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Abstract

INTRODUCTION: Age-related and Alzheimer’s disease (AD) dementia–related neu-

rodegeneration impact brain health.Whilemorphometricmeasures fromT1-weighted

scans are establishedbiomarkers, theymaybe less sensitive to earlier changes.Neurite

orientation dispersion and density imaging (NODDI), offering biologically meaningful

interpretation of tissuemicrostructure, may be an advanced brain health biomarker.

METHODS: We contrasted regional gray matter NODDI and morphometric evalua-

tions concerning their correlation with (1) age, (2) clinical diagnosis stage, and (3) tau

pathology as assessed by AV1451 positron emission tomography.

RESULTS: Our study hypothesizes that NODDI measures are more sensitive to aging

and early AD changes than morphometric measures. One NODDI output, free water

fraction (FWF), showed higher sensitivity to age-related changes, generally better

effect sizes in separating mild cognitively impaired from cognitively unimpaired par-

ticipants, and stronger associations with regional tau deposition than morphometric

measures.

DISCUSSION: These findings underscore NODDI’s utility in capturing early neurode-

generative changes and enhancing our understanding of aging and AD.

KEYWORDS

brain aging, diffusion magnetic resonance imaging, early Alzheimer’s disease dementia, neurite
orientation dispersion and density imaging

Highlights

∙ Neurite orientation dispersion and density imaging can serve as an effective brain

health biomarker for aging and early Alzheimer’s disease (AD).

∙ Free water fraction has higher sensitivity to normal brain aging.

∙ Free water fraction has stronger associations with early AD and regional tau

deposition.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2024 The Author(s). Alzheimer’s &Dementia: Diagnosis, Assessment &DiseaseMonitoring published byWiley Periodicals LLC on behalf of Alzheimer’s Association.

Alzheimer’s Dement. 2024;16:e12627. wileyonlinelibrary.com/journal/dad2 1 of 9

https://doi.org/10.1002/dad2.12627

https://orcid.org/0000-0002-1024-4653
mailto:Vemuri.Prashanthi@mayo.edu
http://creativecommons.org/licenses/by-nc/4.0/
https://wileyonlinelibrary.com/journal/dad2
https://doi.org/10.1002/dad2.12627


2 of 9 YU ET AL.

1 BACKGROUND

Brain health is influenced by multiple factors, such as genetics, sex,

environment, lifestyle, and socioeconomic status. Worsening brain

health is observed in the elderly due to both aging and pathology

effects.1 Recent evidence from imaging studies has shed light on brain

changes observed due to brain aging andAlzheimer’s disease (AD) sug-

gesting that AD may have greater medial temporal involvement while

aging changes are more widespread throughout the brain.2–4 There is

also increasing consensus that there are significant individual differ-

ences in brain changes.5,6 Therefore, sensitive measurement of brain

changes with aging and disease has important implications for under-

standing the mechanisms underlying these changes, early diagnosis,

and intervention strategies.

While morphometry (from T1-weighted structural magnetic reso-

nance imaging [MRI] scans) is widely accessible and commonly used for

detecting neurodegeneration caused by aging and neurodegenerative

pathologies, it may only inform about macroscopic structural changes

and likely captures the later part of the disease process.While diffusion

tensor imaging has been available for the measurement of microstruc-

tural integrity in aging7,8 and AD dementia,9 newer diffusion models

such as neurite orientation dispersion and density imaging (NODDI)

can provide a sensitive and more biologically specific interpretation of

tissuemicrostructure.

NODDI relies on multishell diffusion MRI (dMRI) acquisition

schemes and a biophysical model comprising intraneurite, extraneu-

rite, and free water compartments.10 “Neurites” correspond to axons

and dendrites in brain tissue. NODDI provides unique information

about neurite density, their angular dispersion, and the fraction of

unrestricted (“free”) water in voxels, represented as neurite density

index (NDI), their orientation dispersion index (ODI), and isotropic

water fraction or free water fraction (FWF). As a result, NODDI has

the potential to capture subtle neurodegenerative changes caused by

aging and pathology. Recent studies have shown that graymatter (GM)

NODDI measures are exceptionally sensitive to aging throughout the

brain,11 and specifically show changes in early middle age in regions

within and surrounding the hippocampus.12,13 Additionally, NODDI

measures are also associated with tau-related changes.14

In this article, we hypothesize that microstructural changes mea-

sured by NODDI, a biologically interpretable dMRI model, are more

sensitive to neurodegeneration in aging and early-stage AD demen-

tia compared to morphometric evaluations derived from T1 images.

