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Developmental dyslexia has been the focus of much functional anatomical research.
The main trust of this work is that typical developmental dyslexics have a dysfunction
of the phonological and orthography to phonology conversion systems, in which the
left occipito-temporal cortex has a crucial role. It remains to be seen whether there
is a systematic co-occurrence of dysfunctional patterns of different functional systems
perhaps converging on the same brain regions associated with the reading deficit. Such
evidence would be relevant for theories like, for example, the magnocellular/attentional
or the motor/cerebellar ones, which postulate a more basic and anatomically distributed
disorder in dyslexia. We addressed this issue with a meta-analysis of all the imaging
literature published until September 2013 using a combination of hierarchical clustering
and activation likelihood estimation methods. The clustering analysis on 2360 peaks
identified 193 clusters, 92 of which proved spatially significant. Following binomial
tests on the clusters, we found left hemispheric network specific for normal controls
(i.e., of reduced involvement in dyslexics) including the left inferior frontal, premotor,
supramarginal cortices and the left infero-temporal and fusiform regions: these were
preferentially associated with reading and the visual-to-phonology processes. There was
also a more dorsal left fronto-parietal network: these clusters included peaks from tasks
involving phonological manipulation, but also motoric or visuo-spatial perception/attention.
No cluster was identified in area V5 for no task, nor cerebellar clusters showed a reduced
association with dyslexics. We conclude that the examined literature demonstrates a
specific lack of activation of the left occipito-temporal cortex in dyslexia particularly for
reading and reading-like behaviors and for visuo-phonological tasks. Additional deficits
of motor and attentional systems relevant for reading may be associated with altered
functionality of dorsal left fronto-parietal cortex.
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INTRODUCTION
Developmental dyslexia (DD), the inability of acquiring flu-
ent reading skills notwithstanding normal intelligence, adequate
socio-cultural conditions, and preserved elementary sensory
skills (DSM-IV, American Psychiatric Association, 1994; ICD-10,
World Healt Organization, 1993), often co-occurs with phono-
logical deficits (Snowling, 2001) that persist in adult life (Paulesu
et al., 2001; Ramus et al., 2003). While it is fairly clear which
classes of phonological tasks are more sensitive in bringing about
a deficient performance in dyslexics (e.g., spoonerism tasks; see
for example, Pennington et al., 1990), the fine-grained nature of
cognitive deficits underlying these faulty performances remains to
be established fully (Frith, 1999).

Subjects with DD may present a more complex behavioral
profile (Menghini et al., 2010), the reading and phonological dif-
ficulties being sometimes accompanied by attentional, visual- and

auditory-magnocellular and/or motor-cerebellar impairments
(Facoetti et al., 2000; Nicolson et al., 2001; Stein, 2001; Gaab
et al., 2007); these are hereafter called “additional deficits”1. The
prevalence of the additional deficits may vary from sample to
sample fuelling the debate on whether a core dyslexia syndrome
exists together with a core underlying cognitive deficit. Indeed,
the variable importance given to the additional deficits by different
authors is one strong motivation for the presence of competing
interpretations of dyslexia as a syndrome. The matter is com-
plicated by the fact that the studies on co-morbidity in dyslexia
have been run in groups selected with very different criteria: the
range spans from studies on highly compensated adult university
students in some cases (Ramus et al., 2003; Reid et al., 2007) to

1This labeling is used for convenience only without ideological positions
about the importance of these deficits in dyslexia.
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unselected young kids in other cases (Heim et al., 2008; Menghini
et al., 2010). Studies in adult dyslexics have the advantage of per-
mitting the assessment of a relatively stable neurocognitive system
and to minimize the observation of co-occurring deficits due to
delayed maturation; studies in kids are more prone to the uncer-
tainties due to the—not necessarily synchronous—development
of the multiple systems involved in reading and to the chang-
ing neuropsychological patterns that may place a given kid in
the dyslexic or in the normal population range, depending on
the year of testing (see for example, Shaywitz et al., 1992). Of
course, studies in kids have the advantage of giving information
relevant for the developmental process while the reading skill is
being acquired.

