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While the soft mechanics and tunable cell interactions facilitated by hydrogels have
attracted significant interest in the development of functional hydrogel-based tissue
engineering scaffolds, translating the many positive results observed in the lab into the
clinic remains a slow process. In this review, we address the key design criteria in terms of
the materials, crosslinkers, and fabrication techniques useful for fabricating translationally-
relevant tissue engineering hydrogels, with particular attention to three emerging
fabrication techniques that enable simultaneous scaffold fabrication and cell loading:
3D printing, in situ tissue engineering, and cell electrospinning. In particular, we
emphasize strategies for manufacturing tissue engineering hydrogels in which both
macroporous scaffold fabrication and cell loading can be conducted in a single
manufacturing step – electrospinning, 3D printing, and in situ tissue engineering. We
suggest that combining such integrated fabrication approaches with the lessons learned
from previously successful translational experiences with other hydrogels represents a
promising strategy to accelerate the implementation of hydrogels for tissue engineering in
the clinic.
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1 INTRODUCTION

Every year, a high number of deaths or disabilities results from the loss or damage of tissues and
organs from injuries or diseases (Chapekar, 2000; Vos et al., 2020). According to the recent
international report from the Global Observatory on Donation and Transplantation (GODT),
>153,000 organs were transplanted worldwide in 2019, a 4.8% of increase over 2018; however, this
number still represented only 10% of global needs. (Organ Donation and Transplantation Activities,
2021) While the transplantation of the damaged tissues or organs either with compatible donors or
artificial devices can in part address this challenge (Lee and Mooney, 2001), the number of suitable
donors is extremely limited, resulting in long-term wait lists for the patients. Side effects caused by
immune/inflammatory responses to transplanted tissues pose additional challenges (Wang et al.,
2007; Beyar, 2011; Black et al., 2018). Tissue engineering approaches, first defined in 1988 as the
“application of the principles and methods of engineering and life sciences toward a fundamental
understanding of structure-function relationship in normal and pathological mammalian tissues and
the development of biological substitutes for the repair or regeneration of tissue or organ function”.
(Skalak and Fox, 1988; Langer and Vacanti, 1993), aim to address these challenges by fabricating
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biomaterials into structural scaffolds to mimic the extracellular
matrix of cells and provide support for cell proliferation and
tissue regeneration; subsequent implantation of these scaffolds,
either cell-free (to promote cell ingrowth from the native tissue)
or cell-laden (to functionally regenerate native tissue with
transplanted cells) leads to tissue regeneration, with scaffolds
in most cases designed to degrade at a rate suitable to support new
functional tissue formation for as long as required to enable
native cell proliferation/organization but ultimately clear once the
natively-produced ECM can support the tissue. More recently,
tissue engineering has been more specifically defined as the use of
cells, scaffolds, and growth factors to replace or regenerate damaged
tissues, differentiating it from the broader field of regenerative
medicine in which other strategies including gene therapy, cell-
based therapies, and/or immunomodulation are leveraged in
combination with tissue engineering strategies to regenerate
tissues and/or organs (Frey et al., 2016; Han et al., 2020).

Hydrogels, networks of water-soluble polymers physically or
chemically crosslinked to form a gel, have been widely used as
vehicles to deliver cells to a designated location in the body (Hunt
et al., 2014), scaffolds to encapsulate cells to improve cell adhesion
or cell proliferation (Ayala et al., 2011), or fillers to fill defects and
promote healing while preventing infection (Mooney and
Vandenburgh, 2008). The use of hydrogels in this context is
motivated by their soft biomechanics mimicking those of native
soft tissues such as skin, muscle, fat, or nerve (Ma et al., 2003; Bian
et al., 2009; Tibbitt and Anseth, 2009; Guillame-Gentil et al.,
2010), tunable pore sizes, compatibility with the cellular
environment, suppression of inflammatory responses, and ease
of functionalization (Lee and Mooney, 2001; Drury and Mooney,
2003). However, challenges still exist that limit the use of
hydrogels as functional tissue engineering scaffolds: 1) the
mismatch between the pore (mesh) size of the gel network of
conventional hydrogels (on the tens of nanometer scale) and the
dimensions of cells (on the micron scale) poses challenges with
promoting cell proliferation unless specific strategies to introduce
the desired micro/microporosity are implemented; 2) the inherently
lower modulus of most hydrogels relative to other types of
biomaterials can cause challenges with stabilizing the macro or
micro-porous structures or complex geometries typically sought
to mimic the morphology of native extracellular matrix; and 3)
the inherent cell repellency of most hydrogels (in particular actively
cell-repellent/anti-fibrotic hydrogels such as poly (ethylene glycol) or
zwitterionic hydrogels widely applied in tissue engineering contexts
(Bai et al., 2014; Bernhard et al., 2017)) limits the degree of cell

adhesion that is typically achieved. As such, to design effective
hydrogel-based tissue engineering scaffolds, their chemical
properties (e.g., degradation, crosslinking), physical properties
(e.g., biomechanics, porosity, diffusion) and biological properties
(e.g., cell type, growth factor and bioactive cues)must all be rationally
designed.

Although multiple biomaterials and techniques such as
combining natural and synthetic polymers to improve cell
compatibility (Place et al., 2009), incorporating biomolecules
or functional groups to improve cell adhesion (Zhu, 2010), or
using advanced techniques to incorporate stable micro/
nanostructures in scaffolds (De France et al., 2018) have been
applied to design hydrogel-based scaffolds for specific cell types,
the translation of hydrogels for clinical use remains a challenge
(Bhatia, 2012; Caló and Khutoryanskiy, 2015); with only a few
hydrogels (e.g., Apligraf®, AlloDerm®, and Juvéderm®) have been
approved for use in the clinic (Gaharwar et al., 2020; Mandal
et al., 2020). In this review, we will focus on the design and
fabrication of hydrogels for tissue engineering with particular
attention to their clinical translation, including recent advances in
chemistry and fabrication approaches to better mimic the
extracellular matrix of soft tissues. In particular, we emphasize
strategies for manufacturing tissue engineering hydrogels in
which both macroporous scaffold fabrication and cell loading
can be conducted in a single manufacturing step –
electrospinning, 3D printing, and in situ tissue engineering
(Figure 1). We suggest that combining such integrated
fabrication approaches with the lessons learned from
previously successful translational experiences with other
hydrogels represents a promising strategy to accelerate the
implementation of hydrogels for tissue engineering in the clinic.

2 BIOMATERIALS FOR HYDROGEL
PREPARATION

A key consideration in the design of functional hydrogels for
tissue engineering is their ability to closely mimic the native
extracellular matrix (ECM) of the targeted tissues (Tibbitt and
Anseth, 2009; Tsang et al., 2010). The ECM plays an integral role
in maintaining tissue homeostasis by regulating cell function,
tissue architecture, and storing growth factors that regulate cell
adhesion and interactions (del Bakhshayesh et al., 2019), thus
serving as the key signaling strategy for cell differentiation,
proliferation and migration (Unal and West, 2020). As such,
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many examples of the use of hydrogels in tissue engineering have
applied native or modified ECM materials (e.g., collagen, gelatin,
fibrin) that contain specific peptide sequences (e.g., RGD, YIGSR,
and others) that can interact with cell surface receptors (e.g.,
integrins) to promote cell adhesion and tissue growth without
additional functionalization (Lei et al., 2011). However, native
ECM materials also contain other types of binding domains (e.g.,
immunoglobulin-like adhesion molecules) that can elicit other
types of biological responses that can result in poor tissue growth
or undesirable side-effects (e.g., inflammation or fibrosis),
particularly if the components are in some way denatured
during processing (Chen and Hunt, 2007; Unal and West,
2020). In contrast, synthetic hydrogels (e.g., poly (ethylene
glycol)) minimize non-specific protein adsorption and thus
immune/inflammatory responses but typically have poor cell
adhesion to the hydrogel scaffold (Li et al., 2012). While
grafting small adhesive peptides, commonly Arg-Gly-Asp
(RGD) peptides, can in part overcome this challenge, such
modifications represent an additional synthetic and
purification steps that can increase the cost of material and
complicate the regulatory approval process (Zhu, 2010).

The degradation and clearance rate of the polymers selected is
also critical for promoting tissue growth in most tissue
engineering approaches (Unal and West, 2020). As cells form

functional tissues, hydrogel scaffolds are typically designed to
degrade and clear from the body with minimal impact to
surrounding tissues and organs. Native and modified ECM
proteins like collagen, elastin, fibrin and hyaluronic acid (HA)
are susceptible to enzyme-mediated degradation and are
metabolized into biocompatible small molecules (Smeets et al.,
2014). In contrast, most synthetic hydrogels are based on
polymers with carbon-carbon backbones that cannot be
metabolized, thus requiring the incorporation of hydrolytically
labile segments or enzyme-sensitive linkages (e.g., peptide
binding domains for native enzymes) to enable controlled
degradation (Zhu, 2010), typically into oligomeric by-products
with molecular weights appropriate for renal clearance (<60 ×
103 g/mol) (Pasut and Veronese, 2007).

Finally, the compositional and morphological diversity (and
thus range of accessible physicochemical properties) of a given
hydrogel in relation to its target application should be considered
in choosing the correct hydrogel material. The exceptional
control that modern polymer chemistry techniques can impart
on both the chemistry and the molecular structure of a synthetic
polymer can enable precise tailoring of the physiochemical and
mechanical properties of synthetic hydrogels in a way that is
challenging to reproduce with naturally-derived polymers that
typically have broad molecular weight distributions and complex

FIGURE 1 | Design of functional hydrogels for tissue engineering. Selected constituent images reproduced with permission from references (Jin et al., 2011; Fuoco
et al., 2014; Fang et al., 2016; Grigoryan et al., 2019; Mirdamadi et al., 2020; Li et al., 2021).
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variable compositions (Place et al., 2009). Synthetic polymers also
offer higher reproducibility and significantly less potential for
batch contamination given that they avoid the need for the
complex purification protocols required to isolate natural
polymers from their animal or plant source (Hutmacher, 2010;
Unal and West, 2020); in particular, naturally derived and
modified ECM components pose significant challenges in
terms of the removal of contaminants such as proteins (e.g.,
non-tissue relevant structural proteins, immunity-triggering
xenograft proteins), polyphenolics, endotoxins, RNA, and
DNA which can trigger undesirable biological responses and
thus significantly complicate practical clinical use (Gilpin and
Yang, 2017; Montalbano et al., 2018).

Balancing these competing considerations makes the selection
of the type of polymer(s) (natural or synthetic) and the specific
polymer(s) within one of those two groups to design a hydrogel-
based tissue engineering scaffold complex (Figure 2). In the
following sections, we will outline the major types of natural
and synthetic polymers used to form hydrogels, the major
strategies available to crosslink those polymers to form
hydrogels, and the relative advantages and disadvantages of
each in the context of practical tissue engineering applications.

2.1 Naturally-Derived Hydrogels
2.1.1 Collagen
Collagen is a principal component of the ECM typically
isolated from mammalian bone, cartilage, skin, tendons, and
ligaments (Antoine et al., 2015). Collagen hydrogels,
commonly based on type I collagen that constitutes the

large majority of the total collagen found in the body, are
typically formed through hydrogen bond-driven self-assembly
into fibrils under physiological temperature irrespective of pH
(Ferreira et al., 2012), although other approaches such as
crosslinking with small molecules (e.g., glutaraldehyde,
genipin, or EDC/NHS (1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide/N-hydroxysuccinimide)) or enzyme-induced
crosslinking (e.g., microbial transglutaminase (MTG)) have
also been reported (Garcia et al., 2007; Adamiak and
Sionkowska, 2020). Like many naturally derived hydrogels,
the amino acid sequence of collagen is easily recognized by
host cells and can be degraded in vivo by naturally occurring
collagenase (Seibel et al., 2006). Naturally occurring binding
domains on collagen can promote cell adhesion and cell-cell
interactions, allowing encapsulated cells to develop into
functional tissues (Glowacki and Mizuno, 2008).
Furthermore, the larger pore sizes typically observed
following the self-assembly of collagen provide physical
space for cell proliferation, although also making the gels
susceptible to relatively rapid degradation in vivo that can
limit accessible culturing times before native cell ECM
production must take replace the structural properties of
the delivered scaffold (Song et al., 2006; Ferreira et al.,
2012). The production of collagen hydrogels is however
associated with high manufacturing costs stemming from
the time-consuming purification and isolation procedures
required for collagen isolation (Nagai et al., 2004). Despite
its primary role of structural support in the ECM, collagen-
based hydrogels also typically have poor mechanical strength

FIGURE 2 | Venn diagram describing the key properties of natural and synthetic polymers most commonly used for fabricating hydrogel-based tissue scaffolds.
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in comparison to many synthetic hydrogels (Antoine et al.,
2015; Montalbano et al., 2018). Mixing collagen with other
biomaterials (most typically other natural polymers such as
alginate, gelatin, or fibrin) can in part improve such properties.
For example, Montalbano et al. reported that collagen
concentrations of 2.5 w/v% in collagen-alginate-fibrin
thermoresponsive hydrogels promoted increased fibril
homogeneity, faster gelation times, greater stability, and
sustained cell morphology relative to collagen-only
hydrogels, although care must be taken to maintain high
nutrient transfer and metabolite diffusion in denser collagen
networks (Montalbano et al., 2018).

2.1.2 Gelatin
Gelatin is an inexpensive and readily available material derived
from denaturing the triple-helix structure of collagen into single
strands (Elzoghby, 2013). Gelatin hydrogels undergo facile
physical crosslinking under low temperatures and can hold
significant amounts of water, favorable for nutrient transport
(van den Bulcke et al., 2000). Since gelatin is a derivative of
collagen, it also contains RGD binding motifs for cell adhesion
and degrades into non-toxic resorbable products, with the
denatured state lowering the antigenicity of gelatin compared
to collagen (Elzoghby et al., 2012). However, the low stability of
gelatin hydrogels at physiological temperatures in the absence of
chemical crosslinks (or another type of temperature-insensitive
physical crosslink) typically imparts poor mechanical strength
(van den Bulcke et al., 2000). Grafting gelatin with methacrylic
anhydride to create gelatin methacryloyl (commonly referred to
as GelMA) that is UV photocrosslinkable offers an alternative to
introduce covalent crosslinks into the gelatin scaffolds to improve
their stability and has been widely applied for tissue scaffold
development, although such functionalization requires additional
synthetic grafting and subsequent polymerization (typically
photopolymerization) steps. As with collagen, combinations of
gelatin with other natural polymers are also often pursued to
address the mechanical limitations of native gelatin hydrogels.
For example, Shen et al. fabricated gelatin-chitosan hydrogels to
recreate ideal scaffold degradation rates and pore sizes for
cartilage formation, with the added gelatin enabling the
reduced pore size, increased mechanical strength and
increased elasticity required to grow cartilage (Shen et al., 2015).

