR (1995). 11 beta-hydroxysteroid 
dehydrogenase is an exclusive 11 beta- reductase in primary cultures of rat hepatocytes: effect 
of physicochemical and hormonal manipulations. Endocrinology 136, 4754–4761. doi: 10.1210/
endo.136.11.7588203 [PubMed: 7588203] 

Jellyman JK, Martin-Gronert MS, Cripps RL, Giussani DA, Ozanne SE, Shen QW, et al. (2012). 
Effects of cortisol and dexamethasone on insulin signalling pathways in skeletal muscle of the 
ovine fetus during late gestation. PLoS ONE 7:0052363. doi: 10.1371/journal.pone.0052363

Jia Y, Gao G, Song H, Cai D, Yang X, and Zhao R (2016). Low-protein diet fed to crossbred 
sows during pregnancy and lactation enhances myostatin gene expression through epigenetic 

Liu et al. Page 13

Front Anim Sci. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



regulation in skeletal muscle of weaning piglets. Eur. J. Nutr 55, 1307–1314. doi: 10.1007/
s00394-015-0949-3 [PubMed: 26066356] 

Jobe AH (2020). Antenatal Corticosteroids-A Concern for Lifelong Outcomes. J. Pediatr 217, 184–
188. doi: 10.1016/j.jpeds.2019.09.015 [PubMed: 31606149] 

Joseph S, Alava B, Antolic A, Richards EM, Wood CE, and Keller-Wood M (2020). Fetal ovine 
skeletal and cardiac muscle transcriptomics are differentially altered by increased maternal cortisol 
during gestation. Physiol. Genomics 52, 178–190. doi: 10.1152/physiolgenomics.00096.2019 
[PubMed: 32116114] 

Karunaratne JF, Ashton CJ, and Stickland NC (2005). Fetal programming of fat and collagen in 
porcine skeletal muscles. J. Anat 207, 763–768. doi: 10.1111/j.1469-7580.2005.00494.x [PubMed: 
16367803] 

Kemp MW, Newnham JP, Challis JG, Jobe AH, and Stock SJ (2016). The clinical use of 
corticosteroids in pregnancy. Hum. Reprod. Update 22, 240–259. doi: 10.1093/humupd/dmv047 
[PubMed: 26590298] 

Kondash ME, Ananthakumar A, Khodabukus A, Bursac N, and Truskey GA (2020). Glucose uptake 
and insulin response in tissue-engineered human skeletal muscle. Tissue Eng. Regen. Med 17, 
801–813. doi: 10.1007/s13770-020-00242-y [PubMed: 32200516] 

Kosmidis G, Bellin M, Ribeiro MC, Van Meer B, Ward-Van Oostwaard D, Passier R, et al. (2015). 
Altered calcium handling and increased contraction force in human embryonic stem cell derived 
cardiomyocytes following short term dexamethasone exposure. Biochem. Biophys. Res. Commun 
467, 998–1005. doi: 10.1016/j.bbrc.2015.10.026 [PubMed: 26456652] 

Kotelevtsev Y, Brown RW, Fleming S, Kenyon C, Edwards CR, Seckl JR, et al. (1999). Hypertension 
in mice lacking 11beta-hydroxysteroid dehydrogenase type 2. J. Clin. Invest 103, 683–689. doi: 
10.1172/JCI4445 [PubMed: 10074485] 

Kotelevtsev Y, Holmes MC, Burchell A, Houston PM, Schmoll D, Jamieson P, et al. (1997). 11beta-
hydroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoid-inducible 
responses and resist hyperglycemia on obesity or stress. Proc. Natl. Acad. Sci. U.S.A 94, 14924–
14929. doi: 10.1073/pnas.94.26.14924 [PubMed: 9405715] 

Krozowski Z, MaGuire JA, Stein-Oakley AN, Dowling J, Smith RE, and Andrews RK (1995). 
Immunohistochemical localization of the 11 beta-hydroxysteroid dehydrogenase type II enzyme 
in human kidney and placenta. J. Clin. Endocrinol. Metab 80, 2203–2209. doi: 10.1210/
jcem.80.7.7608280 [PubMed: 7608280] 