There have been great hopes that functional anatomical studies
of dyslexia could contribute to a better understanding of the dis-
order: it has been reasoned that if a well-defined malfunctioning
brain system was identified, one could make stronger inferences
on the nature of dyslexia at the cognitive level as well. This would
have had obvious consequences in the field of rehabilitation
(Demonet et al., 2004).

Indeed, brain imaging has had the merit of giving a demon-
stration that dyslexia has neurological bases. However, this
demonstration has come sometimes in contrasting ways, giving
further breath to the debate on the nature of dyslexia and on
whether different forms of dyslexia exist and their relative weight.

By the time of the completion of the data collection for this
paper, there have been more than 50 functional imaging papers
on dyslexia that one could use for a formal review of the literature
with a meta-analysis.

This previous literature can be grouped in few broad classes
of activation studies: studies with tasks involving primarily read-
ing (including lexical decision tasks, phonological awareness tasks
or semantic tasks); lexical retrieval for visual stimuli, as in pic-
ture naming; studies on auditory phonological processes; studies
on motor tasks and motor learning; studies on visual perception
(picture or face oriented) or on visuo-spatial attention; studies
on early visual or auditory processes, including stimuli tackling
the magnocellular systems.

After such a huge experimental effort in the field, any review
of the data based on a conventional verbose discussion of what
is nominally described by the authors would prove insufficient,
confusing, and sometimes contradictory. This is also because a
nominal reference to a given brain structure, and the ensuing dis-
cussions, is deprived of much value and sometimes misleading
when the precise stereotactic location of a statistical effect may
point to more specific cortical or subcortical regions: congruence
and incongruence of different data may only appear such because
of this impreciseness2.

In addition, the relative weight of a given study, based on the
sample sizes and statistical thresholds adopted, is often impossible

2One obvious historical such example can be the parietal region involved in
phonological short-term memory: identified at the temporo-parietal junction
by Paulesu et al. (1993, 1995), it was re-discovered, so to speak, two cm above
by Smith et al. (1998). This is just one of the many obvious limitations of
reviews based on qualitative approaches (for more discussions, see Fox et al.,
1998; Cattinelli et al., 2013b).

to deal with. Having clearly in mind the aforementioned limita-
tions of verbose, that is, non-quantitative, reviews, we mention
hereafter those that seem to be the most solid findings for read-
ing related tasks. To make this illustration, we use some of the raw
data that were entered into a formal meta-analysis in the paper.
Much of this discussion will hopefully be superseded by the results
of the present meta-analysis whose aim was in fact to shed further
light in the dyslexia imaging literature by showing findings that
truly replicate across studies of the same class and perhaps across
studies of different classes.

STUDIES ON THE CORE SYMPTOMS: READING AND PHONOLOGICAL
PROCESSING
The studies involving single-word reading in some form indicate
dysfunction of both left occipito-temporal (ventral) (see Paulesu
et al., 2001; Shaywitz et al., 2002 and more 20 studies from
those listed in Table 1) or left temporo-parietal (dorsal) cortex
(see for example Rumsey et al., 1992, 1997a). In particular, it
has been proposed that the dorsal temporo-parietal cortex might
be associated with an early dysfunction of phonological process-
ing, emerging in the initial stage of learning process (Turkeltaub
et al., 2003; Sandak et al., 2004), while the ventral occipito-
temporal region may be associated with perturbed maturation
of the word recognition systems (Paulesu et al., 2001; Sandak
et al., 2004), a finding that generalizes across different alphabetic
orthographies (Paulesu et al., 2001) and even Chinese (Hu et al.,
2010).

A first look on the highly replicated finding for the left ven-
tral occipito-temporal cortex can be seen in Figure 1A, where
the location of the local maxima of significant hemodynamic
response reduction was described for dyslexics. In the figure we
visualize the peaks of reduced activations in dyslexia for all tasks
that involved reading from the papers listed in Table 1.

A further look to the distribution of the areas of reduced acti-
vations for any task involving reading in dyslexia (see Figure 1B),
however, provides a more complex picture that clearly justifies the
urge for a formal re-assessment of the data.