2.1.3 Fibrin
Fibrin, formed by thrombin-mediated crosslinking of fibrinogen,
plays a critical role in the regulation of tissue homeostasis and
wound healing (Ehrbar et al., 2007; Ahmed et al., 2008). Similar to
collagen and gelatin, fibrin contains multiple integrin and cell
binding domains (including the RGD sequence most commonly
implicated in integrin-mediated cell adhesion) (Janmey et al.,
2009) and degrades into non-toxic by-products via enzymatic
(plasmin-mediated) degradation (Janmey et al., 2009); unlike
other natural hydrogels, fibrin networks rapidly self-crosslink
via polycondensation reactions catalyzed by thrombin to form
relatively stiffer gel matrices (Janmey, 1982) with the gelation
time and the mechanics of the resulting fibrin hydrogels
controllable by modifying thrombin concentrations (Janmey

et al., 2009). However, consistent with its role in reversible
clot formation, fibrin gels typically degrade rapidly in 15 days
(Bensaı€d et al., 2003; Noori et al., 2017). As such, combinations of
fibrin with other biomaterials (e.g., medical biodegradable
aliphatic polyurethane or alginate) have been reported to
prolong the residence time of the hydrogel scaffold to better
match the targeted rate of tissue regeneration (Lee et al., 2005;
Deepthi and Jayakumar, 2018).

2.1.4 Hyaluronic Acid
Hyaluronic acid (HA) is a linear polysaccharide that is found
throughout the body but particularly in connective tissues (Price
et al., 2007). HA plays a critical role in tissue hydration, nutrient
diffusion, proteoglycan organization and cell differentiation (Tan
et al., 2009). Similar to other natural polymers derived from the
ECM, HA is degraded by host enzymes - specifically,
hyaluronidase which is found in serum (Smeds and Grinstaff,
2001). HA is also upregulated in tissues with high growth rates
and at wound sites due to the key role of HA in promoting cell
spreading and proliferation (Burdick and Prestwich, 2011).
Compared to other natural materials such as collagen and
gelatin, HA is easily modified to diversify its mechanism of
gelation, with a range of functional groups including thiol,
hydrazide, aldehyde, and tyramine groups all reported to
prepare crosslinked hydrogels (Burdick and Prestwich, 2011).
For example, Park et al. prepared an injectable HA hydrogel using
tetrazine-modified HA (HA-Tet) and transcyclooctene-modified
HA (HA-TCO) that can be crosslinked in situ under
physiological conditions via a Diels–Alder click reaction (Park
et al., 2019). The in situ crosslinked HA hydrogel can enable
chondrogenic differentiation of encapsulated human periodontal
ligament stem cells (hPLSCs) as induced by cytomodulin-2 (CM)
that was also covalently linked to HA (Park et al., 2019). However,
the extremely high-water binding capacity of HA can limit the
concentration of the polymer that can be used to fabricate
hydrogels based on the high viscosity of the precursor
polymers, thus also limiting the resulting mechanics of the
resulting hydrogels.

2.1.5 Chitosan
Chitosan is a positively charged polysaccharide formed through
the deacylation of chitin, the main structural component of
crustacean exoskeletons (Islam et al., 2020). Although chitosan
is not found natively in human ECM, the somewhat unique
cationic charge of chitosan among carbohydrates can promote
cell adhesion via electrostatic interactions, avoiding the common
need for incorporating specific peptide motif cell binding sites
into ECM-mimicking hydrogels. Chitosan hydrogels can be
formed via physical crosslinking (typically hydrogen bonding,
although such hydrogels are weak and can be highly pH-sensitive
(Nicodemus and Bryant, 2008)), ionic complexation (e.g., with
polyaspartic acid sodium salt or tripolyphosphate), or covalent
crosslinking (e.g., with glutaraldehyde or formaldehyde),
although the covalent crosslinkers typically used can pose
significant toxicity challenges if residual crosslinker is not fully
removed from the gel after crosslinking is complete (Hennink and
van Nostrum, 2012; Cho et al., 2016). Chitosan is non-toxic (with
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proper purification), can have low immunogenicity (Nicodemus
and Bryant, 2008), can adhere strongly to mucosal surfaces, and
has some inherent anti-bacterial properties that may be beneficial
to prevent post-implantation infections (Samprasit et al., 2015;
Karava et al., 2020). However, native chitosan is insoluble at
neutral pH (thus requiring the use of acidic solutions to fabricate
hydrogels that can pose cell toxicity challenges). Chitosan is also
not inherently biodegradable, although oxidative degradation of
the glycosidic bonds can occur over time to break chitosan back
down to oligomeric sugars (Einbu et al., 2007). Modified chitosan
derivatives such as carboxymethyl chitosan can overcome the
solubility problem but can partially dilute some of the benefits of
chitosan in terms of cell adhesion or anti-bacterial properties.
While chitosan has been used in a range of tissue engineering
applications, these hydrogels have notably been found to promote
bone formation by increasing alkaline phosphatase activity and
calcium deposition in osteogenic mediums (Wang and
Stegemann, 2010).

2.1.6 Alginate
Alginate is a linear anionic polysaccharide isolated from brown
algae that can rapidly form hydrogels upon exposure to divalent
cations (Augst et al., 2006; Bidarra et al., 2014). Calcium is the
most common crosslinking ion and facilitates relatively strong
alginate gelation through the formation of an “egg crate”
structure in which four alginate residues interact with a single
calcium, although other alkali earth metal ions (in particular
barium) can also be used as crosslinkers to modify the stability of
the ionic crosslink in different environments (Bidarra et al., 2014;
Matyash et al., 2014). Although ionic crosslinking mechanism is
simple and highly cytocompatible, solutes present in the
microenvironment can strongly influence alginate crosslinks
and can result in poorly controlled degradation through ion
exchange with the high concentration of monovalent ions in
the physiological environment (Neves et al., 2020). Alginate also
cannot inherently promote cell adhesion, with co-formulation
with other ECM components that can be physically entrapped
within the rapidly forming alginate-calcium hydrogel (e.g.,
collagen) and/or cell adhesion peptides grafted to alginate both
found to improve adhesion (Moxon et al., 2019). Furthermore,
while degradation of the hydrogel is facile via ion exchange,
clearance of the alginate polymer itself can be slow if the
molecular weight exceeds the renal cut-off, with only
oxidation available to degrade the polymer itself in vivo
(Lueckgen et al., 2019). Chemical modifications on the
hydroxyl groups or carboxyl groups of alginate have been
developed to improve the physiochemical and mechanical
properties of alginate hydrogels (Neves et al., 2020), with
methacrylation being the most popular method to enable the
fabrication of dual ionic (calcium-induced gelation)/covalent
(photogelation of methacrylate groups) crosslinked hydrogels
that can achieve significantly higher moduli than either
crosslinking approach can achieve alone (Samorezov et al., 2015).

2.1.7 Methylcellulose
Methylcellulose (MC) is a non-toxic, degradable, and
thermoresponsive polymer derived from cellulose (Adamiak

and Sionkowska, 2020). Given that the sol-gel transition
temperature of MC is close to the body temperature, MC has
been used to prepare thermoresponsive hydrogels that have been
widely applied in tissue engineering, including in situ gelling
systems for cell and biomolecule delivery, bioprinting inks, and
surface modifications for cell adhesion (Adamiak and
Sionkowska, 2020). The lower critical solution temperature
(LCST) of MC can be adjusted by either changing the
properties of MC (e.g., concentrations, degree of substitution,
modifications) or the external environment (e.g., anions, solvent,
electromagnetic fields) (Adamiak and Sionkowska, 2020).
However, purely physically crosslinked MC hydrogels cannot
provide a long-term mechanical support for cell encapsulation,
requiring the co-formulation with other materials or chemical
modifications to improve the mechanical properties and/or
longevity of the MC-based scaffolds. For example, Shin et al.
prepared a tyramine-modified MC hydrogel with improved
mechanical properties by combining MC-driven thermally-
induced crosslinking with photocrosslinking and demonstrated
the utility of the material for 3D bioprinting (Shin et al., 2020),
while the Shoichet group developed an injectable hydrogel blend
composed of hyaluronan and methylcellulose (HA-MC) in which
HA was added to improve the mechanics of the gel and promote
shear thinning to aid in injectability at higher polymer
concentrations without compromising the thermogelation
capacity of the MC component (Tam et al., 2012; Ho et al., 2019).

2.2 Synthetic Hydrogels
2.2.1 Poly (Ethylene Glycol) and Derivatives
Poly (ethylene glycol) (PEG) is a synthetic hydrophilic polymer
used for a variety of biomedical applications due to its low
cytotoxicity, non-immunogenicity and non-specific protein
adhesion properties (LEE et al., 1995; Zhu, 2010). PEG-based
hydrogels are typically formed by the free radical polymerization
of bifunctional PEG diacrylate (PEGDA) or PEG dimethacrylate
(PEGDMA) macromonomers, with the average pore size of the
gel directly controllable based on the average chain length of the
PEG chains between the crosslinker groups (Reid et al., 2015).
Multi-arm PEG acrylates or end-functionalized PEG precursors
(e.g., those crosslinkable by click chemistry with complementary
functional groups) have also been formed that offer the potential
to form ideal hydrogels with highly defined pore structures
(Bakaic et al., 2015). As such, the degree of hydrogel structure
control achievable with PEG is very high. However, the high cell
repellency of hydrogels represents a drawback of this material for
practical tissue engineering applications, typically requiring the
incorporation of other entities such as grafted cell adhesion
peptides, hydrophobic block copolymers (e.g., PEG-block-poly
(ε-caprolactone), PEG-PCL) or thermoresponsive block
copolymers (PEG-block-poly (propylene oxide), PEG-PPO);
the latter two approaches also enhance the mechanics of the
hydrogel via a dual covalent bonding/hydrophobic interaction
crosslinking mechanism) (Zhu, 2010; Bakaic et al., 2015). The
choice of crosslinking agent(s) can directly influence hydrogel
degradation, swelling, porosity, and mechanical strength as
desired for a specific tissue engineering application. For
example, Liu et al. mixed non-degradable PEG-dithiol and
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degradable PEG-metalloproteinase crosslinkers in various ratios
with 4-armed PEG-MAL to create enzymatically degradable PEG
hydrogels with tunable degradation rates, pore size and
mechanical strengths relevant to promote adipocyte and
osteoblast differentiation (Liu et al., 2020). However, unless
degradation is directly incorporated into the network (as in
the Liu et al. example above), PEG is not inherently
degradable aside from slow oxidation that may occur at the
ether linkages in the main PEG chain. In addition, increasing
concern about the development of PEG antibodies (estimated to
exist in up to 89% of the patients (Sundy et al., 2011; Zhang et al.,
2016) due to environmental exposure to PEG in personal care
products and laxatives, among others) may result in an
unanticipated immune response to a PEG-based material
(Garay et al., 2012; Zhang et al., 2016). PEO-based block
copolymers such as poly (ethylene oxide)-b-poly (propylene
oxide)-b-poly (ethylene oxide) (PEO-PPO-PEO), commercially
known as poloxamers, Pluronics®, Synperonics® or Lutrol®, are
particularly notable given their potential to undergo thermal
gelation at body temperature without the need for any
external chemicals or post-treatment (Russo and Villa, 2019;
Zarrintaj et al., 2020). The in situ gelation of poloxamers has
been leveraged to create injectable hydrogels for cell delivery and
tissue regeneration (Russo and Villa, 2019). However, the micelle-
based gelation mechanism typically results in weaker hydrogels
that can disassemble relatively quickly in vivo. Hybrid materials
that combine poloxamers with other gelling polymers offer
promise to address this challenge, often using the poloxamer
to rapidly immobilize the hydrogel at the site of injection to allow
further fixation to occur. For example, Suntornnond et al. mixed
Pluronic F127 (poloxamer 407) with GelMA to prepare a
printable hydrogel ink for fabricating vasculature-like
structures (Suntornnond et al., 2017). The micelle formed by
Pluronic improved the printability of the composite hydrogel ink
at a wide range of temperatures while GelMA can be further
crosslinked by UV light to improve the mechanical stability of
printed structures (Suntornnond et al., 2017). The surfactant-like
structure of poloxamers can however introduce challenges with
preserving high cell viability within the scaffold, causing changes
in the lipidic profile, or inducing renal toxicity (Dumortier et al.,
2006) that may limit the translational potential of poloxamers.

2.2.2 Poly (Vinyl Alcohol)
Poly (vinyl alcohol) (PVA) has attracted attention for its high-
water retention and superior mechanical strength to PEG,
enabling its use in applications requiring stiffer scaffolds such
as the replacement of articular cartilage (Schmedlen et al., 2002).
PVA hydrogels are typically formed via a simple repeated freeze-
thawing process, resulting in the formation of strong hydrogen
bonded crosslinked networks with tunable pore sizes based on the
rate and frequency of freezing used. PVA hydrogels can also be
prepared using freeze-drying techniques by taking advantage of
the same strong hydrogen bonding networks (Vrana et al., 2009);
using either technique, elastic, non-toxic and stable hydrogels can
be formed at room temperature. However, neither process is
readily adaptable to injectable use like many other polymers
described, which may limit the use of PVA to surgical

implantation rather than injectable scaffold formation. PVA is
a non-degradable polymer under physiological environment and
does not inherently promote cell adhesion, which limits the
applications in tissue regeneration. Moreover, the hydrogen
bonding-based crosslinking strategy of PVA increases the
difficulties of chemical modifications with other polymers that
can address these drawbacks. The formation of composite PVA
hydrogels by physically encapsulating natural ECM components
such as collagen or gelatin (Wu et al., 2018) or 3 (Lim et al., 2013)
have both been pursued to avoid this problem; in the latter case, a
tyramine-functionalized poly (vinyl alcohol) (PVA-Tyr) polymer
was synthesized that can be crosslinked via photopolymerization
and degraded via hydrolysis of the ester bond linking the Tyr
groups with PVA, with gelatin also incorporated via interactions
of the tyrosine fractions of gelatin and tyramine groups of PVA-
Tyr to enable improve cell adhesion (Lim et al., 2013).