Kuo T, Lew MJ, Mayba O, Harris CA, Speed TP, and Wang JC (2012). Genome-wide analysis of 
glucocorticoid receptor-binding sites in myotubes identifies gene networks modulating insulin 
signaling. Proc. Natl. Acad. Sci. U.S.A 109, 11160–11165. doi: 10.1073/pnas.1111334109 
[PubMed: 22733784] 

Kwon EJ, and Kim YJ (2017). What is fetal programming?: a lifetime health is under the control 
of in utero health. Obstet. Gynecol. Sci 60, 506–519. doi: 10.5468/ogs.2017.60.6.506 [PubMed: 
29184858] 

Lai L, Leone TC, Zechner C, Schaeffer PJ, Kelly SM, Flanagan DP, et al. (2008). Transcriptional 
coactivators PGC-lα and PGC-lβ control overlapping programs required for perinatal maturation 
of the heart. Genes Dev. 22, 1948–1961. doi: 10.1101/gad.1661708 [PubMed: 18628400] 

Lamadé EK, Hendlmeier F, Wudy SA, Witt SH, Rietschel M, Coenen M, et al. (2021). Rhythm of 
fetoplacental 11β-hydroxysteroid dehydrogenase type 2-fetal protection from morning maternal 
glucocorticoids. J. Clin. Endocrinol. Metab 106, 1630–1636. doi: 10.1210/clinem/dgab113 
[PubMed: 33621325] 

Langley-Evans SC (1997). Maternal carbenoxolone treatment lowers birthweight and induces 
hypertension in the offspring of rats fed a protein-replete diet. Clin. Sci 93, 423–429. doi: 10.1042/
cs0930423

Lepper C, and Fan CM (2010). Inducible lineage tracing of Pax7-descendant cells reveals embryonic 
origin of adult satellite cells. Genesis 48, 424–436. doi: 10.1002/dvg.20630 [PubMed: 20641127] 

Lv J, Ma Q, Dasgupta C, Xu Z, and Zhang L (2019). Antenatal hypoxia and programming of 
glucocorticoid receptor expression in the adult rat heart. Front. Physiol 10:323. doi: 10.3389/
fphys.2019.00323 [PubMed: 31001129] 

Liu et al. Page 14

Front Anim Sci. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Makhija NK, Tronnes AA, Dunlap BS, Schulkin J, and Lannon SM (2016). Antenatal corticosteroid 
timing: accuracy after the introduction of a rescue course protocol. Am. J. Obstet. Gynecol 214, 
120.e1–120.e6. doi: 10.1016/j.ajog.2015.08.018 [PubMed: 26283458] 

Martinez SR, Gay MS, and Zhang L (2015). Epigenetic mechanisms in heart development and disease. 
Drug Discov. Today 20, 799–811. doi: 10.1016/j.drudis.2014.12.018 [PubMed: 25572405] 

McCabe L, Marash D, Li A, and Matthews SG (2001). Repeated antenatal glucocorticoid treatment 
decreases hypothalamic corticotropin releasing hormone mRNA but not corticosteroid receptor 
mRNA expression in the fetal guinea-pig brain. J. Neuroendocrinol 13, 425–431. doi: 10.1046/
j.1365-2826.2001.00649.x [PubMed: 11328452] 

McGoldrick E, Stewart F, Parker R, and Dalziel SR (2020). Antenatal corticosteroids for accelerating 
fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev 
3:CD004454. doi: 10.1002/14651858.CD004454.pub4

McMullen S, Langley-Evans SC, Gambling L, Lang C, Swali A, and McArdle HJ (2012). A common 
cause for a common phenotype: the gatekeeper hypothesis in fetal programming. Med. Hypotheses 
78, 88–94. doi: 10.1016/j.mehy.2011.09.047 [PubMed: 22047985] 

Mesiano S, Coulter CL, and Jaffe RB (1993). Localization of cytochrome P450 cholesterol side-
chain cleavage, cytochrome P450 17 alpha-hydroxylase/17, 20-lyase, and 3 beta-hydroxysteroid 
dehydrogenase isomerase steroidogenic enzymes in human and rhesus monkey fetal adrenal 
glands: reappraisal of fun. J. Clin. Endocrinol. Metab 77, 1184–1189. doi: 10.1210/jc.77.5.1184 
[PubMed: 8077311] 

