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ABSTRACT: Molecular photoswitches that offer simultaneous precise control over geometrical and electronic changes are rare yet
highly sought tools for the development of responsive nanosystems. Here we present such an advantageous combination of property
control within a novel multiphotoswitch architecture. Hemithioindigo-based trioxobicyclononadiene (HTI-TOND) offers a rigid
three-dimensional molecular structure that undergoes different exotic rearrangement reactions upon photochemical and thermal
signaling. Three to four different states with distinct geometric and electronic properties can be accessed reversibly in high yields
within this molecular framework. Thus, a highly promising and unique switching tool has become available to instill the next level of
addressability at the smallest scales.

Molecular switches are central building blocks in
functional chemical systems that allow the introduction

and control of precise changes at the smallest scales of matter.
Photoswitches in particular offer distinct advantages because
they use light as a fast and waste-free signal to affect the
switching processes. For these reasons, photoswitches have
risen to great prominence, and myriads of applications have
been reported in which they have been employed as
indispensable bases of responsive smart chemical systems.1−11

Many different types of photoswitches are being explored
presently, which can roughly be divided into two classes,
enabling either strong geometric or strong electronic changes
upon switching. In the first case, the photochromism and
electronic changes are typically not very large, with
azobenzenes12 and stilbenes13,14 being classical examples and
imines,15,16 hydrazones,17−19 and indigoid photoswitches7,20

representing later additions. In the second case, geometry
changes are oftentimes subtle, as can be seen for example in
diarylethenes21 and dihydropyrans.22−25 Nevertheless, there
are few examples in which both properties can be combined to
some extent, and larger geometric changes are matched with
severe electronic changes, such as in spiropyrans or the
recently introduced Stenhouse dyes.26−28 Here strong photo-
chromism and electronic changes are found in conjunction
with distinct geometry changes. Such a combination is
beneficial for virtually any application since both electronic
changes (conjugation, polarity, photochromism, etc.) and
geometry changes (proximity alterations, spatial distribution
of functional groups, etc.) can then be controlled with the
highest precision.
In this work, we present an entirely unexplored type of

fundamental photoswitch, hemithioindigo7,20-based trioxobi-
cyclononadiene (HTI-TOND) 1 (Figure 1). HTI-TOND
enables the desirable combination of concomitant geometry
and electronic changes within a distinct molecular framework.
It allows alteration between up to four different stable states A
to D instead of the usual two states found in most fundamental

photoswitches. The TOND state is a highly rigid 3D molecular
structure offering precise placement of functional groups in
space. The other states are more flexible and in addition are
differently conjugated, offering distinct electronic communica-
tion between molecular parts. The photoswitching processes
employ two exotic reactions, a rare “forbidden” hetero-Diels−
Alder/retro-Diels−Alder reaction (TOND A to C/D con-
versions) and an oxygen rearrangement reaction (B to C/D
conversions), which are now introduced as novel mechanistic
tools into the realm of photoswitching. In addition, a thermal
oxygen-rearrangement reaction leading from TOND A to
isomer B is also uncovered.
TOND-like structures are quite rare but are found in some

natural products produced by fungi and bacteria.29−33 The
simple methylated derivative was discovered in complexation
with platinum in 1965 by Gibson et al.,34 and its resolution was
reported in 1977 by de Renzi et al.35 Further TOND motifs
have later been explored for synthetic accessibility36−39 and
applications in, e.g., supramolecular chemistry,40−44 mainly by
Kollenz and co-workers but also by others.45−47 To the best of
our knowledge, no photochemistry has been reported to date.
The HTI-TOND motif presented herein provides a hitherto
not described aryl-substituted version of the TOND structure,
enabling further functionalization on the periphery and in
different spatial quadrants.
HTI-TOND system 1 was synthesized in four high-yielding

steps that represent an alteration of a previously reported
protocol for synthesizing highly substituted HTIs48 (Scheme
1). Starting from commercially available thiosalicylic acid and
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2-bromo-4′-methoxyacetophenone, a nucleophilic substitution
reaction affords the corresponding thioether 2 quantitatively.
Intramolecular condensation under mildly basic conditions