2.2.3 Poly (N-Isopropylacrylamide)
Poly (N-isopropylacrylamide) (PNIPAAm) is an amphiphilic
temperature-responsive smart polymer typically fabricated via
free radical polymerization. PNIPAM has a lower critical solution
temperature (LCST) of ~32°C and therefore can form a hydrogel
at physiological temperatures by thermally-driven self-assembly
(Haq et al., 2017); however, the highly dehydrated state of the self-
assembled polymers at 37°C has motivated covalent crosslinking
of PNIPAM and/or the co-incorporation of more water-binding
components into the hydrogel (e.g., by copolymerization of more
hydrophilic comonomers or physical encapsulation of
hygroscopic polymers (Jin et al., 2008; Ding et al., 2020)) to
maintain higher water contents under physiological conditions.
The more hydrophobic character of PNIPAM at body
temperature can promote cell adhesion via hydrophobic
interactions despite the lack of specific cell binding domains
(Ashraf et al., 2016), although the collapse of the gel can result in
relatively low pore sizes that may hinder cell growth and signaling
(Atoufi et al., 2019). The main drawback of PNIPAM is the high
toxicity of the NIPAM monomer (Joseph et al., 2021), which
requires extensive purification of the hydrogel prior to practical
use in vivo and has posed translational challenges with other
PNIPAM-based technologies (Capella et al., 2019). PNIPAM is
also not inherently degradable in vivo, although crosslinking
PNIPAM oligomers that are renally clearable via hydrolytically
labile bonds can address this degradation/clearance challenge
(Patenaude and Hoare, 2012).

2.2.4 Poly (Oligoethylene Glycol Methacrylate)
Poly (oligoethylene glycol methacrylate) (POEGMA) has a
methacrylate-based backbone (making it polymerizable via free
radical polymerization) and PEG-based side chains. By tuning the
length of the PEG side chains, the polymer properties can be
switched from being temperature-responsive (n = 2–3 ethylene
oxide side chains) to being highly protein-repellent (n > 5–6
ethylene oxide repeat units) (Patenaude et al., 2014; Smeets et al.,
2014); coupling this benefit with the capacity to include any type
or number of functional group(s) in the polymer via simple free
radical copolymerization and the noted lower (or absent)
immune response to the material (Bakaic et al., 2015; Chen
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et al., 2021), POEGMA avoids many of the challenges of PEG
while maintaining its beneficial non-toxic, non-immunogenic,
and protein repellent properties. We have demonstrated that
incorporating aldehyde and hydrazide moieties into POEGMA-
based polymers enables the formation of injectable in situ-gelling
and hydrolytically-labile hydrazone crosslinked hydrogels with
highly tunable pore size, gelation time and mechanical strength
without inducing any significant cytotoxic effects in vitro or in
vivo; keeping the precursor polymer molecular weight < 40 kDa
maintains the potential for clearance upon hydrolysis of the
hydrazone crosslink even in the context of the non-degradable
C-C backbone (Smeets et al., 2014; Bakaic et al., 2015). POEGMA
offers an attractive alternative to PNIPAM and PEG because of its
non-toxic degradation products and facile functionalizability,
respectively (Smeets et al., 2014; Bakaic et al., 2015). In situ
gelling thermosensitive POEGMA hydrogels that can undergo
phase transitions at a range of physiologically relevant
temperatures can be obtained by mixing di(ethylene glycol)
methyl ether methacrylate (M(EO)2MA) with longer chain
(n = 7–8 ethylene oxide repeat units) OEGMA monomers,
with the transition temperature varying linearly with the mole
percentage of each monomer (Lutz et al., 2006) while preserving a
relatively sharp temperature response (unlike with PNIPAM, in
which transitions become much broader when hydrophilic
comonomers are incorporated) (Smeets et al., 2014; Xu et al.,
2021). In addition, although POEGMA does not contain inherent
binding cell binding domains, the thermo-reversible natural of
POEGMA smart gels enables cell adhesion at temperatures above
the volume phase transition temperature of the hydrogel (Xu
et al., 2021). For example, Smeets et al. demonstrated good cell
adhesion, mild inflammatory responses, and good stability (over
several weeks) using hydrazone-crosslinked POEGMA hydrogels
in vivo (Smeets et al., 2014).

2.2.5 Poly (2-Hydroxyethyl Methacrylate)
Poly (2-hydroxyethyl methacrylate) (PHEMA) hydrogels were
first introduced in the 1960s for use in contact lenses and have
since been widely explored in tissue engineering given that they
have many of the same advantages as PVA and PEG previously
described (Xinming et al., 2008; Zare et al., 2021). However,
unlike PEG, it can be freely copolymerized with other
comonomers (making functionalization easier) and, unlike
PVA, it is easily crosslinkable via a range of different strategies
(making its degradability more controllable). Creating scaffolds
that combine PHEMA with other natural (e.g., HA (Huang et al.,
2013) or dextran (Meyvis et al., 2000)) and synthetic polymers
can optimize the mechanical strength, non-immunogenicity, and
physical properties of PHEMA gels to match those of living
tissues (Bach et al., 2012). Similar to other synthetic hydrogels,
PHEMA hydrogels are not inherently degradable in physiological
conditions, requiring the incorporation of hydrolytic or enzyme-
degradable segments, although such copolymerization is
relatively facile with free radical copolymerization or
derivatization of the alcohol side groups. (Meyvis et al., 2000).
For example, Dragusin et al. prepared gelatin-pHEMA hydrogel
scaffolds by photocrosslinking HEMA with methacrylamide-
modified gelatin, with the incorporation of gelation improving

the swelling properties, enhancing cell adhesion, and enabling
enzymatic control over gel degradation (Dragusin et al., 2012).
PHEMA hydrogels have also been noted to undergo calcification
after long-term implantation, a potential benefit for bone tissue
engineering but a potentially negative consideration for
regenerating other soft tissues (Vijayasekaran et al., 2000).

2.3 Crosslinking Methods
Once the backbone polymer is chosen, the method of crosslinking
the polymer chains together must be judiciously selected. Physical
crosslinking and chemical crosslinking strategies are available,
each with their own advantages and drawbacks in the context of
tissue engineering. Compared to physical crosslinking, chemical
crosslinking strategies typically result in linkages with more
controllable degradation profiles and better mechanical
properties; however, chemical crosslinking typically requires
some kind of chemical derivatization of the backbone polymer
and/or additional synthetic steps that may not be fully compatible
with cells, unlike most physical crosslinking processes (Hennink
and van Nostrum, 2012; Hu et al., 2019). In situ gelling in which
the hydrogel gels upon injection in vivo via either physical
crosslinking (i.e., ionic crosslinking, thermoresponsive phase
transitions) or chemical crosslinking (i.e., the application of
visible light/UV irradiation or click chemistry) offers particular
promise for preparing injectable hydrogels for cell delivery in that
such hydrogels avoid the need for surgical implantation,
facilitating their practical clinical use (van Tomme et al.,
2008). Herein, we will only briefly summarize the major
categories of crosslinking approaches used for the fabrication
of tissue engineering scaffolds; for more details on the options, we
refer the interested reader to more in-depth reviews on hydrogel
crosslinking strategies (Hennink and van Nostrum, 2012; Hu
et al., 2019; Mueller et al., 2022). Note that, while the most
common method(s) used to crosslink each polymer previously
discussed were described in Sections 2.1 and 2.2, in principle any
chemical crosslinking approach could be pursued with any of
polymer by exploiting either native functional groups (e.g., all
naturally-sourced polymers) or by introducing functional groups
via, e.g., copolymerization (e.g., any synthetic polymer described);
in principle, subsequent conversion of those functional groups to
another functional group suitable for a specific crosslinking
reaction could be conducted to crosslink any given polymer
with any specific type of linkage. However, a few physical
interactions (e.g., the egg crate Ca2+/alginate interaction or the
freeze-thaw gelation of PVA) tend to be more specific to
particular polymer types.

2.3.1 Physical Crosslinking
Networks of physically crosslinked hydrogels are generally
formed through ionic/electrostatic interactions, hydrogen
bonding, metal-ligand interactions, polymer chain
entanglements, hydrophobic interactions, and/or host-guest
interactions between polymers or between polymers and small
molecule crosslinkers (Hennink and van Nostrum, 2012; Hu
et al., 2019). Due to the absence of chemical crosslinkers and
solvents, physical crosslinking can enable the preparation of cell
compatible hydrogels under a mild environment (e.g., at room
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temperature); moreover, physical crosslinking typically does not
require the functionalization of the gel precursor polymers and is
often highly reversible, both beneficial to practical clinical
translation (Hu et al., 2019). Ionic crosslinking interactions by
which polysaccharides such as alginate (Bidarra et al., 2014),
chitosan (Moura et al., 2011), and cellulose derivatives (Chang
and Zhang, 2011; Du et al., 2019), can be crosslinked by cations
(e.g., Ca2+, Mg2+, Fe3+) have been particularly widely leveraged to
prepare hydrogels for tissue engineering given the high cell
compatibility of the divalent cation crosslinkers, although as
previously noted ion exchange with the ions in the
physiological environment can make it challenging to control
the degradation of the hydrogels (Anamizu and Tabata, 2019).
Hydrogen bonding interactions, particularly following freeze-
thaw processes that help enhance chain alignment and thus
hydrogen bonding, have also been widely used, particularly
using poly (vinyl alcohol) (PVA) as the main polymer and
optionally including other polymers and/or nanoparticles (e.g.,
cellulose nanocrystals (CNCs)) with hydrogen bonding groups
(Lin et al., 2020). However, given the highly aqueous environment
of a hydrogel, only strongly hydrogen bonding precursors (such
as PVA) will yield hydrogels with reasonable stability following
implantation. Hydrophobic interactions, particularly those
driven by thermoresponsive polymers that transition from
being soluble at lower temperature to self-associative at higher
temperature (e.g., methylcellulose (MC) and Pluronic-based
materials) can enable gelation while also providing more
hydrophobic adhesion sites for cells, although the degradation
of such hydrogels can also be challenging to control (Park et al.,
2017). Supramolecular host-guest interactions, often involving β-
cyclodextrin (βCD) interactions with guest compounds such as
poly (ethylene oxide) and adamantane, have also been widely
used given their highly effective shear thinning/self-healing
properties and facile tuning of matrix stiffness, although the
materials available to form such hydrogels are limited to those
that can form sufficiently strong inclusion complexes (Hörning
et al., 2017; Liu et al., 2018). As such, in general, physical
crosslinking can be highly beneficial for tissue engineering
applications but can limit the types of materials that can be
used and/or introduce challenges with tuning the degradation
rate of the gel to that of the cell proliferation process.

2.3.2 Chemical Crosslinking
Chemical crosslinking for the fabrication of tissue engineering
matrices can typically be categorized into one of two main
strategies: photocrosslinking and click chemistry. In
photocrosslinking, light (e.g., most commonly UV light but in
some cases visible light) is used to initiate the polymerization of
unsaturated vinyl, acrylate, methacrylate or allylic groups
conjugated to the gel precursor polymers, typically aided by
water-soluble photoinitiators (e.g., Irgacure 2959) to promote
free radical generation under lower intensities of light than would
be required to form a gel via only hydrogen abstraction from the
precursor polymers (Stephens-Altus et al., 2011). While
photocrosslinking has been used successfully for a range of
different cell types, the potential risks caused by UV radiation
(e.g., DNA damage, aging, etc.) can still be concerns, particularly

for less robust cell lines. Visible-light-initiated crosslinking such
as ruthenium-catalyzed photocrosslinking under blue light with a
wavelength of 458 nm can avoid these issues but can complicate
the chemistry involved in the gelation process (Bjork et al., 2011;
Fernandes-Cunha et al., 2017). Of note, in situ
photopolymerization in which the scaffold is irradiated as it is
administered in vivo has attracted increasing interest and has
been used successfully for the repair of corneal wounds, in situ
cartilage regeneration, and other applications (Smeds and
Grinstaff, 2001; Burdick and Anseth, 2002; Leach et al., 2004).

Click chemistry, a range of reactions that can occur rapidly
and spontaneously under physiological conditions without
producing toxic by-products (i.e., no by-products or water)
has also attracted significant increasing attention given that no
additional crosslinkers/initiators/catalysts are required to prepare
the hydrogels, no post-treatment is necessary, and (if delivered
using a double barrel syringe and/or a static mixer) hydrogels can
be administered directly into the body by simple injection to
avoid the need for surgical implantation (Crescenzi et al., 2007). A
range of chemistries including Diels–Alder reactions, Michael
additions, oxime formation, Schiff base formation, disulfide
formation, boronate ester formation and (with the addition of
a low-intensity UV stimulus) thiol-ene reactions have been
reported used to prepare multiple hydrogels under
physiological conditions (Mueller et al., 2022).

A range of other chemical crosslinking methods based on di/
multi-functional small molecule crosslinkers has been reported to
prepare hydrogels (Kabiri et al., 2003; Hennink and van Nostrum,
2012; Hu et al., 2019). However, the inherent tissue toxicity many
small molecule crosslinkers (in particular aldehydes such as
glutaraldehyde and similar molecules) offers a potential risk
for clinic use that is significantly mitigated by synthesizing
polymeric analogues which tend to exhibit significantly lower
toxicity. One possible exception to this rule is genipin, a natural
aglycone extracted from plants that can crosslink amines
(analogous to di/polyaldehydes like glutaraldehyde) while
inducing significantly lower cytotoxicity (Yu et al., 2021);
however, the strong purple color of this crosslinker may be
non-ideal in some tissue engineering applications.