To test our hypothesis, we compared regional GM NODDI and mor-

phometric measurements based on their association with (1) age, (2)

clinical diagnosis stage (cognitively unimpaired [CU] participants vs.

participants with mild cognitive impairment [MCI], CU vs. AD demen-

tia), and (3) sensitivity to tau pathology measured using AV1451

positron emission tomography (PET). We investigated the usefulness

of GM NODDI and morphometry in predicting in vivo measurements

of mixed 3R/4R tau pathology in AD dementia in aim (3), as quanti-

fied using AV1451 PET, because tau pathology is proximal to clinical

symptoms.15

RESEARCH INCONTEXT

1. Systematic Review: We reviewed the literature using

PubMed. Studies suggest advanced diffusion magnetic

resonance imaging techniques, such as neurite orienta-

tion dispersion and density imaging (NODDI), offer addi-

tional microstructural insights beyond traditional mor-

phometric measurements obtained from T1-weighted

images. However, a comprehensive analysis on the effec-

tiveness of gray matter NODDI in understanding aging

andearlyAlzheimer’s disease (AD) dementia compared to

morphometric measures was lacking.

2. Interpretation: Our findings indicate that the free water

fraction, a NODDI measurement (from multishell diffu-

sion MRI), captures neurodegenerative changes associ-

ated with both aging and early-stage AD dementia.

3. Future Directions: The diagnostic potential of NODDI

needs to be further explored using longitudinal studies,

correlational analyses incorporating AD pathology and

autopsy characterization, and through the development

of comprehensive brain health markers that integrate

various parameters into composite measures.

2 METHODS

2.1 Selection of participants and cohort
description

We selected CU andMCI participants from a population-based cohort,

the Mayo Clinic Study of Aging (MCSA). Additionally, we included

patients clinically diagnosed with AD dementia (with age restriction

of ≥ 65 years of age to limit to typical AD patients) from the Mayo

Clinic Alzheimer’s Disease Research Center (ADRC). The MCSA is a

prospective epidemiology cohort aimed at investigating the preva-

lence, incidence, and risk factors for MCI and dementia.16 MCSA

participantswere randomly selected and invited fromOlmstedCounty

in Minnesota. The population was enumerated using the Rochester

Epidemiology Projectmedical records linkage system infrastructure.17

participants underwent clinical diagnosis according to previously pub-

lished criteria.18

The inclusion criteria were the availability of multishell dMRI

(NODDI) measurements, morphometric measurements from T1-

weighted scans, clinical diagnosis, and an accompanying AV1451 PET

standardized uptake value ratio (SUVR) performed within 3 months

of the MRI visit. Age was determined based on when the MRI scan

occurred. Our final dataset consisted of 922 CU participants (564

of whom were amyloid and tau negative), 117 MCI participants,

and 91 clinically diagnosed AD dementia patients (the AD dementia

group comprised 4 individuals from MCSA and 87 from ADRC). The
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TABLE 1 Participant characteristics including biographical data and imagingmeasurements.

Participant characteristics

Mean (SD)

CU (n= 564)

A–/T– CU (n= 922) MCI (n= 117)

AD dementia

(n= 91)

Age, year 64.43 (12.79) 68.99 (12.82) 78.87 (9.79) 75.82 (6.53)

Males (%) 49.11% 50.54% 55.56% 51.65%

Education, year 15.49 (2.36) 15.44 (2.4) 13.69 (2.88) 15.91 (2.73)

MMSE 28.98 (1.02) 28.84 (1.09) 25.68 (2.08) 21.92 (4.60)

Imagingmeasures of AD

PiB PET SUVR 1.36 (0.08) 1.54 (0.37) 1.85 (0.61) 2.44 (0.51)

AV1451 PET SUVR 1.15 (0.07) 1.20 (0.1) 1.28 (0.19) 1.77 (0.45)

Note: The percentages are reported for the categorical variables and the means (SDs) are reported for the continuous variables. Lowercase “n” denotes the

number of participants. A–/T– indicates the amyloid-negative and tau-negative CU subgroup.