leads to hydroxythiophene derivative 3 in 79% yield, which
subsequently is transformed into chlorinated HTI 4 in 96%
yield after reaction with thionyl chloride. When precursors 3
and 4 are combined in the presence of K3PO4 at elevated
temperatures, photoswitch 1 is obtained in 78% overall yield
either as sole HTI-TOND A or as an isomeric mixture of 38%
HTI-TOND A and 40% C, depending on the reaction
duration. After application of different heating or irradiation
steps, the four isomers of 1 (A to D) could be accumulated to
varying degrees. Separation of the isomers using HPLC was
possible because of their sufficiently high thermal stabilities.
Identification and spectral assignment was facilitated by X-ray
diffraction analysis in the crystalline state for all four isomers
(see Figure 1).
The thermal behavior of the HTI-TOND system was first

examined at different temperatures to establish its ground-state
energy profile at the common temperature of 22 °C (Figure 2).
The thermodynamically most stable state was found to be
isomer B, which is obtained after prolonged heating to
temperatures above 100 °C of, e.g., isomer A in toluene-d8
solution. This reaction represents an unusual oxygen-
rearrangement reaction in which not only two oxygen−carbon
bonds are broken within the TOND structure but also new
oxygen−carbon connectivity is established. An in-depth
mechanistic investigation of this reaction will be the topic of
a future dissemination. Heating a solution of either isomer C
or D over prolonged times above 100 °C also leads to full
conversion to pure isomer B. However, when the temperature
is lowered, thermal isomer conversions become clearer.
Starting from pure isomer C, HTI-TOND A is accumulated
first as the direct isomerization product at 60 to 90 °C. When
pure isomer D is heated, HTI-TOND A is also the direct
isomerization producteven at ambient temperatures where
no further thermal isomerization to B takes place. At the same
time, a small amount of isomer C is also formed from D.

Figure 1. HTI-TOND 1 enabling switching between four different states A (racemic rigid TOND structure), B, C, and D with distinct geometric
and electronic properties. Schematic structures, photo- or thermally induced net interconversions, and the corresponding structures in the
crystalline state are shown alongside photographs of pure isomer solutions in toluene.

Scheme 1. Simple and High-Yielding Four-Step Synthesis of
HTI-TOND 1
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Because of the different activation energies for thermal
isomerizations, HTI-TOND A or isomer B can be accumu-
lated in high yields in thermal steps from isomers C and D if
the temperature is controlled well. The corresponding Gibbs
energies of activation ΔG⧧ as determined from kinetic analysis
are given in Figure 2d. Since no thermal equilibria are
established and isomer B is formed as the sole product after
prolonged heating, only lower limits for the energy differences
ΔG between isomers can be given by assuming 5% of a
remaining isomer is not detected in the experiments. We
further tested the effect of acid addition on the thermal
behavior of 1. After addition of trifluoroacetic acid (TFA) to a
solution of pure isomer C in toluene-d8 solution, a significant
acceleration of the thermal isomerization to exclusively HTI-
TOND A took place even at ambient temperatures. Therefore,
thermal reactions in the presence or absence of acid can be
used to gain improved control to access the two most stable
states A and B.
The experimental findings are generally in good agreement

with the theoretical description conducted at the MPWB1K/6-

311G(d,p)/gd3bj level of theory, as shown in Figure 2d (for
further details, see the Supporting Information).
The photochemistry of the HTI-TOND system 1 was

investigated next by studying the photoreactions of the
individual isomers separately (Figure 3). As depicted in Figure

3a, isomers A, B, and C/D show distinctly different molar
absorptions, which are well-reproduced by the theoretical
description (see the Supporting Information). The absorptions
of isomers C and D appear to be most red-shifted but are not
well-distinct from each other, which prevents effective
photoswitching between just these two isomers. The
absorption of HTI-TOND A resides only in the UV part of
the absorption spectrum, and thus, photochemistry needs to
invoke light of 300 nm. Irradiation at that wavelength in
toluene(-d8) solution at −25 °C (to exclude thermal reactions
of D) leads to the appearance of the spectral hallmarks of
isomers C and D in the absorption and 1H NMR spectra. In
the photostationary state (pss), a mixture comprising 19%
remaining HTI-TOND A and a total of 81% isomers C (50%,
dominating species in solution) and D (31%) is formed. It is
thus established that photoirradiation of HTI-TOND A with
UV light leads to a rather exotic photochemical retro-hetero-
Diels−Alder (RHDA) reaction that opens the TOND
structure, yielding an intense yellow color of the solution.
This photoreaction also delivers a different isomer than the