2.3.3 Other Crosslinking Strategies
Enzymatic approaches can also be used to crosslink hydrogels,
particularly beneficial in terms of leveraging naturally-occurring
crosslinking strategies (e.g., in clotting) to create hydrogels with
low inherent immunogenicity (Moreira Teixeira et al., 2012).
Enzymatic reactions also typically occur under physiological
conditions to enable the formation of in situ gelling hydrogels
under physiological conditions in the presence of cells (Sperinde
and Griffith, 1997; Jin et al., 2010; Moreira Teixeira et al., 2012).
For example, Wang et al. reported an injectable gelatin-
hydroxyphenylpropionic acid (Gtn-HPA) hydrogel that
crosslinked by hydrogen peroxide (H2O2) and horseradish
peroxidase (HRP) in which the stiffness of hydrogel was
directly tunable by adjusting the concentrations of H2O2 and
Gtn-HPA to optimize the proliferation of chondrocytes (Wang
et al., 2014). However, the fast degradation and typically poor
mechanical properties of enzymatically crosslinked hydrogels can
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limit their practical applications for tissue regeneration (Moreira
Teixeira et al., 2012).

As another alternative, instead of using physical, chemical, or
enzymatic processes to crosslink individual polymers together
that were not previously networked together, ECM-mimetic
hydrogel scaffolds can also be created by decellularizing native
tissues. Decellularization refers to the removal of cells and other
potential components that may introduce an immune/
inflammatory response (e.g., cellular DNA,
lipopolysaccharides) from native tissues using methods that do
not disrupt the strong physical and/or chemical interactions in
the native ECM (Saldin et al., 2017; Sackett et al., 2018), methods
that may include chemical stimuli (i.e., surfactants or acids/bases
to degrade cell membranes), enzymatic stimuli (e.g., trypsin,
dispase, nucleases and phospholipase A2), physical stimuli
(e.g., high pressure, supercritical carbon dioxide, or freeze-
thaw cycles), or combinations thereof (Gilpin and Yang,
2017). The benefit of decellularization is that the internal
structure and chemistry (including crosslinking) of the native
ECM (ideally from the same tissue targeted for regeneration) is
directly reproduced to grow the new tissue without the need to
perform any additional crosslinking or structuring step. In
addition, and critically given the poor availability of human
donor tissues, non-human sources may still be useful for
acquiring the implant scaffolds given the washing procedures
used to remove potential immunogenic components (Fernández-
Pérez and Ahearne, 2019). However, the challenges inherent in
tissue sourcing and the extensive purification processes required
to make decellularized scaffolds as well as the potential
denaturation of some ECM components upon processing do
offer some drawbacks to this strategy that can be avoided with
the use of other scaffold building blocks.

3 EMERGING FABRICATION TECHNIQUES
FOR HYDROGEL-BASED TISSUE
SCAFFOLDS
To prepare functional tissue constructs using the materials and
crosslinking approaches described, the micro- or nano- structure
of the hydrogel scaffold must also be carefully controlled given
the critical role that the ECM structure plays in regulating cell
adhesion, migration, and proliferation as well as the degradation
rate of the scaffold (Seliktar, 2012; Schulte et al., 2013; de France
et al., 2018). For example, collagen, elastin and fibronectin all
form nanofibrous structures in native ECM that play a key role in
regulating cell behavior (Stevens and George, 2005), particularly
in terms of promoting cell adhesion and spreading. The internal
porous structure of a hydrogel is also critical to tune the transport
of nutrients, gases, and wastes within the tissue and providing
sufficient physical space for cells to communicate and ultimately
form a tissue (Atala, 2014; de France et al., 2021). To obtain such
structured hydrogels, traditional methods such as emulsion
templating (Zhang and Cooper, 2005; Partap et al., 2006), gas
foaming (Harris et al., 1998), salt leaching (Lee et al., 2005), and
cryogelation (Vrana et al., 2009) have been used to prepare
scaffolds with different pore size distributions (Figure 3).

However, the required use of at least one of solvents,
additives, or external energy in each of these strategies
significantly impedes the potential for the direct encapsulation
of cells and in vivo cell delivery; control over the pore size and
shape is also very challenging with these methods, creating a
situation in which cells in different parts of the scaffold receive
different cues from their microenvironment. Photopatterning
(Liu and Bhatia, 2002; Chan et al., 2010) and micro-molding
(Hammer et al., 2014; Liu et al., 2014). can address these
challenges but are low-throughput techniques that can
significantly limit the size and/or the number of scaffolds that
can be practically fabricated. In the following section, we will
emphasize on three emerging fabrication techniques for
preparing hydrogel-based tissue scaffolds with well-defined
pore structures that are both scalable in the context of the
materials and crosslinking strategies previously discussed as
well as cell-friendly to enable simultaneous structure formation
and cell loading (as is essential for effective translation): 3D
bioprinting, cell electrospinning and in situ tissue engineering.

3.1 3D Bioprinting
Three-dimensional (3D) bioprinting is an additive
manufacturing process that creates highly-complex tissue
constructs using the layer-by-layer deposition of biomaterials
onto a computer-controlled build platform (Pedde et al., 2017).
3D bioprinting allows for the fabrication of complex hydrogel
geometries that can be loaded with active components such as
drugs, growth factors, or viable cells directly during the
fabrication process (Figure 4). The automated nature of 3D
bioprinting enables the fabrication of both reproducible and
scalable structures, both of which are key challenges with
conventional structuring strategies. Many variations of 3D
bioprinting including extrusion bioprinting (Ramesh et al.,
2021), microfluidic bioprinting (Zhang et al., 2017), inkjet
bioprinting (Li et al., 2020), digital light processing (DLP)
bioprinting (Wang et al., 2021), laser-assisted bioprinting
(Guillotin et al., 2010), stereolithography (SLA) bioprinting
(Grigoryan et al., 2021), and embedded bioprinting (Shiwarski
et al., 2021) have been developed, each of which has its own
optimal set of bioink materials, advantages and disadvantages,
and most promising clinical applications. For hydrogels, inkjet
bioprinting is typically avoided given the high viscosity of many
hydrogel-based bioinks; however, hydrogels with well-defined
shapes and internal morphologies have been widely printed
using each of the other techniques. Note that, in the following
sections, the term “biomaterial ink” is used to refer to a
biomaterial printed alone and then subsequently seeded with
cells while the term “bioink” is used to refer to cases in which a
biomaterial is (or could be) co-printed with one or more cell(s).

3.1.1 Extrusion Bioprinting
In extrusion bioprinting, a hydrogel or hydrogel precursor bioink
is extruded out of a narrow print-tip such as a needle or conical
nozzle that is moving through space to build a 3D structure layer
by layer. The flow of the hydrogel can be driven by pneumatics
(Duarte Campos et al., 2019; Ouyang et al., 2020) or mechanical
flow driven by a syringe pump or screw mechanism (Liu et al.,
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FIGURE 3 | Schematic of techniques to fabricate hydrogel-based macroporous scaffolds for tissue engineering. (Inset) Spider plot of the relative advantages of
different macroporous scaffold formation techniques (scale 1–5: 1 = least advantageous, 5 = most advantageous) Note that the cryogelation plot overlaps with the salt
leaching plot such that it is not clearly visible in the graph.

FIGURE 4 | Schematic of ex vivo and in vivo bioprinting techniques (* represents the viscosity range of bioinks useful for each bioprinting technique).
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2017). The tunable rheological properties (Camci-Unal et al.,
2013; Antich et al., 2020) and controllable gelation rates (Wang
et al., 2018; Xu et al., 2018) of hydrogels make them well-suited
for extrusion-based bioprinting, particularly for shear-thinning
hydrogels that can maintain their shape upon extrusion; however,
low-viscosity hydrogels with controllable gelation rates can also
be used for extrusion bioprinting if gelation of the hydrogel can be
induced during or immediately after extrusion such that the print
will maintain its geometry (Ramesh et al., 2021).

The most prevalent bioink used in extrusion bioprinting is the
alginate/calcium chloride system, performing the crosslinking
either via a coaxial nozzle in which alginate and calcium
chloride are delivered in separate streams (Zhang et al., 2013;
Mirani et al., 2017) or by printing the alginate into a calcium
chloride bath (Tabriz et al., 2015). However, most of the useful
hydrogel materials outlined earlier do not inherently have rapid
gelation mechanisms like calcium/alginate, driving the
development of more advanced approaches such as using
hybrid hydrogels consisting of homogeneous mixtures of
multiple hydrogels or using coaxial extruders to create fibers
with a distinct core and sheath from separate materials (Tamayol
et al., 2015); in many cases, alginate-calcium is still used as the
primary gelling component to entrap/encapsulate other
functional components (Onoe et al., 2013). For example,
Antich et al. bioprinted chondrocyte-laden hyaluronic acid
(HA) in vitro by mixing alginate with HA to allow for rapid
ionic crosslinking immediately after printing while maintaining a
HA-rich hydrogel phase (Antich et al., 2020) while Liu et al.
(2018) developed a coaxial bioprinting strategy with alginate in
the sheath and GelMA, cells, and calcium chloride in the core
channels (Liu et al., 2018); in the latter case, the rapidly
crosslinked and comparatively strong alginate sheath allowed
for the use of very low (1% w/v) GelMA concentrations in the
core which are very desirable for cell proliferation but too
mechanically fragile and slow to crosslink to print directly
(Liu et al., 2018). A major challenge with extrusion
bioprinting however is the shear stress in the nozzle which
can be detrimental to cell viability and function. Higher
viscosity hydrogels, that are often used for extrusion
bioprinting due to their better printability, typically require
higher pressures to extrude, leading to even higher shear
stresses. In addition, the resolution of the extruded features in
hydrogel-based bioinks is typically low (i.e., on the several tens to
hundreds of micron length scale), much higher than the
nanoscale features that predominantly regulate cell responses
in the native ECM. As such, the development of new extrusion
printing approaches/geometries to reduce the minimum printed
feature size may be highly impactful. One potential strategy to
address this drawback without requiring the development of
entirely new printing strategies may be the use of jammed
microgel-based bioinks, in which the size and softness of the
hydrogel microparticles printed creates a specific self assembly/
packing pattern that results in a specific pore size between the
jammed microparticles on a length relevant to the dimensions of
native ECM features. For example, Xin et al. demonstrated the
thiol-ene photopolymerization of packed electrosprayed PEG-
microgels (~200 µμm in diameter) using a low concentration

PEG-dithiol linker to create a permissive 3D environment that
enabled spreading of human mesenchymal stem cells (Xin et al.,
2018) while Hou et al. fabricated macroporous hydrogels by
covalently crosslinking gelatin microgels (~250 µμm in
diameter) with microbial transglutaminase that allowed for
enhanced proliferation of human dermal fibroblasts over
2 weeks and enhanced migration of cells into the scaffold both
in vitro and ex vivo (Hou et al., 2018). Click chemistry approaches
have also been demonstrated to link the microgels together in the
presence of cells without the need for post-loading of cells. For
example, Caldwell et al. reported the in situ gelation of both
~10 µμm and ~100 µμm microgels functionalized with azide and
dibenzocyclooctyne (DBCO) groups in the presence of human
mesenchymal stem cells, with the 100 µμm microgel networks
creating a network of fewer but larger pores that promoted
significantly more cell spreading (Caldwell et al., 2017).
Deveoping methods to improve the mechanics of such
jammed microgel bioinks such that the networks are stiffer
and/or more stable over longer-term implantation would
further expand the scope of using such bioinks in the context
of functional extrusion bioprinting.

3.1.2 Microfluidic Bioprinting
Microfluidic chips, typically fabricated with polydimethylsiloxane
(PDMS) (Colosi et al., 2016; Feng et al., 2019; Dickman et al.,
2020) or micro-milled surfaces (Costantini et al., 2017), enable
hydrogels to be mixed, crosslinked, or otherwise manipulated
upstream from the print tip. The channel pattern on microfluidic
chips is highly customizable, making microfluidic bioprinting a
good strategy for addressing many difficult biofabrication
problems. In addition, microfluidic bioprinting allows for
seamless switching between different materials during
fabrication using either programmable syringe pumps
connected to the hydrogel inputs (Feng et al., 2019), or valves
actuated by pneumatics (Colosi et al., 2016; Addario et al., 2020).
Microfluidic bioprinting solutions that incorporate more
complicated microfluidic geometries or channel junctions are
commercially available from Fluicell and Aspect Biosystems.
Fluicell’s microfluidic bioprinter and handheld biopen can
fabricate 2D or 3D cell-laden structures with control over
single-cell deposition (Jeffries et al., 2020), particularly useful
for conducting pre-clinical testing of valuable drugs on cells in 3D
environments. Aspect Biosystems’ microfluidic bioprinter allows
for rapid switching between multiple cell-laden hydrogels and
contains a microfluidic junction enabling mixing of crosslinkers
with precursor polymers (e.g., alginate and calcium) shortly
before extrusion (Figure 5A) (Dickman et al., 2020). By
modifying the crosslinking and precursor polymer solutions,
this microfluidic chip can also bioprint chemically
crosslinkable thrombin (Abelseth et al., 2019; Lee et al., 2019)
or photo-crosslinkable bioinks (Mirani et al., 2021). In general,
microfluidics bioprinting benefits from the wide array of
operations that can be performed on a microfluidic chip prior
to bioprinting, allowing for highly controlled and dynamic
mixing of multiple components over time. However, the
fabrication, testing, and optimization of microfluidic chips is a
lengthy process that requires expensive and specialized

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 84983112

Xu et al. Translational Hydrogels for Tissue Engineering

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


equipment and the microfluidic print heads can be considerably
more expensive than other print heads, particularly in cases in
which the print head itself is designed as a consumable unit.