Meyer JS, and Novak MA (2021). Assessment of prenatal stress-related cortisol exposure: focus on 
cortisol accumulation in hair and nails. Dev. Psychobiol 63, 409–436. doi: 10.1002/dev.22021 
[PubMed: 32783213] 

Meyer K, and Zhang L (2007). Fetal programming of cardiac function and disease. Reprod. Sci 14, 
209–216. doi: 10.1177/1933719107302324 [PubMed: 17636233] 

Moisiadis VG, and Matthews SG (2014). Glucocorticoids and fetal programming part 2: Mechanisms. 
Nat. Rev. Endocrinol 10, 403–411. doi: 10.1038/nrendo.2014.74 [PubMed: 24863383] 

Mueller BR, and Bale TL (2008). Sex-specific programming of offspring emotionality after 
stress early in pregnancy. J. Neurosci 28, 9055–9065. doi: 10.1523/JNEUROSCI.1424-08.2008 
[PubMed: 18768700] 

Musser RE, Dritz SS, Davis DL, Tokach MD, Nelssen JL, Goodband RD, et al. (2007). Effects of 
L-carnitine in the gestating sow diet on fetal muscle development and carcass characteristics of the 
offspring. J. Appl. Anim. Res 31, 105–111. doi: 10.1080/09712119.2007.9706642

Narasaka T, Suzuki T, Moriya T, and Sasano H (2001). Temporal and spatial distribution 
of corticosteroidogenic enzymes immunoreactivity in developing human adrenal. Mol. Cell. 
Endocrinol 174, 111–120. doi: 10.1016/S0303-7207(00)00445-7 [PubMed: 11306177] 

Nathanielsz PW (2006). Animal models that elucidate basic principles of the developmental origins of 
adult diseases. ILAR J. 47, 73–82. doi: 10.1093/ilar.47.1.73 [PubMed: 16391433] 

Newell-Price J (2003). Proopiomelanocortin gene expression and DNA methylation: implications 
for Cushing’s syndrome and beyond. J. Endocrinol 177, 365–372. doi: 10.1677/joe.0.1770365 
[PubMed: 12773116] 

Norris AW, Wang C, Yao J, Walsh SA, Sawatzke AB, Hu S, et al. (2011). Effect of insulin and 
dexamethasone on fetal assimilation of maternal glucose. Endocrinology 152, 255–262. doi: 
10.1210/en.2010-0959 [PubMed: 21084442] 

Oakley RH, and Cidlowski JA (2013). The biology of the glucocorticoid receptor: new signaling 
mechanisms in health and disease. J. Allergy Clin. Immunol 132, 1033–1044. doi: 10.1016/
j.jaci.2013.09.007 [PubMed: 24084075] 

Olguín HC, and Pisconti A (2012). Marking the tempo for myogenesis: Pax7 and the regulation 
of muscle stem cell fate decisions. J. Cell. Mol. Med 16, 1013–1025. doi: 10.1111/
j.1582-4934.2011.01348.x [PubMed: 21615681] 

Parker CRJ, Faye-Petersen O, Stankovic AK, Mason JI, and Grizzle WE (1995). 
Immunohistochemical evaluation of the cellular localization and ontogeny of 3 beta-
hydroxysteroid dehydrogenase/delta 5-4 isomerase in the human fetal adrenal gland. Endocr. Res 
21, 69–80. doi: 10.3109/07435809509030422 [PubMed: 7588420] 

Liu et al. Page 15

Front Anim Sci. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Patterson AJ, Chen M, Xue Q, Xiao D, and Zhang L (2010). Chronic prenatal hypoxia induces 
epigenetic programming of PKC{epsilon} gene repression in rat hearts. Circ. Res 107, 365–373. 
doi: 10.1161/CIRCRESAHA.110.221259 [PubMed: 20538683] 