Figure 2. Thermal isomerization reactions of HTI-TOND system 1
and corresponding ground-state energy profile. (a−c) 1H NMR
spectra (400 MHz, toluene-d8) showing thermal conversions of
isomer HTI-TOND A at 100 °C, isomer C at 60 °C, and isomer D at
22 °C, respectively. Marked signals correspond to the OMe groups.
(d) Experimental (red, all values correspond to 22 °C) and theoretical
(violet) ground-state energy profile of 1.

Figure 3. Photoisomerization and switching reactions of HTI-TOND
system 1. (a) Molar absorptions of individual isomers A, B, C, and D
of 1. (b) 1H NMR (400 MHz, toluene-d8) spectra showing
photoconversions between individual isomers of 1 (MeO signals are
shown). (c) Cycle experiment followed by 1H NMR spectroscopy
(400 MHz, toluene-d8) in which isomers of 1 are converted in the
sequence A → C/D → A → B → A.
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thermal reaction of HTI-TOND A, which establishes the latter
as the branching point for the switching capacity of 1.
Isomer B possesses an absorption that reaches the 400 nm

mark with its tail. It can thus be irradiated with light of longer
wavelengths (e.g., 365 nm in toluene(-d8)) at different
temperatures, leading to population of isomers C and D in
roughly equal amounts first and then to almost complete
conversion to HTI-TOND A after prolonged irradiation times.
Low-temperature irradiation of B shows that this behavior is
due solely to photoconversions, including a less efficient
photoreaction from B to A, resulting in a pss with up to 97% A
accumulated. The dominating photochemical reaction from B
to C/D represents again a rather exotic oxygen-rearrangement
reaction, which also differs from the corresponding thermal
rearrangement leading from HTI-TOND A to B. The
mechanism is again not clarified at this point and is currently
under investigation in our laboratory. When toluene(-d8)
solutions of pure isomer C are irradiated at a wavelength of
300 or 365 nm at different temperatures, isomer D is
populated initially as the product of Z/E photoisomerization,
but conversion to HTI-TOND A over prolonged irradiation
times is also observed. Likewise, irradiation of isomer D leads
to almost complete conversion to isomer A after prolonged
irradiation times with 365 nm or longer-wavelength light.
Taking the photochemistry of 1 together, irradiation of

isomer B with 365 nm light populates isomer A almost
quantitatively. Isomers C and D can be accumulated in up to
81% yield after irradiation of HTI-TOND A with 300 nm light
and thus serve as a thermally stable third state. When in turn
isomers C and D are irradiated with 365 nm light, they readily
convert back to A photochemically. Some degradation is
observed in the photoreactions (see the Supporting
Information), but in the presence of acid the overall switching
processes are facilitated and proceed more rapidly.
Overall, it is thus possible to access three different states of 1

in high percentages and convert them reversibly into each
other using light of different wavelengths and heat as signals.
The fourth isomer D cannot be enriched to the degree of being
the dominant species in solution at present. However, up to
30% D can be obtained by irradiation of isomer A at low
temperatures. HTI-TOND isomer A serves as the branching
point, from which isomers B and C/D can be obtained in high
yields either thermally or photochemically, respectively. To
illustrate, we have conducted a cycle experiment interconvert-
ing the isomers in the sequence A → C/D → A → B → A
(Figure 3c). Additionally, the interconversion sequence A → B
→ A was conducted four times (see the Supporting
Information), evidencing multiple switching cycle capacity.
In summary, we have presented a unique molecular

photoswitch that allows multistate switching in different
sequences by a combination of light and heating signals.
During switching the rigidity and electronic character of the
molecular architecture are altered significantly, leading from
colorless to deep-yellow solutions. Unusual RHDA and
rearrangement photo- and thermal reactions are employed
for the isomerization processes, which now enter the stage of
photoswitching together with a unique molecular 3D structure
as a novel motif for responsive nanosystems. We believe that
this photoswitching system offers highly interesting and
distinctive possibilities for responsive molecular functions in
all chemistry-related fields. Applications as well as mechanistic
elucidations are currently under investigation in our laboratory.
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