Are these patterns age dependent? Are some of them task
dependent? What is the role of the right hemispheric hypo-
activations for a behavior like reading that is highly dependent
on a left-lateralized neural system (Cattinelli et al., 2013a; Taylor
et al., 2013)? More importantly, what is the level of replica-
tion of the findings of any given paper? Is this seemingly highly
distributed pattern of malfunction undermining our understand-
ing of the biology and the cognition of dyslexia? These are all
questions that are still in search of some formal answer.

In fact, the situation appears immediately more complex if one
also considers phonological tasks, both visual and auditory. As
one major theory of dyslexia predicates a phonological deficit it
becomes logical to expect a great anatomical congruence between
findings based on reading and findings based on phonological
tasks. The way these focal effects (regional hypoactivations in
dyslexia) overlap with the reading ones is illustrated by Figure 1C
(dots in blue and dots in green). Clearly there is some degree of
overlap between the three sets of findings.

However, there are also quite a few discrepancies. The same
unsolved questions listed before apply here.
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Table 1 | List of papers included in the metanalysis.

Authors Year Tecnique Sample size Age of Modality Experimental task

(Controls/ subjects presentation

Dyslexics) of stimuli

Bach et al. 2010 fMRI 18/11 Children Visual Letter substitution

Backes et al. 2002 fMRI 8/8 Children Visual Line orientation, string comparison, non-word reading,
semantic judgment

Beneventi et al. 2009 fMRI 13/11 Children Visual Sequential verbal working memory task

Beneventi et al. 2010b fMRI 14/12 Children Visual Working memory n-back task

Beneventi et al. 2010a fMRI 13/11 Children Visual Working memory n-back task

Booth et al. 2007 fMRI 39/39 Children Auditory, visual Word-pair semantic judgment

Brambati et al. 2006 fMRI 11/13 Adults Visual Word and pseudoword reading

Brunswick et al. 1999 PET 6/6 Adults Visual Word and pseudoword reading

Cao et al. 2006 fMRI 12/12 Children Visual Word rhyming

Cao et al. 2008 fMRI 14/14 Children Visual Word rhyming

Conway et al. 2008 fMRI 11/11 Adults Auditory Auditory pseudoword segmentation

Desroches et al. 2010 fMRI 12/12 Children Auditory Auditory rhyming task

Dufor et al. 2007 PET 16/14 Adults Auditory Phoneme categorization

Eden et al. 2004 fMRI 19/19 Adults Auditory Word repetition, phoneme delection

Gaab et al. 2007 fMRI 23/22 Children Auditory Sound discrimination

Georgiewa et al. 1999 fMRI 17/17 Children Visual Non-word reading, frequent word reading, phonological
manipulation

Grande et al. 2011 fMRI 25/20 Children Visual Picture naming, reading aloud of words

Grunling et al. 2004 fMRI 21/17 Children Visual Slash pattern matching, letter strings matching,
pseudoword matching, frequent word matching,
pseudoword rhyming

Heim et al. 2010 fMRI 20/16 Children Auditory, visual Phoneme discrimination, motion detection, attention
shifting, auditory discrimination of verbal and
non-verbal stimuli

Hoeft et al. 2006 fMRI 20/10 Children Visual Word rhyming

Ingvar et al. 2002 PET 9/9 Adults Visual Word and pseudoword reading

Kast et al. 2011 fMRI 13/12 Adults Auditory, visual Lexical decision

Kovelman et al. 2011 fMRI 12/12 Children Visual Word matching, word rhyming

Kronbichler et al. 2006 fMRI 15/13 Children Visual Sentence reading

Kronschnabel et al. 2013 fMRI 22/13 Children Visual Word and pseudoword reading

Landi et al. 2010 fMRI 13/13 Children Visual Word rhyming, semantic categorization

MacSweeney et al. 2009 fMRI 7/7 Adults Visual Picture matching, word Rhyming

Maurer et al. 2011 fMRI 16/11 Children Visual Word matching, pseudoword matching, picture
matching