3.1.3 DLP and SLA Bioprinting
In digital light processing (DLP) bioprinting, a photosensitive
hydrogel is crosslinked by patterns of light in a layer-by-layer
approach. Typically, the build platform is lowered into a
hydrogel precursor solution placed on top of a transparent
substrate and a light source. A thin layer of the hydrogel is
exposed to a light pattern, the build platform is raised a small
distance, and the process is repeated until the print is
complete. The light pattern for each layer can be produced
by a photomask (Shen et al., 2020), projector (Grigoryan et al.,
2019; Mahdavi et al., 2020), or digital micromirror device
(DMD) (Rujing and Larsen, 2017; Wang et al., 2018). A
major benefit of this technique is that it harnesses the high
spatial resolution of projectors or DMDs to produce constructs
with spatial resolutions of <100 mm in the horizontal plane
(Wang et al., 2018; Grigoryan et al., 2019; Magalhaes et al.,
2020), a notable improvement compared to most extrusion
bioprinting. Additionally, DLP bioprinting does not have
issues with layer adhesion, is well suited to produce
constructs with perfusable channels (Grigoryan et al., 2019),
and can produce large constructs quickly as entire layers
crosslink simultaneously. Stereolithography (SLA)

bioprinting uses a similar concept except the light source is
a laser which photo-crosslinks a single point at each moment
in time instead of a single layer, using mirrors angled to reflect
the laser across the corresponding areas of the build platform.
While such an approach can create even more complex
geometries with superior resolutions, it is correspondingly
much slower given that only a single laser cross-section can
be crosslinked at any given time, posing challenges with scale-
up manufacturing of particularly larger tissue scaffolds. Aside
from speed, the main constraint of DLP and SLA bioprinting is
the limitation of hydrogel types that can be used. Although any
polymer functionalized with a photopolymerizable functional
group could in principle be bioprinted using DLP/SLA
bioprinters, commonly used hydrogels for DLP or SLA
bioprinting include gelatin methacryloyl (GelMA), poly
(ethylene glycol) diacrylate (PEGDA) and hyaluronic acid
methacrylate (HAMA) (Wang M. et al., 2021; Grigoryan
et al., 2021). PEGDA currently provides the best spatial
resolution of all biocompatible photo-crosslinkable
hydrogels, however, it does not promote cell attachment
and alone is not suitable as a matrix for tissue engineering
applications. GelMA offers slightly lower resolution, but its
high capacity for cell adhesion has resulted in successful DLP
and SLA printing of corneal stroma (Mahdavi et al., 2020),
cartilage (Lam et al., 2019), and vasculature (Tomov et al.,
2021).

FIGURE 5 | Examples of emerging 3D printing approaches: (A) 3D bioprinting system with a microfluidic printhead that can load multiple biomaterials in different
channels (Reproduced with permission from Dickman et al., 2020). (B) Schematic and images of FRESH printed alginate gels embedded in gelatin slurry bath. Scale bar
= 1 cm (Reproduced with permission from Hinton et al., 2015). (C) Extruded FRESH printing of HA hydrogel into self-healing support hydrogel bath. Scale bar = 200 μm
(Reproduced with permission from Highley et al., 2015).
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3.1.4 Embedded Bioprinting
Soft hydrogels provide a favorable environment for cells to grow,
proliferate and differentiate (He et al., 2016; Ramiah et al., 2020);
however, the weak mechanics of such hydrogels results in
challenges maintaining print fidelity/avoiding structure
collapse when printed on a platform directly. Embedded
bioprinting addresses this challenge via the use of gel-based
support baths to support extrusion printing of soft hydrogels
into higher-resolution 3D constructs (McCormack et al., 2020).
Highly shear-thinning but viscous materials such as Carbopol
(Bhattacharjee et al., 2015), gellan (Compaan et al., 2019), agarose
(Mirdamadi et al., 2019), and gelatin microparticles (Hinton et al.,
2015) have been most commonly reported as the support bath
material. The freeform reversible embedding of suspended
hydrogels (FRESH) printing process that uses gelatin
microparticles as the support bath, pioneered in 2015 by the
Feinberg, Angelini and Burdick research groups (Figures 5B,C),
has been particularly successful in enabling the printing of inks
with a broad range of rheological properties (Bhattacharjee et al.,
2015; Highley et al., 2015; Hinton et al., 2015; Shiwarski et al.,
2021). In this process, the bioink is printed directly into the
gelatin support bath, crosslinked, and subsequently placed in
physiological temperature to liquify the gelatin support bath to
release the printed construct. The most common crosslinking
strategies include ionic crosslinking [e.g., alginate/calcium
(Compaan et al., 2019; Lindsay et al., 2019)], photocrosslinking
[e.g., methacrylated or acrylated pre-polymer solutions (Ouyang
et al., 2017)], and post-modification by changing the solution
conditions [e.g., a change in pH for collagen gelation (Isaacson
et al., 2018; Noor et al., 2019)]. Embedded bioprinting overcomes
challenges with printing soft hydrogels and incorporating viable cells
using a low-shear printing process but remains amenable to a
relatively low diversity of bioinks, the potential for highly
inhomogeneous crosslinking (particularly when the crosslinker is
placed in the support bath), and scale-up to allow for larger printed
constructs, particularly given the significant costs of some of the
support bath materials.

3.2 Electrospinning
In electrospinning, a high voltage difference is applied between a
needle extruding a precursor polymer solution and a conductive
collector. When the electrostatic repulsion forces of the charged
polymer solution overcome the surface tension of the polymer
solution, a fiber is ejected (Reneker and Yarin, 2008) that can be
collected on a grounded conductive collector, which may include
rotating drums, flat collectors, or parallel collectors (Li et al., 2003;
Katta et al., 2004; Xu et al., 2016). The versatility and relatively
low experimental complexity of the electrospinning setup makes
it an accessible and feasible method of forming polymer
nanofibers that have been widely used in a variety of tissue
engineering applications (Greiner and Wendorff, 2007; Sill and
von Recum, 2008). The recent development of portable handheld
electrospinning devices (in contrast to conventional devices that
require a large power supply) has further expanded the potential
of this technique (Brako et al., 2018), enabling the direct in situ
application of polymeric nanofibers (to-date including PCL,
polystyrene (PS), poly (lactic acid) (PLA) and poly (vinylidene

fluoride) (PVDF)) in the clinic for wound healing and other
applications (Xu et al., 2015).

Electrospinning requires careful tuning of several parameters
including polymer concentration, solvent, relative humidity, high
voltage, collector, working distance, solution viscosity, and flow
rate (Xue et al., 2019). When considering the electrospinning of
hydrogels, crosslinking and gelation kinetics must also be
considered, particularly relative to their effects on the polymer
solution viscosity throughout the electrospinning process (Xu
et al., 2016); in particular, it is imperative to maintain a flowable
solution at the needle outlet but produce a stable crosslinked fiber
(or a sufficiently viscous fiber that buys time for covalent or
physical crosslinking to occur) at the collector. Some methods of
hydrogel electrospinning instead elect to crosslink as a post-
processing step of the nanofiber scaffold to avoid changes in
viscosity to the electrospinning solution during the fabrication
process itself; however, this choice adds an additional step to the
process and may result in deformation of the original electrospun
structure on the collector prior to the completion of the
crosslinking process (Deng et al., 2018).

Electrospun hydrogels based on both natural polymers such
as collagen, gelatin, dextran, alginate, HA, or chitosan as well as
synthetic polymers such as POEGMA (Xu et al., 2016) have been
reported, with other synthetic polymers such as poly (ethylene
oxide) (PEO), poly (vinyl pyrrolidone) (PVP), or poly (vinyl
acetate) (PVA) also in some cases included to promote chain
entanglement in the precursor polymer solution and thus
nanofiber formation instead of particle sprays. Stiffer
degradable polymers such as poly (ε-caprolactone) (PCL)
may also be added to increase the mechanical strength of the
porous hydrogel scaffold, a key challenge with electrospinning
(Koosha and Mirzadeh, 2015; Xu et al., 2016; Majidi et al., 2018;
Wakuda et al., 2018; Askarzadeh et al., 2020). Table 1
summarizes different materials and methods used for
electrospinning hydrogels. Common crosslinking methods
include chemical crosslinking through saturation of the
scaffold with the chemical crosslinking agent, photo-
crosslinking with UV-light irradiation, and physical
crosslinking such as the ionic crosslinking of calcium-alginate
hydrogels (Gombotz, 1998; Hennink and van Nostrum, 2012),
methods that will be further described in the following sections.

3.2.1 Photocrosslinked Hydrogel Fibers
Methacrylated natural polymers such as alginate, gelatin and
dextran have been electrospun to form photocrosslinked
hydrogel scaffolds. Photocrosslinking can be used as the only
crosslinking strategy or (depending on its speed) a secondary
crosslinking step toward producing a multi-crosslinked hydrogel
network (Chen et al., 2018). For example, alginate, GelMA, PEO,
and the photoinitiator Irgacure 2959 were electrospun, placed in a
CaCl2 bath (enabling rapid primary alginate-calcium ionic
crosslinking) and subsequently exposed to 10 min of UV
irradiation (enabling secondary GelMA photo-crosslinking).
High cell viability (>90%) could be maintained coupled with
an 8-fold increase of cell number in human iPSC-derived
ventricular cardiomyocytes in 3D culture over 2 weeks of
observation (Majidi et al., 2018).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 84983114

Xu et al. Translational Hydrogels for Tissue Engineering

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


For soft tissues, photocrosslinking can be used directly to form
the hydrogels. For example, GelMA dissolved in the solvent
hexafluoroisopropanol (HFIP) was reported to fabricate
aligned electrospun nanofibers that were subsequently
submerged in anhydrous alcohol containing Irgacure 2959 and
crosslinked under UV light for 60 min to form hydrogel
nanofibers (Chen et al., 2019). In vivo work showed that
implantation of the GelMA scaffolds in rats enabled decreased
glial scar tissue formation, increased vascularization, and
increased neuronal development compared to electrospun
gelatin fibers crosslinked with glutaraldehyde. The degree of
crosslinking can also be tuned by adjusting the UV-light
exposure time post-fabrication. Baker et al. (2015) similarly
showed that DexMA could be electrospun to form a hydrogel
scaffold with a range of scaffold moduli based on the UV
exposure time. While the fiber scaffold stiffness did not affect
cell viability, remodeling of the scaffold occurred to a much
higher degree in the soft scaffolds (Baker et al., 2015). However, it
should be noted that there is considerable debate over the degree
to which UV irradiation may impact encapsulated cells (both in
the short term and the long term). While the wavelength and the
total dose (intensity + time) of the irradiation certainly does
influence the degree to which UV irradiation may impact
encapsulated cells, access to alternative crosslinking strategies
(particularly for cells that have less robust viability in vitro) is
recommended.

3.2.2 Chemically Crosslinked Hydrogel Fibers
Electrospun hydrogels can also be formed by chemically
crosslinking the polymer components via covalent bond
forming chemistries. Common chemical crosslinking agents
include N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide
hydrochloride (EDC, for crosslinking proteins), genipin (for
crosslinking aminated polymers), glutaraldehyde (GTA, for
crosslinking hydrazide and aminated polymers), and glyoxal
(for crosslinking hydroxylated polymers) (Luo et al., 2018;
Koosha et al., 2019). Such crosslinking agents are typically
added either in liquid or vapor form following electrospinning
to crosslink the hydrogel fibers (Sisson et al., 2009), with the
typically rapid hydration rate of the electrospun hydrogel when
exposed to a moist or saturated environment potentially
deforming the fibers (via swelling) on the same time scale as
crosslinking. In addition, the cytotoxicity of many of these
chemical crosslinking agents is a significant concern, with
many studies having been published seeking to define the
optimum type and concentration of crosslinker for
maintaining high cell viability (Hennink and van Nostrum,
2012; Luo et al., 2018; Campiglio et al., 2020). For example,
Deng et al. (2018) examined the use of low concentrations of EDC
co-electrospun recombinant human collagen (RHC), chitosan,
and PEO in an acetic acid and ethanol solution to aid in solvent
evaporation and dry fiber formation. The slow gelation that
occurs at the low EDC concentration used results in the
fabrication of hydrogel nanofibers with diameters of 168 ±
58 nm that facilitated improved seeded NIH 3T3 and human
umbilical vein endothelial cell (HUVEC) cell viability when
compared to the tissue culture dish control (Deng et al., 2018);

however, the fabrication of thicker scaffolds (requiring longer
electrospinning times) may be challenging when the crosslinker is
added directly to the electrospinning solution. As another
example, genipin, EDC-NHS, and glutaraldehyde were
compared to assess which crosslinker best maintained the
triple helical structure of electrospun collagen fibers (Luo
et al., 2018), with the best cell proliferation observed using
EDC-NHS as the crosslinker (although all three scaffolds
exhibited improved cell proliferation relative to the control)
(Luo et al., 2018). Similarly, Torres-Giner et al. electrospun
collagen dissolved in HFP, post-crosslinked the fibers with
EDC-NHS, and then seeded with the scaffold with MG-63
cells, enabling faster cell proliferation and far more cell growth
over 21 days compared to a genipin-crosslinked scaffold (Torres-
Giner et al., 2009). Genipin, GTA vapour, and glyceraldehyde
have also been specifically compared by Sisson et al. as
crosslinking agents for electrospun gelatin fibers, with
glyceraldehyde-crosslinked nanofibers found to maintain the
highest cell viability and growth (Sisson et al., 2009). However,
any small molecule crosslinker that reacts non-bioorthogonally
with proteins in or secreted from cells does offer some risk in
terms of promoting undesired cell or (following implantation if
the crosslinker is not thoroughly removed) tissue toxicity and
should be used only judiciously.

Chemical crosslinking with GTA has also been explored in
comparison to the physical crosslinking method of
dehydrothermal treatment (DHT) for fabricating an
electrospun collagen scaffold (Chen et al., 2021). The triple
helix in the collagen fibers was better maintained when using
chemical crosslinking methods, with the use of GTA avoiding the
need for heat application as is required with the DHT method
(Chen et al., 2021). Ammonia treatment of the collagen
electrospun scaffold after fabrication to neutralize any
remaining acetic acid further improved maintenance of the
triple helix collagen structure in the fibers (Chen et al., 2021).
Using a volatile crosslinker can also facilitate both penetration
throughout the scaffold and post-purification of the scaffold to
ensure the removal of unreacted crosslinker; for example, a PVA/
collagen blend electrospun in HFIP and crosslinked under
phosphoric acid vapor followed by GTA vapor promoting
suitable seeded cell viabilities and transparency for corneal
tissue engineering applications (Wu et al., 2018).

Covalent chemical crosslinking can also enable more efficient
entrapment of additives into the electrospun hydrogels without
significantly compromising the crosslinking and mechanical
strength of the scaffold. For example, Hussein et al. (2020)
electrospun HA, PVA, cellulose nanocrystals (CNCs), and
L-arginine to form hydrogel fibers with the PVA component
chemically crosslinked through the addition of anhydrous citric
acid prior to electrospinning. CNC addition serves to increase the
mechanical strength of the fibers while L-arginine promotes ECM
collagen synthesis, angiogenesis, and epithelialization, promoting
improved cell viabilities when cells were seeded on the scaffold.
The scaffold also had anti-microbial properties related to
L-arginine release and faster wound closure times compared to
controls. However, the inclusion of multiple components in the
electrospinning solution that may cross-interact in multiple ways
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can pose challenges with controlling the precursor solution
viscosity and thus the uniformity of the electrospun hydrogel.