Peng J, Zhou Y, Zhang Z, Wang Z, Gao L, Zhang X, et al. (2018). The detrimental effects 
of glucocorticoids exposure during pregnancy on offspring’s cardiac functions mediated by 
hypermethylation of bone morphogenetic protein-4. Cell Death Dis. 9, 1–17. doi: 10.1038/
s41419-018-0841-1 [PubMed: 29298988] 

Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF, Phelps KL, et al. (2014). The 
oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage 
response. Cell 157, 565–579. doi: 10.1016/j.cell.2014.03.032 [PubMed: 24766806] 

Razaz N, Skoll A, Fahey J, Allen VM, and Joseph KS (2015). Trends in optimal, suboptimal, and 
questionably appropriate receipt of antenatal corticosteroid prophylaxis. Obstet. Gynecol 125, 
288–296. doi: 10.1097/AOG.0000000000000629 [PubMed: 25568996] 

Reed SA, Raja JS, Hoffman ML, Zinn SA, and Govoni KE (2014). Poor maternal nutrition 
inhibits muscle development in ovine offspring. J. Anim. Sci. Biotechnol 5, 1–11. doi: 
10.1186/2049-1891-5-43 [PubMed: 24383433] 

Rehfeldt C, and Kuhn G (2006). Consequences of birth weight for postnatal growth performance 
and carcass quality in pigs as related to myogenesis. J. Anim. Sci 84(Suppl), E113–E123. doi: 
10.2527/2006.8413_supplE113x [PubMed: 16582082] 

Rehfeldt C, Te Pas MFW, Wimmers K, Brameld JM, Nissen PM, Berri C, et al. (2011). Advances in 
research on the prenatal development of skeletal muscle in animals in relation to the quality of 
muscle-based food. I. Regulation of myogenesis and environmental impact. Animal 5, 703–717. 
doi: 10.1017/S1751731110002089 [PubMed: 22439993] 

Reynolds LP, Borowicz PP, Caton JS, Crouse MS, Dahlen CR, and Ward AK (2019). Developmental 
programming of fetal growth and development. Vet. Clin. North Am 35, 229–247. doi: 10.1016/
j.cvfa.2019.02.006

Reynolds RM, Allan KM, Raja EA, Bhattacharya SSSS, McNeill G, Hannaford PC, et al. (2013). 
Maternal obesity during pregnancy and premature mortality from cardiovascular event in adult 
offspring: Follow-up of 1 323 275 person years. BMJ 347, 1–10. doi: 10.1136/bmj.f4539

Ricketts ML, Shoesmith KJ, Hewison M, Strain A, Eggo MC, and Stewart PM (1998). Regulation of 
11 beta-hydroxysteroid dehydrogenase type 1 in primary cultures of rat and human hepatocytes. 
J. Endocrinol 156, 159–168. doi: 10.1677/joe.0.1560159 [PubMed: 9496245] 

Rog-Zielinska EA, Craig M-A, Manning JR, Richardson RV, Gowans GJ, Dunbar DR, et al. (2015). 
Glucocorticoids promote structural and functional maturation of foetal cardiomyocytes: a role for 
PGC-1α. Cell Death Differ. 22, 1106–1116. doi: 10.1038/cdd.2014.181 [PubMed: 25361084] 

Rog-Zielinska EA, Richardson RV, Denvir MA, and Chapman KE (2013a). Glucocorticoids and foetal 
heart maturation; implications for prematurity and foetal programming. J. Mol. Endocrinol 52, 
R125–R135. doi: 10.1530/JME-13-0204

Rog-Zielinska EA, Thomson A, Kenyon CJ, Brownstein DG, Moran CM, Szumska D, et al. (2013b). 
Glucocorticoid receptor is required for foetal heart maturation. Hum. Mol. Genet 22, 3269–3282. 
doi: 10.1093/hmg/ddt182 [PubMed: 23595884] 

Sand SA, Ernst A, Lunddorf LLH, Brix N, Gaml-Sørensen A, and Ramlau-Hansen CH (2019). In 
utero exposure to glucocorticoids and pubertal timing in sons and daughters. Sci. Rep 9:20374. 
doi: 10.1038/s41598-019-56917-7 [PubMed: 31889153] 