McCrory et al. 2000 PET 8/6 Adults Auditory Word and pseudoword repetition

McCrory et al. 2005 PET 10/8 Adults Visual Word reading, pitcure naming

Menghini et al. 2006 fMRI 14/14 Adults Visual Implicit motor learning

Meyler et al. 2008 fMRI 12/23 Children Visual Sentence judgment

Monzalvo et al. 2012 fMRI 23/23 Children Visual Houses, faces, word and checkboard perception,
sentence listening in native and foreign language

Nicolson et al. 1999 PET 6/6 Adults Auditory Sequence motor learning

Olulade et al. 2012 fMRI 12/9 Adults Visual Word and pseudoword rhyming, Spatial rotation

Paulesu et al. 1996 PET 5/5 Adults Visual Syllable rhyming, verbal short-term memory task

Paulesu et al. 2001 PET 36/36 Adults Visual Word and non-word reading

Pecini et al. 2011 fMRI 13/13 Adults Audiovisual Rhyme-generation task

Pekkola et al. 2006 fMRI 10/10 Adults Audiovisual Perception of matching and conflicting audio-visual
speech

Peyrin et al. 2011 fMRI 12/12 Children Visual Letter matching

Reilhac et al. 2013 fMRI 12/12 Adults Visual Letter string comparison

Richlan et al. 2010 fMRI 18/15 Adults Visual Phonological lexical decision

(Continued)

Frontiers in Human Neuroscience www.frontiersin.org November 2014 | Volume 8 | Article 830 | 3

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Paulesu et al. Reading the dyslexic brain

Table 1 | Continued

Authors Year Tecnique Sample size Age of Modality Experimental task

(Controls/ subjects presentation

Dyslexics) of stimuli

Rimrodt et al. 2009 fMRI 15/14 Children Visual Word recognition, sentence judgment

Ruff et al. 2002 fMRI 11/6 Adults Auditory Implicit categorial perception of phonemes

Rumsey et al. 1997b PET 14/17 Adults Visual Irregular word and pseudoword reading, phonologial
and ortographic lexical decision

Schulz et al. 2008 fMRI 22/12 Children Visual Sentence judgment

Schulz et al. 2009 fMRI 30/15 Children Visual Sentence judgment

Steinbrink et al. 2012 fMRI 16/17 Adults Auditory Same-different judgment of vowel duration

Temple et al. 2000 fMRI 8/10 Adults Auditory Sound discrimination

Temple et al. 2001 fMRI 15/24 Children Visual Letter matching, letter rhyming

van der Mark et al. 2009 fMRI 24/18 Children Visual Phonological lexical decision

Vasic et al. 2008 fMRI 13/12 Adults Visual Verbal working memory task

Wimmer et al. 2010 fMRI 19/20 Adults Visual Phonological lexical decision

FIGURE 1 | Peaks of reduced activations in dyslexia for all tasks that

involved reading (circles in red), for visual or auditory phonological

tasks (circles in blue and in green, respectively) and for non-linguistic

tasks (circles in yellow). (A) Show the highly replicated reduction of
dyslexics at the level of the left ventral occipito-temporal peaks reported in

literature. In (B) all the peaks of reduced activations observed in dyslexics
during reading tasks included in our meta-analysis are reported. Finally, in
(C) all the peaks of reduced activations observed in dyslexics during
reading, phonological and non-linguistic tasks included in our meta-analysis
are reported.

ASHES TO ASHES, NOISE TO NOISE : THE CONTRIBUTION OF THE
IMAGING FINDINGS ON THE ADDITIONAL DEFICITS IN DYSLEXIA
Studies on what we call the additional deficits of dyslexia investi-
gated the neural dysfunction of more basic abilities such as those
of the magnocellular (visual or auditory) system, of the spatial
attention system and of motor control with particular attention
to the functions of the cerebellum.