Abbreviations: AD, Alzheimer’s disease; CU, cognitively unimpaired; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; PET, positron

emission tomography; PiB, Pittsburgh compound B; SD, standard deviation; SUVR, standardized uptake value ratio.

demographic and clinical characteristics of the study cohort are

summarized in Table 1, withmean and standard deviation displayed for

continuous variables and percentages for categorical variables.

2.2 Standard protocol approvals, registrations,
and patient consent

This study was approved by Mayo Clinic and Olmsted Medical Cen-

ter institutional review boards. Written information was provided to

all participants, andwritten consentwas collected from all participants

and qualified caregivers.

2.3 Imaging methods

2.3.1 MRI acquisition and processing

All MRIs were acquired on 3T Siemens Prisma scanners equipped with

VE11 software and 64-channel receiver head coils. Structural scans

were acquired with a magnetization-prepared rapid gradient echo

(MPRAGE) sequence (repetition time [TR]/echo time [TE]/inversion

time [TI] = 2300/3.14/945 ms, flip angle = 9◦, isotropic resolu-

tion = 0.8 mm). Regional GM volumes and cortical thickness mea-

surements were assessed using SPM12 segmentations from the TI-

weighted MPRAGE images as described previously.19 Regional GM

volumes were normalized by total intracranial volume for each par-

ticipant. Additionally, we calculated the mean values of thickness and

volume of bilateral regions of interest (ROIs) in each brain region of the

AAL122GMatlas.

Diffusion scans were acquired with TR/TE = 3400/71 ms, field of

view = 232 mm, voxel size = 2.0 mm isotropic, 81 axial slices, and

consisted of 13 b = 0, 6 b = 500, 48 b = 1000, and 60 b = 2000

s/mm2 volumes. Detailed acquisition protocols were published for

MCSA previously.20 dMRIs underwent denoising,21 eddy current dis-

tortion and head motion correction,22 Gibbs ringing correction,23 and

Rician debiasing.24 The diffusion tensors were then fitted with a non-

linear least square fitting algorithm in dipy. NDI, ODI, and FWF maps

were estimated by Accelerated Microstructure Imaging via Convex

Optimization (AMICO). The diffusion images were transformed into

native T1-w space using a warp calculated by Advanced Normaliza-

tion Tools (ANTs) based on a quasi-T1-w image synthesized out of the

diffusion data. Regional NODDI measures were obtained by warp-

ing the AAL122 GM atlas to participant native space using ANTs. We

used a threshold of probability of GM > 0.5 (based on T1-based GM

probability estimation) for diffusionmeasurements.

2.3.2 Pittsburgh compound B PET and AV1451
PET imaging

Amyloid PET imaging was performed using Pittsburgh compound B

(PiB) PET, and tau PET imaging was performed using AV1451 PET.

Detailed acquisition, processing, and SUVR calculation procedures

were previously described.25 Global amyloid SUVR was computed

by averaging the median uptake from prefrontal, orbitofrontal, pari-

etal, temporal, anterior cingulate, and posterior cingulate/precuneus

regions, then normalizing it by themedian uptake in the cerebellar crus

GM. We used a Centiloid value of 25 as the cutoff for brain amyloid

positivity, which corresponds to PiB PET SUVR≥ 1.52.26

From AV1451 PET scans, we computed median SUVRs of bilat-

eral ROIs that mapped with the Braak staging scheme as described

elsewhere.27 In brief, the stages included the following regions: Braak I

(transentorhinal cortex), Braak II (hippocampus), Braak III and IV (infe-

rior and medial temporal cortex and posterior cingulum cortex), Braak

V and VI (the isocortex of the frontal and parietal lobes). Notably,

we excluded the Braak II region due to signal contamination from the

choroid plexus.