Schwab M, Coksaygan T, Rakers F, and Nathanielsz PW (2012). Glucocorticoid exposure of sheep at 
0.7 to 0.75 gestation augments late-gestation fetal stress responses. Am. J. Obstet. Gynecol 206, 
253.e16–253.e22. doi: 10.1016/j.ajog.2011.11.006

Seckl JR, and Holmes MC (2007). Mechanisms of disease: glucocorticoids, their placental metabolism 
and fetal “programming” of adult pathophysiology. Nat. Clin. Pract. Endocrinol. Metab 3, 479–
488. doi: 10.1038/ncpendmet0515 [PubMed: 17515892] 

Smith AM, Pankey CL, Odhiambo JF, Ghnenis AB, Nathanielsz PW, and Ford SP (2018). Rapid 
communication: reduced maternal nutrition during early-to mid-gestation elevates newborn lamb 
plasma cortisol concentrations and eliminates the neonatal leptin surge. J. Anim. Sci 96, 2640–
2645. doi: 10.1093/jas/sky215 [PubMed: 29982763] 

Liu et al. Page 16

Front Anim Sci. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Smith ZD, and Meissner A (2013). DNA methylation: roles in mammalian development. Nat. Rev. 
Genet 14, 204–220. doi: 10.1038/nrg3354 [PubMed: 23400093] 

Solano ME, and Arck PC (2020). Steroids, pregnancy and fetal development. Front. Immunol 10, 
1–13. doi: 10.3389/fimmu.2019.03017

Solano ME, Holmes MC, Mittelstadt PR, Chapman KE, and Tolosa E (2016). Antenatal endogenous 
and exogenous glucocorticoids and their impact on immune ontogeny and long-term immunity. 
Semin. Immunopathol 38, 739–763. doi: 10.1007/s00281-016-0575-z [PubMed: 27465226] 

Song J, Liu Y, Da S.u, J., Yuan D, Sun F, and Zhu J (2019a). Systematic analysis of alternative splicing 
signature unveils prognostic predictor for kidney renal clear cell carcinoma. J. Cell. Physiol 234, 
22753–22764. doi: 10.1002/jcp.28840 [PubMed: 31140607] 

Song R, Hu X-Q, and Zhang L (2019b). Glucocorticoids and programming of the microenvironment in 
heart. J. Endocrinol 242, T121–T133. doi: 10.1530/JOE-18-0672 [PubMed: 31018174] 

Tilley RE, McNeil CJ, Ashworth CJ, Page KR, and McArdle HJ (2007). Altered muscle development 
and expression of the insulin-like growth factor system in growth retarded fetal pigs. Domest. 
Anim. Endocrinol 32, 167–177. doi: 10.1016/j.domaniend.2006.02.003 [PubMed: 16564666] 

Torricelli M, Novembri R, Bloise E, De Bonis M, Challis JR, and Petraglia F (2011). 
Changes in placental CRH, urocortins, and CRH-receptor mRNA expression associated with 
preterm delivery and chorioamnionitis. J. Clin. Endocrinol. Metab 96, 534–540. doi: 10.1210/
jc.2010-1740 [PubMed: 21106714] 

Van Tuyl M, Blommaart PE, De Boer PAJ, Wert SE, Ruijter JM, Islam S, et al. (2004). Prenatal 
exposure to thyroid hormone is necessary for normal postnatal development of murine heart and 
lungs. Dev. Biol 272, 104–117. doi: 10.1016/j.ydbio.2004.03.042 [PubMed: 15242794] 

Vitellius G, Trabado S, Bouligand J, Delemer B, and Lombès M (2018). Pathophysiology of 
Glucocorticoid Signaling. Ann. Endocrinol 79, 98–106. doi: 10.1016/j.ando.2018.03.001

Waddell DS, Baehr LM, Van Den Brandt J, Johnsen SA, Reichardt HM, Furlow JD, et al. (2008). 
The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-
associated MuRF1 gene. Am. J. Physiol 295, 785–797. doi: 10.1152/ajpendo.00646.2007

Wang JC, Derynck MK, Nonaka DF, Khodabakhsh DB, Haqq C, and Yamamoto KR (2004). 
Chromatin immunoprecipitation (ChIP) scanning identifies primary glucocorticoid receptor 
target genes. Proc. Natl. Acad. Sci. U.S.A 101, 15603–15608. doi: 10.1073/pnas.0407008101 
[PubMed: 15501915] 