Enzymes can also be used as chemical crosslinking agents to
minimize cytotoxicity. For example, a gelatin-
hydroxyphenylpropanoic acid (Gel–HPA) scaffold electrospun
in hexafluoroisopropanol (HFIP) was crosslinked via enzymatic
oxidation of the HPA moieties with the addition of horseradish
peroxidase and H2O2 (Nie et al., 2020). Enzymatic crosslinking
scaffold preparations reported full scaffold degradation within
4 weeks of in vivo implantation with good cell penetration (Nie
et al., 2020); however, the specific substrates required plus the cost
of most enzymatic crosslinkers may limit the broad utility of this
approach in the context of a larger manufacturing platform.

3.2.3 Solvent-Free Electrospun Hydrogels
While the use of organic solvents can be a useful tool in the
formation of electrospun nanofibers due to the ease of solvent
evaporation between the nozzle and the collector, emerging
studies have focused on electrospinning polymer solutions in
water to remove the need for solvent removal before cell seeding
and do not risk exposure of the seeded cells to cytotoxic
crosslinking chemicals or photoinitiators. Altered experimental
setups and polymer chemistries have both been explored as
methods to reduce the need for electrospinning with organic
solvents. First, the use of sacrificial sheaths can be used. Wakuda
et al. (2018) reported a core-shell electrospinning approach in
which the outer layer contained PVP while the inner layer
consisted of collagen pre-crosslinked in a basic solution. Post-
fabrication, the PVP layer was dissolved to leave the insoluble
collagen, avoiding challenges associated with maintaining the
anisotropic triple helix structure in organic solvents (Torres-
Giner et al., 2009; Luo et al., 2018). HUVECs cultured on the
surface of the formed collagen fibers followed the orientation of
the fibers, unlike HUVECs seeded on collagen fibers electrospun
in HFIP directly (Wakuda et al., 2018). Second, latent click or
click-like chemistries can be used to lock the printed nanofiber in
place after electrospinning. For example, Ji et al. (2006)
electrospun thiolated HA with PEO as an electrospinning aid
in DMEM, enabling chemical crosslinking via both disulfide
formation and thiol-Michael addition following the post-
fabrication addition of poly (ethylene glycol)-diacrylate
(PEGDA). 3T3 fibroblasts seeded on the scaffolds were found
to infiltrate the scaffold up to 32 mm below the scaffold surface
and showed better morphology compared to 2D cell culture
controls (Ji et al., 2006). However, this approach still required
a post-treatment of a pre-electrospun nanofiber network. Third,
reactive electrospinning techniques have been developed in which
in situ-gelling polymer pairs are co-delivered through a double-
barrel syringe directly into the electrospinning process. For
example, Xu et al. (2016) electrospun aldehyde and hydrazide-
functionalized POEGMA polymers from a double-barrel syringe
tuned to have gelation times that ensured free flow of the
polymers at the needle tip but rapid gelation upon
electrospinning, leveraging the acceleration of gelation rate as
water evaporates and the polymers concentrate in the emitted jet;
as such, the nanofibers are sufficiently gelled upon hitting the
collector that their structure can be maintained without the need

for any post-processing/post-crosslinking step (Xu et al., 2016).
Of note, conducting the process in a biosafety cabinet can also
directly produce sterile scaffolds without any additional
sterilization requirement. Both protein-repellent and thermo-
responsive electrospun POEGMA scaffolds were prepared by
varying the polymer component ratios, with the latter found
to expand and contract reversibly to facilitate cell adhesion (at
physiological temperature) but rapid cell delamination within
2 min upon swelling of the scaffold at 4°C that could serve as a
replacement for typical trypsin-based cell delamination methods
(Xu et al., 2021).

3.2.4 Cell Electrospinning
All examples described to this point required separate fabrication
and cell loading steps, with the use of solvents, the drying of the
scaffold, and/or the challenges with conducting electrospinning
in a sterile environment all limiting cell survival in addition to the
shear and electric field stress placed on cells during the
electrospinning process. Relatively few examples exist of
combining these steps together, which is highly beneficial to
avoid the need to seed cells onto the scaffold post-fabrication and
introduce more flexibility into the electrospinning process (akin
to 3D printing) in terms of structuring different cell types within a
single fabricated scaffold. The reactive electrospinning technique
(Figure 6A) offers particular advantages in this regard given that
no additional post-processing is required, enabling returning cells
to an incubator in sterile conditions much faster than with other
techniques, and the entire process is designed to run in water. The
cell-friendly and high water-binding nature of the POEGMA
electrospun fibers enabled high survivals of >80% of both NIH
3T3 fibroblasts and C2C12 myoblasts, survivals maintained even
following cryoprotectant-free storage of the visibly “dry” scaffolds
in liquid nitrogen over a 3 week period; in addition, 3-4x increases
in cell number were observed over the 18-day observation period,
showing how the otherwise cell-repellent POEGMA scaffold
could support cell adhesion and proliferation due to the
nanofiber structure formed in situ around the cells during
electrospinning (Xu et al., 2018, 2020).

A few other examples cell electrospinning have been reported
using post-crosslinked nanofiber scaffolds, although successful
cell electrospinning remains somewhat uncommon. In one such
example, C2C12 cells were suspended in a mixture of fibrinogen
and the electrospinning aid PEO and electrospun into a collection
bath containing thrombin to crosslink the fibers into fibrin
(Figure 6B) (Guo et al., 2019). Cell viability, and ultimate
differentiation of the myoblasts into mature myotubes, was
promoted through the electrospinning process by decreasing
the voltage applied to 4.5 kV and by using more stable C2C12
cell aggregates rather than monodispersed cells (Guo et al., 2019).
As another example (Figure 6C), C2C12 myoblasts were
electrospun in water with alginate and PEO (electrospinning aid)
and then crosslinked in a calcium ion/DMEM bath for 2min to
produce hydrogel nanofibers with aligned morphologies (Yeo and
Kim, 2018). The C2C12 cells maintained cell viabilities above 90%
for 7 days and grew along the directions of the aligned fibers, with a
follow-up study showing similar efficacy with HUVEC cells (Yeo
and Kim, 2020). Subsequent seeding of C2C12 cells on top of the
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alginate/PEO/HUVEC fibers resulted in faster myoblast maturation
compared to the same scaffold without the HUVECs (Yeo and Kim,
2020). However, the design of electrospinning strategies compatible
with cells is still in its infancy despite offering enormous potential to
create ECM mimics that can reproduce the nanofibrous internal
morphologies of native ECM.

3.2.5 Microfluidic Hydrogel Fibers
While we have focused on the use of electrospinning as a method
to enable simultaneous nanofiber production and cell
encapsulation, microfluidics can also be used to generate fibers
at somewhat larger length scales that, while potentially less
directly biomimetic of nanofiber dimensions in native ECM,
can still play useful roles in directing cell adhesion and
proliferation responses. Hydrogel fibers can be prepared either
by spinning hydrogel precursors from a microfluidic head
composed of spinneret or capillaries or by using a PDMS
microdevice with microchannels (Jun et al., 2014). Compared
to electrospinning, the high degree of customization possible in a
microfluidic chip can enable the fabrication of multiple types of
internal structures inaccessible with other fabrication techniques
(Jun et al., 2014; Sun et al., 2018). Cells can be encapsulated by
mixing them together with the hydrogel precursors (as with
electrospinning) or by merging cell-containing droplets with
the fiber precursor droplets directly on-chip, minimizing the
time over which the cells and the uncrosslinked precursor
materials directly interact and thus potentially reducing any
cytotoxicity related to such precursor materials (Guimarães
et al., 2021; Wang et al., 2021). As one example of such an
approach, Wang et al. fabricated one-step aqueous-droplet-filled

hydrogel fibers as islet organoid carriers using a coaxial channel
microfluidic chip in which droplets containing human induced
pluripotent stem cells (hiPSC) loaded into the inner channel were
encapsulated in an alginate hydrogel shell formed from middle
and outer channels by ionic crosslinking of sodium alginate
(NaA) with calcium chloride (CaCl2) (Wang et al., 2021).
However, the diameter of fibers fabricated via microfluidic
strategies typically ranges from a few micrometers to
millimeters, far larger than the size of fibers (hundreds of
nanometers to a few micrometers) found in native
extracellular matrix (Jun et al., 2014). As such, while
microfluidic-produced microfibers offer the potential for more
complex morphologies and likely less aggressive chemical/
physical fabrication conditions perhaps better suited for
processing more sensitive cell lines into fibrous structures,
electrospun scaffolds offer significantly better resolution to
mimic the nanofibrous structure in native extracellular matrix.

3.3 In Situ Tissue Engineering
Instead of conventional tissue engineering in which a cellularized
scaffold is implanted at the defect site, in situ tissue engineering
involves the injection of hydrogels (typically but not necessarily
including cells) to the defect site to direct regeneration using a
minimally-invasive technique (Gaharwar et al., 2020). In this
context, the body’s own capacity for regeneration supported by
the injected hydrogel that provides the required biophysical and
biochemical cues to guide or stimulate functional restoration at
the site of damaged tissues and/or deliver viable cells that can be
used to create healthy tissue at a diseased tissue site (Pratt et al.,
2004; Malek-Khatabi et al., 2020). The use of in situ-gelling

FIGURE 6 | Strategies for cell electrospinning: (A) reactive electrospinning of 3T3 mouse fibroblasts and C2C12 mouse myoblasts in POEGMA hydrogel
nanofibers; (B) cell-laden electrospinning of C2C12 myoblasts in fibrin scaffolds; (C) combining cell printing and cell electrospinning to encapsulate C2C12 myoblasts in
alginate scaffolds. Reproduced with permission (Xu et al., 2018; Yeo and Kim, 2018; Guo et al., 2019).
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hydrogels that can crosslink spontaneously upon injection (via
physical interactions and/or click/click-like covalent bonding) is
most common given that in situ gelation facilitates local injection
of the hydrogel without the need for transplantation (Dias et al.,
2020) (Figure 4). Also, in situ-gelling hydrogels can adapt the
shape of the hydrogel directly for the defect site in the surgical
room, particularly advantageous to treat irregularly shaped injury
sites that may be difficult to fill accurately using an ex vivo-
fabricated scaffold (Dias et al., 2020). The key design criteria for
injectable hydrogels useful for in situ tissue engineering were
described in a recent review by Young et al.: 1) to maintain the
viability and function of encapsulated cells; 2) to reproduce the
target tissue morphology, including its mechanical profile and
adhesion to surrounding tissues; and 3) to tune the degradation
rate to ensure that complete tissue replacement can occur on a
clinically-relevant timescale (Young et al., 2019). Table 2
summarizes multiple materials and methods used for in situ
tissue engineering.

While the direct injection of the in situ-gelling precursor
polymers can be performed into any site, there is growing
interest in leveraging in situ gelation chemistry with 3D
bioprinting to perform in situ (or in vivo) printing (Singh
et al., 2020), typically using either a robotic arm or a handheld
device that could be used directly by healthcare professionals on
the patient and thus eliminates the need for moving the printed
tissue between the printer and the operating room (Duchi et al.,
2017; di Bella et al., 2018; Hakimi et al., 2018) (Figure 7A–C).
Such an approach leverages the reproduction of fine structures
enabled by 3D bioprinting while eliminating the need for
subsequent transplantation, which is challenging in the context
of conventional 3D bioprinting due to 1) the potential for the
disruption of both micro and macro-architectures (i.e., from
swelling), 2) the challenges around maintaining structural
fidelity and integrity upon handling and transport, 3) the risk
of contamination and thus the need to maintain a highly sterile
environment throughout the entire fabrication/transplant
process, and 4) the requirement for good replicability and low
error rates. In situ bioprinting has already been demonstrated to
enable functional tissue regeneration in multiple tissue types
including bone, skin, and cartilage. In the following sections,
we will highlight key examples of strategies to address these
challenges specific to in situ 3D bioprinting; however, any of these
materials could also be directly injected to enable in situ tissue
engineering using a more direct injection-based approach.

3.3.1 Bone
Bone defects are conventionally treated using non-biological
implants that either fill the missing bone part or support the
remaining bone to provide enough mechanical strength for a
limited time (Liu et al., 2017). However, such implants do not
provide a long-lasting solution and will need to be surgically
replaced over time, leading to potential complications.
Keriquel et al. (2017) demonstrated the use of an in situ
laser-assisted bioprinting process as a viable technique for
printing mesenchymal stromal cells loaded in a collagen-nano
hydroxyapatite hydrogel to promote functional bone
regeneration in a murine calvaria defect model. Laser-

assisted bioprinting (LAB) uses a near-infrared pulsed laser
beam coupled to a scanning mirror and focusing system to
enable high cell printing resolution and precision (Keriquel
et al., 2017). While the proliferation of the printed cells was not
significantly different between the ring and disk geometries
tested, the disk geometry showed a significant increase in bone
formation after 1 and 2 months (Keriquel et al., 2017) (Figure
7D). Alternately, Cohen et al. (2010) demonstrated the
feasibility of in situ bioprinting using an extrusion-based
bioprinter to print alginate-based hydrogels to treat
chondral and osteochondral effected in a calf femur.
Alginate was mixed with demineralized bone ECM and
gelatin and printed directly into the osteochondral defect,
enabling the functional repair of defects directly at the
injury site with precise geometry constraints (mean surface
errors of <0.1 mm) (Cohen et al., 2010). The inherent
mechanical mismatch between bone ECM and a printable
hydrogel should however be considered in this context,
providing further impetus toward accelerating existing
efforts to fabricate hydrogel-based bioinks with a higher
modulus value without compromising printability.