Global tau SUVR was computed by averaging the median uptake

from the amygdala, entorhinal cortex, fusiform gyrus, parahippocam-

pal, inferior temporal, and middle temporal gyri regions, then nor-

malized by the median uptake in the cerebellar crus GM. We used

a previously determined cutoff of AV1451 PET SUVR ≥ 1.25 for tau

positivity.28
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2.3.3 Cognitive performance

All MCSA and ADRC participants were administered the Short Test of

Mental Status, the scores of which were transformed to Mini-Mental

State Examination.29

2.4 Statistical analyses

Weconducted three experiments to illustrate the relative sensitivity of

NODDI measures compared to morphometric measures in detecting

neurodegeneration.

1. Correlation with age: We analyzed Spearman correlations, com-

puted with the spearmanr function from scipy.stats package,

between imaging measurements taken from the AAL122 atlas

regions and chronological age in the amyloid-negative and tau-

negativeCUcohort. The confidence intervals (CIs) of Spearmancor-

relations were derived by bootstrapping 564 amyloid-negative and

tau-negative CU subgroups for 100 runs. This helped us pinpoint

brain areas that are prone to changes associated with primarily

age-related changes (independent of AD-related changes).

2. Effect sizes for clinical diagnostic groups: We compared regional

imaging parameters between age-matched pairs of CU & MCI or

CU & AD dementia participants. Age-matched pairs were cre-

ated by pairing each participant with MCI or AD dementia with

a CU participant whose age difference was within 1 year com-

pared to the individual withMCI or AD dementia. The effect size of

regional imaging parameters was evaluated with Cohen dz output

by the ttest function in the researchpy package, with the assump-

tion of matched samples and unequal variance. The MCI subgroup

(n = 117) and AD subgroup (n = 91) were bootstrapped 100 times

and paired with two age-matched CU cohorts (n = 117 and n = 91

for matching to MCI and AD groups, respectively) to minimize

the influence of random sampling. Average values and CIs were

reported for effect sizes. This comparison aimed to identify brain

regions that display pathology-related neurodegeneration.

3. Prediction of regional AV1451 PET SUVR: we developed multi-

variable linear regression models to assess the predictive power

of imaging metrics on AD pathology across brain regions. We seg-

mented the brain into five ROIs according to Braak stages. For each

Braak ROI, a multivariable linear regression model was fitted using

the LinearRegression model from the sklearn package, with local

AV1451 PET SUVR as the target variable and imaging parameters

as predictors. Prior to model fitting, imaging measures, age, and

AV1451 PET SUVR underwent preprocessing by Box–Cox and Z

transformations.

2.5 Regional importance illustrations

For ease of visualizing results, we generated brain maps with

the AAL122 Atlas to demonstrate regional correlations with

chronological age using MATLAB, vistasoft, mnl_ieegBasics,

mnl_dmri_ieeg_tools, spm12, AFQ, and the ECoGelectrode localization

toolbox.

3 RESULTS

3.1 FWF and ODI have higher correlations with
chronological age than morphometric measures

We investigated age-related changes in microstructural and morpho-

metric measures using Spearman correlations within CU individuals.

Our analysis, depicted in Figure 1, focused on identifying regionalmea-

surements that display strong associations with age, highlighting top-

quartile Spearman correlations. For convenience, we will define the

strength of Spearman correlation as follows: extremely weak (0.00–

0.19), weak (0.20–0.39),moderate (0.40–0.59), strong (0.60–0.79), and

very strong (0.80–1.00).

FWF exhibited widespread correlations with age. Strong Spear-

man correlations were observed in the temporal lobe, inferior occipital

gyrus, parahippocampal region, and anterior cingulum. ODI showed

moderate sensitivity in areas suchas the frontal lobe, parietal lobe, cen-

tral gray, sensorimotor cortex, and other scattered regions. In contrast,

measures of cortical thickness and volume displayed only moderate

correlations in Heschl gyrus and fusiform gyrus, respectively. NDI of

the amygdala showedmoderate correlations with age.