The case of the visual magnocellular and visuo-motion per-
ception system is an exemplar one: a dysfunction of this system
is suggested by evidence that dyslexic may have reduced contrast
sensitivity at the low spatial frequencies and low luminance lev-
els (stimuli favored by the magnocells; Stein and Walsh, 1997),
reduced visual-motion sensitivity, in particular for coherent
motion (Cornelissen et al., 1995), that correlates with impaired
letter position encoding (Cornelissen et al., 1998); the same

deficit may explain greater crowding effects in dyslexic subjects
(Zorzi et al., 2012). In addition, subjects with dyslexia may have
subtle signs of a dysfunctional visuo-spatial attentional system
(Facoetti et al., 2000) that may be more severe for the left hemis-
pace in a sort of mini-neglect (Hari and Renvall, 2001; Liddle
et al., 2009). This evidence was supported initially by ERP data
(Galaburda and Livingstone, 1993) who found reduced VEPs in 5
dyslexics for low contrast reversing checkerboard stimuli (a find-
ing not replicated by others—see Johannes et al., 1996) and a
disorganized magnocellular subdivision of the lateral geniculate
nucleus.

Initial fMRI evidence pointing to a dysfunctional magnocellu-
lar system was provided by Eden et al. (1996) followed by Demb
et al. (1998) in two small samples of subjects: they found reduced
activation of the visual motion area MT/V5, a result that was lately
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not confirmed by MEG data, as Vanni et al. (1997) found normal
MT/V5 activation for moving stimuli.

Notwithstanding that the contribution of the magnocellular
and visuo-motion perception system in normal reading remains
contentious (no involvement of MT/V5 is seen for single word
reading in normal subjects), the aforementioned results have been
seen as a imaging evidence of the malfunction of the visual mag-
nocellular system in dyslexia. Indeed, the magnocellular hypoth-
esis remains a much pursued research avenue in dyslexia. Similar
considerations may apply to the cerebellar hypothesis and its
investigation.

To make this brutal introductory overview even more dismay-
ing, Figure 1C (dots in yellow) shows how focal hypo-activations
spread all over the brain if one considers non-linguistic tasks
for either the visual modality or the motor one. This picture
is quite similar with what would emerge if the scars and dys-
laminations originally described by Galaburda et al. (1985) were
superimposed onto the lateral surface of the brain in stereotactic
space.

It should be noted that in these examples, we illustrate only
voxels showing significant differences between groups. There is
much more to be displayed if one considers as we did in the paper,
also within group effects.

Clearly, such body of data cannot be assessed and summarized
by a mere discussion of what has found paper X as opposed to
paper Y. The obvious alternative to qualitative reviews is provided
by formal meta-analyses, as their quantitative approach makes
them more rigorous and less prone to subjective bias. In brain
imaging, meta-analyses are generally used to identify groups of
regional effects that fall sufficiently close in stereotactic space
to be interpreted as reflecting a common functional-anatomical
entity (Fox et al., 1998; Wager et al., 2007; Cattinelli et al., 2013b).
The functional significance of any of these entities then needs to
be analyzed, on the basis of the background information about
the experiments that generated the activation peaks constitut-
ing them. Several meta-analytic studies, differing in the specific
technique employed and the investigated cognitive domain, have
appeared in the literature in recent years (Salimi-Khorshidi et al.,
2009; Kober and Wager, 2010; Radua and Mataix-Cols, 2012).
Quantitative meta-analytic approaches were also recently used to
determine consistency across neuroimaging studies and to iden-
tify regions reported as dysfunctional in developmental dyslexia
(Maisog et al., 2008; Richlan et al., 2009). In particular, two stud-
ies, using the Activation Likelihood Estimation (ALE) method
(Maisog et al., 2008; Richlan et al., 2009), analyzed the neu-
ral differences between controls and dyslexics during reading
and reading-related tasks, i.e., letter matching, rhyming, semantic
judgment, and lexical decision tasks. In both articles, the authors
suggested that developmental dyslexia is associated with the
hypoactivation of the left occipito-temporal, temporo-parietal,
and inferior frontal regions. No evidence for a systematic hyper-
activation in the dyslexics was found (for the left inferior frontal
cortex, nor for the cerebellum, as initially suggested by Shaywitz
et al. (1998).