3.3.2 Skin
Skin is the largest and most accessible organ and has thus become
an ideal platform to validate in situ tissue engineering approaches
to create skin substitutes, though only a few studies have been
reported. Hakimi et al. developed a portable handheld extrusion-
based skin printer that allowed for the co-printing of both
ionically crosslinked biomaterials (i.e., alginate) and
enzymatically crosslinked protein (i.e., fibrin) with dermal and
epidermal cells to form cell-laden sheets of consistent thickness,
width, and composition (Hakimi et al., 2018) (Figure 7C). The in
situ deposition was validated in a murine wound model and a
porcine full-thickness wound model, with the bioprinted
structure observed to cover the full wound with a
homogeneous layer that did not impede on normal re-
epithelization or wound contraction (Keriquel et al., 2017).
Alternately, Albanna et al. (2019) reported a mobile inkjet
printer that facilitates the precise delivery of either autologous
or allogeneic dermal fibroblasts and epidermal keratinocytes
directly into an injured area. Using a thrombin-crosslinked
fibrinogen hydrogel and an integrated imaging technology to
pre-determine the topography of the wound, the direct
bioprinting approach rapidly closed the wound, reduced
wound contraction, and accelerated re-epithelialization in a
murine full-thickness excisional wound model; the wound area
at 1-wk post-surgery was 66% of the original wound area for the
printed group compared to 95% of the control group, while the
printed skin cells completely closed the wound by 3 weeks post-
surgery compared to 5 weeks for the controls (Albanna et al.,
2019). Developing strategies that can in situ print striated features
with thinner dimensions (on the length scale of native skin) may
further improve the efficacy of this therapeutic option.

3.3.3 Cartilage
Damaged cartilage cannot be easily treated due to its lack of
vasculature and inability to self-repair by our body, with
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osteoarthritis being the most common chronic joint disease
that leads to inflammation and degradation of cartilage (Liu
et al., 2017). While existing treatments are available in the form
of implantation and grafts, such treatments are highly invasive,
expensive, and require revisions over time. Furthermore, the
implantation of prefabricated tissue scaffolds often results in a
significant geometric mismatch to the native tissue while
lacking sufficient structural support and nutrient diffusion.
O’Connell created a handheld pneumatic in situ extrusion
device dubbed the “BioPen” that addresses these challenges by
enabling printing of two inks in a collinear geometry (di Bella
et al., 2018). High viability (>97%) of human adipose stem cells
could be maintained after 1 week using methacrylated gelatin
and hyaluronic acid hydrogel bioinks (O’Connell et al., 2016).
The design of the BioPen has since been improved by the same
group to allow for a multi-inlet extruder nozzle and a
motorized extrusion system, permitting coaxial in situ
bioprinting in which the core bioink encapsulated the stem
cells and the shell bioink (mixed with the photoinitiator)
(Figure 7A) is cured in situ via ultraviolet (UV)
photocrosslinking in the chondral defect of a sheep knee
joint (O’Connell et al., 2016; Duchi et al., 2017). The in
vivo 3D-printed construct showed early formation of
hyaline-like cartilage and better macroscopic/microscopic
characteristics than the controls, with the coaxial mixing
approach better protecting the cells from the printing
process and any potential damaging effects of the free
radicals generated during photocrosslinking (Duchi et al.,
2017).

4 CLINICAL TRANSLATION OF
HYDROGELS

To be appropriate for clinical translation, a hydrogel must be
biocompatible and have suitable mechanics and an appropriate
degradation profile while addressing key biological challenges
(e.g., effective regeneration while avoiding unwanted immune
responses) and logistical challenges (e.g., sterilizability,
transportation, and storage) associated with the targeted
application. The majority of clinically approved injectable or
implantable hydrogels are targeted for skin or joint
regeneration or drug delivery applications (Mandal et al.,
2020). Table 3 summarizes the various classes hydrogels that
have been approved for clinical use. As shown, injectable or
implantable hydrogels for cell therapies have not yet been
approved for clinical use by the United States Food and Drug
Administration (FDA) (Sivaraj et al., 2021); however, one cell-
laden hydrogel scaffold has been approved for wound healing
applications. Apligraf® is a bovine collagen-I hydrogel scaffold
loaded with human neonatal fibroblasts that is covered on one
side by a stratified layer of neonatal keratinocytes (Gentzkow
et al., 1996). This tissue-engineered graft is approved for the
treatment of chronic wounds such as diabetic foot ulcers (DFU)
and venous leg ulcers (VLU) (Streit and Braathen, 2000;
Edmonds, 2009). The hydrogel graft is typically applied to the
wound site for a period of weeks and can be reapplied as needed at
the discretion of the physician (Zaulyanov and Kirsner, 2007). A
study investigating the persistence of Apligraf® in acute wounds
concluded that the DNA from Apligraf’s cells was very minimally

FIGURE 7 | (A) Design of the handheld Biopen to print gelatin methacrylamide and hyaluronic acid methacrylate (HA-GelMa) hydrogel scaffolds with core-shell
structure. Reproduced with permission (di Bella et al., 2018). (B) In situ bioprinting to fabricate HA hydrogels for chondral defect repair. Reproduced with permission (Li
et al., 2017). (C) In situ formation of fibrin-HA/collagen sheet for skin tissue regeneration. Reproduced with permission (Hakimi et al., 2018). (D) In situ bioprinting of
mesenchymal stromal cells and nano-hydroxyapatite collagen for in vivo bone tissue regeneration. Reproduced with permission (Keriquel et al., 2017).
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TABLE 1 | Materials and methods used for electrospinning hydrogels for tissue engineering.

Materials Solvent(s) Crosslinking
mechanism(s)

Voltage
(kV)

Cells
incorporated

Nanofiber
size
(nm)

Key biological
results

Specific
application(s)

References

Natural
Polymers

Collagen Hexafluoro-2-
propanol

Chemical (EDC-NHS,
genipin, transglutaminase,
UV photo-crosslinking)

11 Human
osteosarcoma MG-
63 cells

106 ± 22 • Faster cell growth on EDC/
NHS crosslinked scaffolds
compared to TG or GP-
crosslinked scaffolds over up
to 21 days

Bone tissue
engineering

Torres-Giner
et al. (2009)

Collagen Hexafluoro-2-
propanol and
acetic acid

Chemical (EDC-NHS,
glutaraldehyde, genipin)

20 Mc3T3-E1 cells 300–650 • Best cell proliferation
observed using EDC-NHS as
the crosslinker

Extracellular
matrix model

Luo et al.
(2018)

Collagen and
chitosan

Acetic acid and
ethanol

Chemical (EDC) 16 HUVECs and NIH 3T3
fibroblast cells

168 ± 58 • Facilitated improved cell
viability when compared to
the tissue culture dish control

Wound healing Deng et al.
(2018)

Gelatin Acetic acid,
ethyl acetate
and water

Chemical (glutaraldehyde,
genipin, glyceraldehyde,
reactive oxygen species)

12 MG63 osteoblast
cells

~300 • Glyceraldehyde-crosslinked
nanofibers maintained
highest cell viability and
growth

Tissue
engineering

Sisson et al.
(2009)

Gelatin Acetic acid and
water

Chemical (EDC, genipin, GTA
vapour)

15 HeLa epithelial cells 268 ± 18 • EDC/NHS crosslinking
resulted in the longest
stability in a physiological-like
environment

Tissue
engineering

Campiglio et al.
(2020)

Methacrylated
dextran

Sodium
bicarbonate
and HEPES

Chemical (UV
photocrosslinking)

7.5 NIH 3T3 fibroblasts
and human
mesenchyme stem
cells

<500 • Fiber scaffold stiffness did
not affect cell viability, but
remodeling of the scaffold
occurred to a much higher
degree in soft scaffolds

Extracellular
matrix model

Baker et al.
(2015)

GelMA Hexafluoro-2-
propanol

Chemical (UV
photocrosslinking)

15 Bone mesenchymal
stem cells and
hippocampal
neuronal cells

~1000 • Decreased glial scar tissue
formation, increased
vascularization, and
increased neuronal
development compared to
electrospun gelatin fibers
crosslinked with
glutaraldehyde

Spinal cord
regeneration

Chen et al.
(2019)

Natural and
Synthetic
Polymers

Alginate and PEO Triple-distilled
water

Physical (ionic crosslinking
via CaCl2)

10.5 C2C12 myoblast cells 250–400 • >90% cell viability over
7 days

Skeletal muscle
tissue
regeneration

Yeo and Kim
(2018)

• Cells grow along the direction
of the aligned fibers

Alginate, PEO, GelF-
MA with Pluronic

®

F127

Deionized water Dual (ionic crosslinking with
CaCl2 + UV
photocrosslinking)

7 Mesenchymal stem
cells

183 ± 36 • < 10% cytotoxicity and an 8-
fold increase in cell
proliferation observed over
2 weeks

Stem cell therapy
and tissue
regeneration

Majidi et al.
(2018)

• Signs of maturation of the
human iPSC-derived
ventricular cardiomyocytes
observed

Gelatin-
hydroxyphenyl-

Hexafluoro-2-
propanol and
water

Enzymatic (oxidation of the
HPA moieties with the

18 HUVECs ~ 400–2,000 • Full scaffold degradation
observed within 4 weeks of in

Soft tissue
engineering

Nie et al. (2020)
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TABLE 1 | (Continued) Materials and methods used for electrospinning hydrogels for tissue engineering.

Materials Solvent(s) Crosslinking
mechanism(s)

Voltage
(kV)

Cells
incorporated

Nanofiber
size
(nm)

Key biological
results

Specific
application(s)

References

propanoic acid
(Gel–HPA)

addition of horseradish
peroxidase and H2O2.)

vivo implantation with good
cell penetration

Thiolated hyaluronic
acid (HA) and PEO

DMEM cell
medium

Chemical (disulfide formation
+ thiol-Michael addition
following the post-fabrication
addition of PEGDA)

18 NIH 3T3 fibroblast
cells

50–300 • Cells can infiltrate the scaffold
up to 32 µm below the
surface and showed an
extended dendritic network
morphology compared to 2D
controls

Cell encapsulation
and tissue
regeneration

Ji et al. (2006)

Alginate and PEO Triple-distilled
water

Physical (ionic crosslinking
using CaCl2)

10.5 HUVEC, C2C12, or
H9c2 smooth muscle
cells

328 ±
50–488 ± 67

• 90% cell viability maintained Muscle tissue
regeneration

Yeo and Kim
(2020)• Myogenic gene expression

markers identified
• 2,154% increase in cell

proliferation with HUVECs
and seeded C2C12 cells

Fibrinogen and PEO Deionized water Chemical (thrombin-induced
crosslinking)

4.5 C2C12 myoblast cells 80,000–90,000 • Higher viability achieved by
electrospinning aggregates
and decreasing voltage

Muscle tissue
regeneration

Guo et al.
(2019)

• Induced myogenesis of
C2C12 aggregates growing
along microfiber bundle

Collagen and PVP Hexafluoro-2-
propanol

Physical (pH-induced) 3.6 HUVECs 461 ± 129 • Altered crosslinking methods
maintained the triple helical
structure of collagen through
the electrospinning process

Tissue
engineering

Wakuda et al.
(2018)

• HUVECs cultured on
scaffolds along the fiber
direction

Chitosan and PVA Acetic acid Physical (temperature-
induced)

20 L-929 fibroblast cells 172 ±
60–257 ± 63

• Attachment and proliferation
of fibroblast cells over 5 days

Wound healing
and tissue
engineering

Koosha and
Mirzadeh
(2015)

Collagen and PVA Acetic acid and
water

Dual (phosphoric acid +
glutaraldehyde)

12–15 Human keratocytes
(HKs) and human
corneal epithelial cells
(HCECs)

163–211 • HKs align to the fiber
orientation

Cornea tissue
engineering

Wu et al. (2018)

• Good cell adhesion and
proliferation over 4 weeks

Chitosan and PVA Acetic acid and
water

Chemical (glyoxal) 15 Human normal
fibroblast cells

227 ± 63 • 3.5× increased strength with
5% halloysite nanotubes
(HNTs) incorporated into the
fibers

Skin tissue
regeneration

Koosha et al.
(2019)

• HNTs-reinforced fibers
exhibited better cell
attachment on surface of
nanofibers

Hyaluronic acid, PVA,
L-arginine and
cellulose nanocrystals
(CNCs)

Water Physical (citric acid) 28–30 Human normal lung
fibroblast WI38 and
skin melanocyte HFB-
4 cells

122–222 • Increased fiber mechanical
strength due to CNC addition

Wound healing
and tissue
engineering

Hussein et al.
(2020)

• Increased ECM collagen
synthesis, angiogenesis, and
epithelialization
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detected after 4 weeks and that the hydrogel did not exhibit
features of engraftment (Griffiths et al., 2004); however,
Apligraf® still shows clinical efficacy, making the cellular
secretions of pro-healing cytokines the most likely
mechanism of action (Streit and Braathen, 2000; Zaulyanov
and Kirsner, 2007). A clinical study with over 100 participants
that investigated anti-bovine collagen-I and anti-bovine serum
antibodies as well as T-cell proliferation found no humoral or
cellular immune response to Apligraf® in comparison with the
control group (Eaglstein et al., 1999), suggesting its safety.
Decellularized ECM scaffolds combined with cells have also
been clinically approved for soft tissue repair (e.g., AlloDerm®,
GRAFTJACKET Now®, and OrthADAPT® Bioimplant) but are
generally very expensive given the extensive purification steps
required to ensure sufficiently consistent batch-to-batch
manufacturing of non-inflammatory decellularized matrix. A
cell-loaded alginate-based matrix is the only currently non-
ECM derived approved tissue regeneration hydrogel
(AlgiMatrix®) but to-date is only used for 3D tissue models
for in vitro drug screening. As such, despite the massive
developmental efforts invested to-date in the design and
fabrication of tissue engineering-based hydrogels, the
translation of such hydrogels remains slow.

Clinically approved hydrogel therapies that do not include
cells fall into four broad categories: natural hydrogels for
cosmetic applications (Busso and Voigts, 2008; Lorenc, 2012;
Sparavigna et al., 2014), natural or synthetic hydrogels for
functional volume-filling purposes (Sack et al., 2018; Freitas
et al., 2020), natural or synthetic hydrogels for osteoarthritic
pain management (Miltner et al., 2002; Tnibar et al., 2015), or
synthetic hydrogels for sustained drug delivery (Shore et al.,
2011). The characteristics of such clinically approved hydrogels
can serve as relevant case studies for understanding the
regulatory and translational considerations that may be
limiting for the translation of tissue engineering hydrogels.
We will discuss two such examples: Juvéderm® and Bulkamid®.