3.2 FWF changes are more widespread in MCI
and AD dementia

To assess the sensitivity of microstructural and morphometric mea-

sures in MCI and AD dementia, we compared effect sizes between

age-matched CU and MCI participants (Figure 2, left), as well as

between CU and AD dementia participants (Figure 2, right). To min-

imize the confounding influence of age, each MCI or AD dementia

participant was paired with a CU participant within an age difference

smaller than 1 year. To minimize the influence of random sampling, we

repeated the computation 100 times and reported average effect sizes.

Effect sizes were quantified using Cohen dz, enabling a direct compar-

ison of changes across different imaging measures. We will define the

strength of Cohen dz as follows: low (0.2), moderate (0.5), high (0.8).

In the comparison between CU and MCI participants, FWF exhib-

ited slightly larger effect sizes in many more regions compared to

other measures, with the most notable effects seen in the frontal

lobe, temporal lobe, medial temporal lobe (MTL), and anterior cingu-

lum.Conversely, volumetricmeasuresdisplayedmoderate to loweffect

sizes in the temporal lobe, MTL, and various isolated regions. ODI

showedchanges across dispersed regions,whileNDIdemonstrated the

most substantial change in the MTL. The most pronounced change in

cortical thickness was observed in the insula.

Due to the greater separation of disease stage between CU and AD

dementia participants, there weremore significant differences in most

of the tested brainmeasures. FWF displayed a larger overall effect size
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F IGURE 1 A, Heatmap of Spearman correlations between regional imagingmeasurements and chronological age within CU participants.
Spearman correlations were reported asmean (lower bound of 95%CI, upper bound of 95%CI) from 100 bootstrapping runs. Heatmap colors
were coded based on the absolute value of themean correlation coefficients. Only regions with Spearman correlations in the top quartile are
colored for clarity. Yellow color indicates correlations with highmagnitude. B, Visual representation of regional Spearman correlations as
illustrated in (A). CI, confidence interval; CT, cortical thickness and graymatter volume; CU, cognitively unimpaired; FWF, free water fraction; NDI,
neurite density index; ODI, orientation dispersion index.

across most GM regions, particularly in the temporal lobe and MTL.

Volumes of MTL and temporal lobe exhibited comparable effect sizes

to FWF of these areas. ODI changes were moderate–high across dis-

persed regions such as the parahippocampal cortex, fusiform gyrus,

and middle cingulum. NDI changes were most prominent in the infe-

rior temporal gyrus andMTL. Cortical thickness changes were evident

in the temporal lobe,MTL, posterior cingulum, and retrosplenial cortex.

These findings suggest that microstructural measurements pro-

vided byNODDI, particularly FWF,may serve as promising biomarkers

for pathological neurodegeneration.

3.3 Free water measurements outperform other
measures in prediction models of tau pathology in
Braak ROIs I, III–V

Multivariable linear regression models were fitted for each Braak ROI,

incorporatingmicrostructuralmeasures,morphometricmeasures, age,

and sex as regressors. Figure 3 illustrates the β coefficients and their

corresponding CIs.

FWF exhibited the overall highest magnitude of β coefficients

among the imagingmeasures, followedbyODI. Volumes, cortical thick-

ness, and NDI showed smaller β coefficients across the ROIs. Model R2

values indicated better fits for Braak ROI I, III, IV, suggesting a stronger

associationbetween taudeposition and the included imagingmeasures

in these regions.

4 DISCUSSION

Neurodegeneration biomarkers, particularly MRI-based morphomet-

ric measurements, are widely used to quantify brain health and assist

in the diagnosis of AD. In this study, we assessed the sensitivity of

microstructural and morphometric measures within GM to capture

neurodegenerative changes associated with aging and AD dementia.

Our findings highlighted the potential of FWF (cortical tissue free

water content) as a promising biomarker for GM health. Specifically,

we found that (1) FWF exhibited the highest correlations with chrono-

logical age across the amyloid-negative and tau-negative CU cohort,

(2) FWF provided better overall effect sizes in identifying MCI par-

ticipants, and (3) FWF demonstrated stronger associations than other

testedmeasures with tau deposition inmultiple brain regions.