To provide information on the developmental progression of
neural dysfunction in dyslexia, Richlan et al. (2011) performed
a second meta-analysis and separated adult-related activations

and children-related activations while comparing controls and
dyslexics. They observed that the left occipito-temporal and
temporo-parietal hypoactivation was present in the studies on
adults. A hypoactivation was also observed in the anterior portion
of the left occipito-temporal cortex for dyslexic children.

AIMS OF THE STUDY
These previous meta-analyses were focused on the task of reading
or on reading-like behaviors. Aim of this study was to fur-
ther assess the dysfunctional anatomical correlates of dyslexia,
to approach the issue of co-occurrence of neural dysfunction
dyslexia and test the hypothesis that, beyond well replicated
findings (the lack of commitment to reading of the left ventral
occipito-temporal cortex), other functional anatomical deficits
might be present. The usual logic used to test this hypothesis in
previous studies has been to assess the presence of focal hypoac-
tivations in non-reading tasks, for example, in motor learning
(Nicolson et al., 1999; Menghini et al., 2006) or visual motion
perception (Eden et al., 1996). Conversely, the logic behind our
study is similar to the one of Danelli et al. (2013) for normal
reading: given the vast literature supporting the involvement of
multiple systems in dyslexia (Frith, 1999; Nicolson et al., 2001;
Snowling, 2001; Stein, 2001; Reid et al., 2007; Pernet et al., 2009),
and given that these systems normally intersect in the brain into
higher order cortices (Danelli et al., 2013), we expected that, on
top of differences in brain areas that are highly specific for read-
ing, dyslexics may also show a more limited functional anatomical
intersection between different systems normally overlapping in
skilled readers. This would be revealed in the present meta-
analysis by reduced presence of regional effects from dyslexic
groups in clusters showing a mix of peaks from reading-like and
non-reading-like behaviors in normal controls.

In the present study this hypothesis was tested using a meta-
analytical approach based on the optimized hierarchical cluster-
ing (HC) algorithm of Cattinelli et al. (2013b), complemented by
the ALE algorithm (Turkeltaub et al., 2002; Eickhoff et al., 2009).

Hierarchical clustering has the advantage of permitting post-
hoc statistical assessments of the functional or group assignations
of individual clusters without the constraint of considering super-
homogenous tasks at the stage of cluster identification, as when
using ginger-ALE alone.

However, hierarchical clustering does not provide a statistical
test of the spatial significance of a given cluster against a random
reference distribution of regional effects. This is permitted by the
ALE approach (Turkeltaub et al., 2002; Eickhoff et al., 2009) that
we used to complement our analyses. A schematic flowchart dia-
gram is now reported in Figure 2. A previous example of this
combined approach can be found in Crepaldi et al. (2013), where,
in addition to the dual meta-analytical procedure, the clusters
were assessed post-hoc not only for simple effects but also for
interaction effects, as in the present study.

By considering all imaging studies on dyslexia, no matter the
neurocognitive domain under investigation, we hoped to detect
the existence of a systematic co-occurrence of dysfunctional pat-
terns of different functional systems and to evaluate whether
these involve different system specific brain regions or rather
multimodal regions that normally show intersections of multiple
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FIGURE 2 | A schematic flowchart diagram showing the procedure by which data are selected, clusters are estimated, tested and classified using HC

and ALE.

systems. The face validity of the latter hypothesis was also assessed
by comparison with the data of Danelli et al. (2013).

METHODS
DATA COLLECTION AND PREPARATION
Our meta-analysis is based on 53 neuroimaging articles inves-
tigating the anatomofunctional dysfunction of developmental
dyslexia using PET or fMRI in both children and adult subjects
published to September 2013.

Studies were selected through PubMed database (http://www.

ncbi.nlm.nih.gov/pubmed/) running five queries. The search keys
were: “Dyslexia AND fMRI,” “Dyslexia AND PET,” “Dyslexia
AND neuroimaging,” “Dyslexia AND functional Magnetic
Resonance Imaging,” and “Dyslexia AND Positron Emission
Tomography.” These queries returned 544, 34, 462, 267, and 45
entries, respectively.