Juvéderm® is a 1,4-butanediol diglycidyl ether (BDDE)-
crosslinked hyaluronic acid (HA) gel clinically approved in
2006 in the United States for aesthetic treatment of dermal
wrinkles and folds (Allemann and Baumann, 2008; Barr et al.,
2015). Pre-clinical studies of chemically crosslinked HA
showed that its degradation profile (Sall and Férard, 2007;
Boulle et al., 2013) and the cytocompatibility of its degradation
by-products (RD, 1996; Boulle et al., 2013) are suitable for
clinical applications; following, numerous clinical trials have
concluded that HA dermal fillers have significant advantages in
longevity and biocompatibility over other treatment options
(Duranti et al., 1998; Sparavigna et al., 2014; Barr et al., 2015).
Slight variations of Juvéderm with different degrees of
crosslinking and therefore different stiffnesses and longevity
have also been approved and widely adopted for clinical use
(Allemann and Baumann, 2008). Clinical translation of
Juvéderm was bolstered by the fact that hyaluronic acid had
already been used clinically for decades as a vitreous substitute
(Pruett et al., 1979) as well as the approach to manufacture HA
via bacterial fermentation processes, improving the batch-to-
batch consistency of the HA product.T
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Bulkamid® is an injectable synthetic polyacrylamide hydrogel
approved by the FDA for use in the United States in 2020 to treat
stress urinary incontinence (SUI) by functioning as a bulking
agent to add a total volume of up to 2 ml to the walls of the
urethra (U.S. Food and Drug Administration, 2021; Kasi et al.,
2016). In vitro and in vivo studies investigated the cytotoxicity
(McCollister et al., 1965) and degradation (Caulfield et al., 2002)
of polyacrylamide, informing the choice of the 2.5% (w/v)
polyacrylamide concentration that was confirmed via
multiple long-term clinical studies to be suitable in the
targeted application (Lose et al., 2010; Pai and Al-Singary,
2015; Kasi et al., 2016). Although polyacrylamide was not
previously approved for clinical use by the FDA, it had been
in clinically used for breast augmentation in China since 1997
and years earlier in Ukraine (Margolis et al., 2015), albeit with
reports of multiple adverse complications such as lumps, breast
pain and induration, and in certain cases a foreign body
response which destroyed the structure of adjacent muscle
and gland (Qiao et al., 2005). The much smaller volume of
gel required for Bulkamid injection (total of 2 ml in 3 to 4
locations) relative to breast injections (~150 ml) and the
structure of the urethra significantly suppresses this risk,

even in the context of a non-degradable hydrogel like
polyacrylamide.

In both cases, the clinical translation of Juvéderm and
Bulkamid benefited from the pre-existing clinical use of the
same hydrogel for a different application, motivating
translational researchers to focus efforts on developing
variations of hydrogels that are already approved for clinical
use; this tendency is strongly reinforced by the high costs of
funding a therapy from pre-clinical studies through to FDA
approval. These barriers hinder innovative hydrogel
formulations from entering the process of clinical translation,
particularly in the area of tissue engineering in which both a
material and a therapeutic (i.e., a regenerative cell) are key parts of
the functional product. These barriers, and the regulatory
challenges in dealing with regenerative tissue scaffolds, have
been recognized by the FDA, which in 2017 acknowledged
that as we enter a “new era of 3D printing of medical
products regulatory issues related to the bioprinting of
biological, cellular and tissue-based products” will have to
adapt as the applications and practical implementations of
tissue engineering continue to drift from the definitions of
traditional therapies (U.S. Food and Drug Administration,

TABLE 2 | Materials and methods used for in situ tissue engineering.

Materials Crosslinking
chemistry

In situ
gelation

mechanism

Cells encapsulated Key biological
results

FDA
approved
constituent
materials

References

Alginate and collagen Calcium sulfate (ionic
crosslinking)

Pre-mixed in a 1:1
alginate:collagen
volume ratio

Human
mesenchymal stem
cells (hMSCs)

• >90% viability over 7 days
after injection

Yes Moeinzadeh
et al. (2021)

• DNA content increased
up to 37-fold after
28 days

Chitosan and dextran Amine-functionalized
chitosan crosslinked with
aldehyde groups on oxidized
dextran (imine covalent bond)

Pre-mixed Human fetal
osteoblasts

• >90% viability after 7 days
after encapsulation

Yes Cheng et al.
(2014)

Decellularized ECM
and methacrylated
hyaluronic acid

Thermal gelation at 37°C
followed by in situ
photocrosslinking

Pre-mixed,
intrapericardial
injection (iPC)

MSCs, induced
pluripotent cardiac
progenitor cells
(iPS-CPS)

• Cardiac patch increases
the cardiac retention of
therapeutics and
improves cardiac function
post-myocardial infarction

Yes Zhu et al.
(2021)

Gelatin-based
microribbons (using
wet-spinning in
DMSO) and fibrinogen

Thrombin-induced
crosslinking (enzymatic)

Pre-mixed Adipose-derived
stromal cells (for
bone regeneration)

• >80% viability using 16G
needle at 5% microribbon
density

Yes Tang et al.
(2020)

• Osteogenic capability
post-injection is
preserved using staining
techniques

• Complete degradation
after 3 weeks

Poly (oligoethylene
glycol methacrylate)

Hydrazide and aldehyde-
functionalized oligomers
(hydrazone covalent bond)

Real time mixing from
a double barrel syringe
through a static mixer

Murine C2C12
myoblast cells

• Cationic-functionalized
POEGMA copolymers
can deliver viable and
proliferating ARPE-19
human retinal epithelial
cells

No Bakaic et al.
(2018)

Fibrinogen Thrombin-induced
crosslinking

Pre-mix hMSCs • Two-fold increase in
cardiac retention coupled
with two-fold reduction in
liver accumulation

Yes Martens et al.
(2009)
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TABLE 3 | Commercialized hydrogels used in the clinic.

Materials Product name Crosslinking
mechanism

Cell/tissue
types

Application(s) Clinical use Comments References

Collagen Apligraf
®

Physical Fibroblast and
keratinocytes

Tissue
regeneration,
wound healing

Diabetic foot ulcers and
venous leg ulcers
(VLUs)

Immunologically inert (Gentzkow
et al., 1996b;
Helary et al.
(2012)

AlloDerm
®

Decellularization Fibroblasts,
epithelium, and
blood vessels

Soft tissue
regeneration

Breast reconstruction Free of inflammatory
response, expensive

Agarwal et al.
(2015); Patel
et al. (2021)

GRAFTJACKET
Now

®
Decellularization Multiple cells Tissue

regeneration
Tendon and
ligamentous tissue

Free of inflammatory
response

Snyder et al.
(2009)

OrthADAPT
®

Bioimplant
Decellularization Multiple cells Soft tissue

regeneration
Attachment of tissue to
bone, tendon repair

A highly organized
Type I collagen
scaffold provides high
mechanical strength

Weil (2008);
Rana et al.
(2017)

Permacol
®

Decellularization and
chemical crosslinking
(hexamethylene
diisocyanate)

N/A Soft tissue
regeneration

Tendon and ligament
repair, surgical implant
for ventral hernia repair
and abdominal wall
reconstruction

Long-lasting
dimensional stability
ensures the integrity of
the scaffolds

Linz et al. (2013)

TissueMend
®

Decellularization N/A Soft tissue
replacement

Tendon and ligament
repair

Potential immune
response and lack of
long-term mechanical
stability

Chen et al.
(2009)

Collagen Implant,
CosmoDerm

®
Decellularization N/A Soft tissue

augmentation
Skin tissue engineering Lack of biological

function and
mechanical stability

Bauman (2004)

Zimmer
®
Collagen

Repair Patch
Decellularization N/A Soft tissue

regeneration
Rotator cuff and tendon
repair

Good cell penetration
and vascularization,
lack of long-term
stability

Coons and Alan
Barber (2006)

Alginate AlgiMatrix
®

Physical Multiple cells 3D cell culture 3D cell/tissue culture
models (e.g., tumor
models)

Good cell morphology
and differentiation
supported

Godugu et al.
(2013)

Gel-One
®

Chemical N/A Injectable soft
tissue fillers

Treatment of
osteoarthritis, reducing
pain scores

Lack of stiffness and
long-term mechanical
stability

Ishikawa et al.
(2014)

Hyaluronic
acid (HA)

Hyaloglide
®

Chemical N/A Injectable tissue
spacers and
adhesive

Prevent or reduce
adhesions or fibrosis
after tendon, peripheral
nerve, or articular
surgery

High viscosity, lower
cost than ECM/dECM
options

Riccio et al.
(2010)

Juvéderm
®

Chemical N/A Soft tissue
augmentation

Dermal wrinkles and
folds

Side effects and
expensive

Allemann and
Baumann
(2008); Barr
et al. (2015)

Hyalonect
®

Chemical N/A Tissue
regeneration

Orthopedic and trauma
reconstructive
surgeries

Low inflammatory
response

Rhodes et al.
(2011); Tekin
(2013)

Veriset
®

hemostatic patch
Chemical N/A Hemostat Intraoperative soft

tissue bleeding
Consistent efficacy
across multiple tissues

Glineur et al.
(2018)

Poly (ethyl-
ene
glycol) (PEG)

DuraSeal
®

Chemical N/A Sealant Prevent cerebrospinal
fluid (CSF) leakage after
cranial and spinal
surgery

Potential long-term
issue with
postoperative cord
compression

Lee et al. (2013)

SpaceOAR
®

hydrogel
Chemical N/A Soft tissue

spacer
Prostate cancer rectal
spacer to reduce the
radiation dose delivered
to the anterior rectum

Transparent and
expensive with low
side effects

Hedrick et al.
(2017)

Polyacryl-
amide (PAM)

Bulkamid
®

Physical N/A Injectable gel
fillers

Stress urinary
incontinence treatment

Long-term stability,
some potential tissue
side effects

Kasi et al. (2016)
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2017). This emerging regulatory framework must be navigated by
researchers in this area with an emphasis on ensuring the
manufacturability, sterilizability, and storage stability of any
hydrogel formulation developed in addition to ensuring
efficacy of the product for the intended application.

While the majority of discussion on translation has focused on
the materials design, the cell sourcing and production of large
number of functional cells for practical translation is perhaps an
even more challenging problem given the limited potential of
many cell types to be expanded in a lab and the potential for non-
host transplants to induce potential immune response for
patients. The ability of tissue engineering scaffolds to fully
recapitulate the full complexity of the microenvironment some
more sensitive cells need to function is also to-date weakly
addressed in the area, at least using scalable methodologies for
scaffold manufacturing. While not the main focus of this review,
it is critical that methods to use the patient’s own cells (e.g.,
induced pluripotent stem cells from patients that can be
reprogrammed to the desired phenotype) and/or to expand
immune-compatible cell lines are developed and scaled to
ensure consistency in the cell responses and thus reliable
tissue regeneration responses.

5 CONCLUSION AND OUTLOOK

Hydrogels as tissue engineering scaffolds offer enormous potential
for clinical translation given their clear advantages in maintaining a
hydrated environment for cells, mimicking the mechanics of soft
tissues, and facilitating the presentation of appropriate interfaces and
cell cues to promote tissue regeneration. However, the slow
translation of these materials to the clinic goes beyond simple
regulatory barriers. For natural polymer-based hydrogels, the
effective scale up and management of batch-to-batch differences
in natural polymers remains a huge challenge, as is addressing the
often weaker mechanical properties of natural polymer-based
hydrogels for promoting proper signaling to regrow stiffer tissues.
For synthetic polymer-based hydrogels, challenges around
degradability can be limiting (although the approval of Bulkamid
suggests that this challenge is not inherently problematic for
regulatory approval but rather related to the need to balance
scaffold clearance with the rate of tissue regeneration).
Combining natural and synthetic polymers into a single scaffold
may offer benefits to leverage the benefits (and dilute the drawbacks)
of each individual polymer type, although the inclusion of multiple
materials is also likely to further complicate the regulatory process.

The three techniques described in depth that enable scaffold
fabrication and cell loading in a single step (3D bioprinting, cell
electrospinning, and in situ tissue engineering) in our view offer the
most practical ways forward to commercialize cell-loaded tissue
engineering hydrogels given that they all streamline multiple
fabrication steps, make maintaining sterility much easier, and
could in principle be applied directly in the operating room.
However, each method still offers challenges, particularly in terms
of broadening the types of materials that can be used for scaffold
fabrication. For bioprinting, a relatively small number of bioink
options is currently available due to the requirements of printing and

the need to maintain precise crosslinking kinetics to fix the printed
shape in place, although the emergence of embedded printing
approaches (e.g., FRESH) can help to offset some of these
challenges. The still relatively low feature resolution printable
with high-throughput printing strategies like extrusion also offers
a limitation of current bioprinting strategies for reproducing the
nanofibrous structure of native ECM. Cell electrospinning can
provide similar feature sizes to native ECM (i.e., in a range of
hundreds of nanometers to a few micrometers) essential to provide
cues for cell adhesion and proliferation but involves the exposure of
cells to a strong electric field and (in typical processes) induces at
least some degree of cell dehydration as the electrospun scaffolds are
collected, both of which applymechanical and/or osmotic stresses on
cells that may compromise the viability of particularly more sensitive
primary cell lines. Electrospinning directly on tissues (e.g., using
hand-held devices) or into cell media instead of on dry collectors
may address some of these challenges, while minimization of the
applied voltage can ensure as high as possible cell membrane viability
during the electrospinning process. In situ tissue engineering
approaches offer a mechanism to directly administer cells and
hydrogels into the body via injection but are more difficult to
fabricate into controlled internal microstructures and
morphologies optimized for cell growth. Methods to perform in
situ gas foaming using biologically-safe foaming agents, incorporate
sacrificial pore-forming materials that can be dissolved or otherwise
in situ degraded over time to introduce tunable porosity, and/or
provide alignment cues (e.g., via the incorporation of anisotropic
nanoparticles that can be remotely aligned via non-invasive stimuli
(de France et al., 2017)) all offer potential to improve the outcomes of
such therapies, although further research is certainly required to
make such approaches truly translatable. While each of these three
processes offers in our opinion outstanding promise for translation,
further developments in these processes (or the development of new
processes) that placeminimal stress on cells and can be used with the
broadest possible set of materials would further expand the potential
for practical translation of hydrogel-based tissue scaffolds to the
clinic.
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