4.1 GM microstructural changes and their
relevance to age-related neurodegeneration

NODDI provides precisemeasurements of brain tissuemicrostructure

by modeling three compartments within each voxel: intracellular,
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F IGURE 2 Heatmap displaying average effect sizes (Cohen dz) indicating the disparity in microstructural andmorphometric measures
between age-matched CU and participants withMCI (left), as well as between CU and AD dementia participants (right). Effect sizes were reported
asmean (lower bound of 95%CI, upper bound of 95%CI) from 100 bootstrapping runs. Heatmap colors were assigned based on the absolute value
of effect sizes. Only regions with absolute Cohen dz values in the top quartile are color-coded for clarity. Yellow color indicates larger effect size,
thus more significant change between the CU group and the compared group. AD, Alzheimer’s disease; CI, confidence interval; CT, cortical
thickness and graymatter volume; CU, cognitively unimpaired; FWF, free water fraction;MCI, mild cognitive impairment; NDI, neurite density
index; ODI, orientation dispersion index.

F IGURE 3 A, Illustrations of Braak ROIs I, III–VI. B, Multivariable linear regressionmodels are fit to each Braak stage ROI. For each ROI,
imaging parameters serve as regressors and tau deposition as the target. Colors are assigned based on the absolute value of linear coefficients. CT,
cortical thickness and graymatter volume; FWF, free water fraction; NDI, neurite density index; ODI, orientation dispersion index; ROI, region of
interest.
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extracellular, and free water. These compartments represent differ-

ent microstructural spaces: the intracellular compartment includes

water restricted to one-dimensional diffusion (e.g., water confined

within neurites); the extracellular compartment encompasses spaces

between neurites or within spherical cell bodies, where diffusion

is hindered by extracellular structures; and the free water com-

partment consists of water that did not encounter barriers during

diffusion, such as cerebrospinal fluid or any water farther than ≈

10 µm from a membrane.10 Hence, by quantifying neurite morphol-

ogy, NODDI can reveal the structural basis of brain function. For

example, through FWF, it separates complete tissue loss (atrophy)

from within-tissue microstructural changes (NDI and ODI). In cortical

areas affected by aging and neurodegenerative disorders, NODDI

demonstrates its capability to detect features of brain tissue deteri-

oration, including neuronal loss,30–32 neurite degeneration,32,33 and

demyelination,34,35 all of which have been previously examined using

histology, along with the subsequent increase in FWF.36–40 Based

on this literature, microstructural changes reported by NODDI have

the potential to become additional GM health biomarkers. Figure 1

showed an increase in FWF across most GM regions with aging, as

suggested by Merluzzi et al.11 Additionally, our analysis provides

a region-corresponding comparison of age correlations between

NODDI-derived and T1-derived metrics, supporting the argument

that FWF exhibits the greatest sensitivity to age among these met-

rics. Therefore, microstructural measures may be more sensitive to

age-related neurodegeneration, and they outperform morphome-

tric measures in this aspect. Our study also showed a smaller, but

widespread negative association of ODI with age in the parietal lobe,

frontal lobe, central gray, sensorimotor cortex, cingulum, and scattered

locations in the temporal lobe, which corresponds to the fronto-

parietal decreasing ODI pattern observed with aging previously.41

Among T1-weighted metrics, the volume of fusiform gyrus and cor-

tical thickness of the Heschl gyrus showed the strongest negative

correlations with age. Other regional T1 metrics with comparatively

more prominent age correlations are scattered throughout the brain.

Our observations partially deviate from the frontal–temporal pattern

described in other studies,3 likely because we excluded amyloid- or

tau-positive participants from our analysis cohort to control for the

effect of AD pathology, despite them being CU. The correlation coef-

ficients for T1-derived metrics generally decreased after removing

pathology-positive CU participants from analysis cohort (data not

shown).