After removing duplicates, we included only studies that did
satisfy the following inclusion criteria: (1) sample population
composed of both normal controls and subjects with develop-
mental dyslexia; (2) imaging technique: PET or fMRI; (3) whole
brain voxel based data-analyses using stereotactic conventions;
region-of-interest analyses were not considered nor multiple sin-
gle case analyses restricted to few regions, as, for example, in
Eden et al. (1996); (4) presence of data for either within group
comparisons, or between group comparisons or both.

For the suitable studies, in the meta-analysis we used data
derived from (i) within group simple effects and (ii) between

group comparisons. We incorporated also the within group
data to have a more complete survey on whether a given
brain region was differentially activated across groups, while
still being active in each a group above a given conventional
threshold, or whether the region, besides being significantly
associated with one group, it never reached statistically sig-
nificant effects in the other group. In any event, for the
interaction group-by-task effects we only considered 1st order
interactions.

Only data emerging from univariate statistical analyses were
considered.

By applying such criteria, we included 2360 stereotactic acti-
vation loci, 1402 associated with controls and 958 associated
with subjects with dyslexia. Thirty-nine foci were excluded by the
analyses because they were outside of the boundaries the MNI
stereotactic space.

The main characteristics of the 53 experiments included in this
meta-analysis are reported in Table 1.

CLASSIFICATION OF THE RAW DATA PRIOR TO CLUSTERING ANALYSES
For each activation peak, we recorded all relevant information
about the statistical comparison that generated it. We there-
fore determined a list of classification criteria to characterize
each peak of activation included in the dataset (Table S1 of the
Supplementary Materials). These classifications were used for
initial post-hoc statistical comparisons on the clusters that passed
the ginger-ALE test for spatial significance.
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- Subjects: we classified each peak on the basis of the age of the
subjects. In particular, we considered as separate categories in
this variable: (i) children when sample age was under the age of
18, (ii) adults when sample age was above the age of 18.

- Stimulation modality: (i) auditory or (ii) visual.
- Nature of the experimental task: for the sake of simplicity, the

data were grouped in the following two broad categories: (i)
reading-like tasks included orthographic tasks as letter match-
ing or string comparison, reading, visual lexical decision, visual
phonological tasks as rhyming, word manipulation or ver-
bal short-term memory tasks, visual semantic tasks as writ-
ten sentence comprehension or semantic judgment; because
of its functional analogy (see McCrory et al., 2005) with
the reading behavior and the documented reduced activa-
tions in reading-related brain areas in developmental dyslexia,
picture naming was included in this group (ii) non-reading-
like tasks included auditory perception task as sound, vowel
or speech discrimination, motor tasks, visual perception and
visuo-spatial attention tasks and lip reading for single vowel
sounds3.

For each peak we also completed our database with information
about the variables listed below.

- Scanning Technique (PET or fMRI),
- Stereotactic template (MNI or Tailarach and Tournoux tem-

plate),
- Staistical thresholds and nature of the correction for multiple

comparisons.

To make it possible a combination of data coming from studies
based on different stereotactic spaces, the stereotactic coordinates
of studies in which activation peaks were reported in terms of
the Talairach and Tournoux atlas (Talairach and Tournoux, 1988)
were transformed into the MNI (Montreal Neurological Institute)
stereotactic space (Mazziotta et al., 1995); the transformation was
done using the software GingerALE, using MatthewBrett’s script
(http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach).