Wang L, Hu J, Xing H, Sun M, Wang J, Jian Q, et al. (2014). Construction of microRNA and 
transcription factor regulatory network based on gene expression data in cardiomyopathy. Eur. J. 
Med. Res 19:57. doi: 10.1186/s40001-014-0057-5 [PubMed: 25338953] 

Weaver ICG, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, et al. (2004). Epigenetic 
programming by maternal behavior. Nat. Neurosci 7, 847–854. doi: 10.1038/nn1276 [PubMed: 
15220929] 

Wigmore PM, and Stickland NC (1983). Muscle development in large and small pig fetuses. J. Anat 
137 (Pt 2), 235–45. [PubMed: 6630038] 

Woods LL (2006). Maternal glucocorticoids and prenatal programming of hypertension. Am. J. 
Physiol 291, R1069–R1075. doi: 10.1152/ajpregu.00753.2005

Woods LL, and Weeks DA (2005). Prenatal programming of adult blood pressure: Role of maternal 
corticosteroids. Am. J. Physiol. - Regul. Integr. Comp. Physiol 289, R955–R962. doi: 10.1152/
ajpregu.00455.2004 [PubMed: 15932969] 

Wyrwoll CS, Mark PJ, Mori TA, and Waddell BJ (2008). Developmental programming of adult 
hyperinsulinemia, increased proinflammatory cytokine production, and altered skeletal muscle 
expression of SLC2A4 (GLUT4) and uncoupling protein 3. J. Endocrinol 198, 571–579. doi: 
10.1677/JOE-08-0210 [PubMed: 18591261] 

Wyrwoll CS, Noble J, Thomson A, Tesic D, Miller MR, Rog-Zielinska EA, et al. (2016). 
Pravastatin ameliorates placental vascular defects, fetal growth, and cardiac function in a 
model of glucocorticoid excess. Proc. Natl. Acad. Sci. U.S.A 113, 6265–6270. doi: 10.1073/
pnas.1520356113 [PubMed: 27185937] 

Xiong F, Lin T, Song M, Ma Q, Martinez SR, Lv J, et al. (2016). Antenatal hypoxia induces 
epigenetic repression of glucocorticoid receptor and promotes ischemic-sensitive phenotype 

Liu et al. Page 17

Front Anim Sci. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in the developing heart. J. Mol. Cell. Cardiol 91, 160–171. doi: 10.1016/j.yjmcc.2016.01.003 
[PubMed: 26779948] 

Yan X, Huang Y, Zhao JX, Rogers CJ, Zhu MJ, Ford SP, et al. (2013a). Maternal obesity 
downregulates microRNA let-7g expression, a possible mechanism for enhanced adipogenesis 
during ovine fetal skeletal muscle development. Int. J. Obes 37, 568–575. doi: 10.1038/
ijo.2012.69

Yan X, Zhu M-J, Dodson MV, and Du M (2013b). Developmental programming of fetal skeletal 
muscle and adipose tissue development. J. Genomics 1, 29–38. doi: 10.7150/jgen.3930 [PubMed: 
25031653] 

Zhu MJ, Ford SP, Means WJ, Hess BW, Nathanielsz PW, and Du M (2006). Maternal nutrient 
restriction a ects properties of skeletal muscle in offspring. J. Physiol 575, 241–250. doi: 
10.1113/jphysiol.2006.112110 [PubMed: 16763001] 

Zhu MJ, Ford SP, Nathanielsz PW, and Du M (2004). Effect of maternal nutrient restriction in 
sheep on the development of fetal skeletal muscle. Biol. Reprod 71, 1968–1973. doi: 10.1095/
biolreprod.104.034561 [PubMed: 15317692] 

Liu et al. Page 18

Front Anim Sci. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 1 |. 
A schematic model to illustrate the mechanism that maternal glucocorticoids impact the 

programming of fetus. GC, Glucocorticoid; 11β-HSD2, 11β-hydroxysteroid dehydrogenase 

type2; HPA axis, hypothalamic-pituitary-adrenal axis.
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