4.2 Earlier change in GM microstructural free
water and its relevance in MCI/AD dementia

While it is recognized that there is considerable variability of atrophy

seen in AD, hippocampal atrophy is observed in a majority of typical

late-onset AD patients.42 Our findings in the right panel of Figure 2

corroborate previous observations, showing significant differences in

hippocampal volumes between age-matched CU and AD dementia

participants, with an effect size of −0.8. Hippocampal FWF demon-

strated comparable efficacy to volume measurement, with an effect

size of 0.75. Both volume and FWF of the medial and inferior tempo-

ral lobe show high effect sizes of similarmagnitude. Although FWF and

volume show similar effect sizes, FWF displays more significant cor-

relations across more GM regions. However, it is important to point

out that hippocampal atrophy is non-specific to AD. Different patholo-

gies have been shown to affect hippocampal atrophy.43 It has been

shown that anterior MTL regions are strongly associated with TAR

DNA-binding protein 43,whereas the posterior hippocampus is associ-

atedwith tau.44 Therefore, ourmeasured changesmaybebroader than

AD alone.

FWFmay be a promising biomarker in the earlier stages of cognitive

impairment. Previous dMRI studies have shown that microstructural

alterations precede macroscopic changes, correlating with regional

dysfunction and having the potential to predict future progression

into AD dementia.45–47 Our findings, as depicted in the left panel of

Figure 2, indicate a greater number of regions with changes in FWF

compared to morphometric measures. Moreover, the magnitudes of

FWF changes tended to be slightly higher. For instance, the effect size

of FWF from the frontal, parietal, and temporal lobes surpassed those

of corresponding volumes. However, FWF measurements in the MTL

are comparable to MTL volumes. These results suggest that cortical

microstructural changes reflected by FWF may precede macrostruc-

tural changes in more brain regions, highlighting its potential as a

sensitive assessment tool for the neurodegenerative process, espe-

ciallywhen using holisticmethods (e.g., brain agemodels) that consider

all brain regions at once. Nevertheless, further studies are needed to

determine the specificity of FWF to AD pathology and its correlation

with autopsy characterization, for example, Braak staging.

Overall, in CU/AD comparison, FWF shows relatively high positive

changes across regions, with the strongest effect size seen in temporal

lobes andMTL. In comparison, NDI had smaller effect sizes inmost GM

areas except for theMTL.Vogt et al. focusedonNDI andODI and found

changes throughout temporal and parietal cortical regions in MCI and

AD.48 While their ODI findings are similar to those of our study, the

differences in NDI may be likely due to participant and cohort charac-

teristics. TheMCI andADparticipants included in our study have older

ages because of the sampling from the population and focus on only

late-onset AD.

4.3 GM FWF association with tau pathology

The relationship betweenGMmicrostructural measures and tau depo-

sition in AD dementia is less studied compared to white matter

microstructural or morphometric measures. Previous studies either

focused on specific areas, such asMTL,49 or used less biologically inter-

pretable dMRI methods.50 Our findings in Figure 3 suggest that FWF

may provide themost predictive power for tau deposition in our multi-

variable linear regression models across multiple brain regions among

all microstructural andmorphometric measures.
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4.4 Usefulness of NODDI in aging and dementia
studies

Our findings support the use of non-invasive, accessible biophysical

diffusion models to indicate GM deterioration from aging and AD

dementia. With multiband acceleration becoming more widespread,

these models can illuminate cognitive decline causes, aiding early dis-

ease detection and monitoring. Future studies will refine NODDI’s

application in distinguishing diagnoses and tracking GM damage over

time as diseases evolve.

4.5 Strengths and limitations

This study’s strengths include integrating NODDI, T1-weighted MRI,

and tau neuroimaging measures, providing biologically interpretable

insights into neurodegenerative changes. Comparing microstructural

and morphometric measures within the same brain regions allowed

us to assess the sensitivity of each imaging measure and relevant

brain subregions in a comprehensive fashion. While we suggest that

microstructural changes detected by NODDI may precede morpho-

metric changes, longitudinal studies will be needed in validating this

finding and exploring these measures as biomarkers. The comparison

ofNODDI and other diffusionmodalities is also a valuable direction for

future exploration.
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