CLUSTERING PROCEDURE
First, we performed a hierarchical clustering analysis (HC) of
the activation peaks as described in Cattinelli et al. (2013b): the
analysis allowed us to extract the principal clusters of regional
effects from the database. Hierarchical clustering was performed
by using functions implemented in MATLAB 7. After compu-
tation of squared euclidean distances between each pair of the
input data, clusters with minimal dissimilarity were recursively

3The rationale for using the two broad categories reading- and non-reading-
like tasks, was dictated by the need to statistically assess the meaning of the
clusters along a parsimonious, admittedly reduced, number of categories. The
finer grained description of the more numerous yet broad classes of stud-
ies was left to the descriptive assessment of the composition of the clusters
that proved significant for the two main categories. For example, once a clus-
ter proved to be significantly associated with reading-like tasks, a qualitative
exploration of the individual tasks that contributed to that effect allowed us
to make some additional finer grained statement. See for example the case of
clusters L5 and L6 in the results section.

merged using Ward’s (1963) criterion which minimizes total
intracluster variance after each merging step. As described in
Cattinelli et al. (2013b) and Crepaldi et al. (2013), “this pro-
cedure results in a tree, whose leaves represent singletons (i.e.,
clusters formed of a single activation peak), and whose root
represents one large cluster including all the activation peaks
submitted to the algorithm. Each level of the tree reports the
clusters created by the algorithm at a specific processing step,
as it progresses from individual activation peaks at the low-
est level to the all-inclusive final cluster at the top of the tree”.
The procedure was continued until the average standard devi-
ation around the cluster centroids of the individual peaks, in
the x, y, and z directions, remained below 7.5 mm. This mea-
sure roughly mimics the spatial resolution of fMRI studies. As
hierarchical clustering may be sensitive to the order in which
the individual data are processed, and may generate alternative
clustering trees (Morgan and Ray, 1995), an optimal clustering
solution was identified by accepting the solution with maximized
the between cluster error sum of squares (see Cattinelli et al.,
2013b).

The mean coordinates of each cluster included in the final set
were then passed as an input to a MATLAB script to automatically
label the anatomical correspondence of the stereotactic coordi-
nates of the centroids of each cluster. This procedure implied
a query of the Automatic Anatomical Labeling (AAL) template
available in the MRIcron visualization Software (Rorden and
Brett, 2000).

HC analyses have the advantage of permitting post-hoc assess-
ment of the functional meaning of a given cluster (see for exam-
ple, Cattinelli et al., 2013a; Crepaldi et al., 2013) or, as in the
present study, its assignation to a class of subjects (e.g., clus-
ters specific or preferentially associated with controls rather than
clusters associated with dyslexics).

However, HC does not quantify the significance of each indi-
vidual cluster with reference to the probability of a spatially
distributed statistical process. To protect ourselves from con-
sidering clusters of limited biological significance, the spatial
distribution of the clusters identified by HC was compared with
the results of a different meta-analytical method, namely the
Activation Likelihood Estimation technique as implemented in
the GingerALE software (Eickhoff et al., 2009; Turkeltaub et al.,
2012). Only clusters also present in the GingerALE analyses were
further considered (the threshold was set at p < 0.05 with FDRpN
correction).

POST-HOC STATISTICAL ANALYSES ON THE RESULTING CLUSTERS
Group, age, or task preferential associations were assessed with
the binomial test as follows.

For the group effect, we tested whether the distribution of
control- and dyslexic-related peaks within each cluster was sig-
nificantly different from the overall proportion of control- and
dyslexic-related peaks included in the whole sample of coordi-
nates (1382/2321 = 0.59543 for controls and 939/2321 = 0.40457
for dyslexics). To this end, we used the binomial distribution
and computed the probability of observing a specific number of
peaks associated with a given group as the number of successes
in a series of independent randomly-distributed trials: when this
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probability was below 0.05, the cluster was considered to be
associated with either the control or dyslexic groups.

Similar analyses were implemented in these clusters to test
their association with either reading-related or non-reading
related tasks and with either children or adult group. The pro-
portion of non-reading and reading-related peaks included in
the whole sample of coordinates was 406/2321 (=0.17492) and
1915/2321 (=0.82508), respectively, while the proportion of
children- and adult-related peaks included in the whole sam-
ple of coordinates was 1144/2321 (=0.49289) and 1177/2321
(=0.50711), respectively4.

We also assessed whether there were interactions effects within
each cluster: the group-by-task and group-by-age interactions
were tested with Fisher’s exact test (Fisher, 1970); this esti-
mates whether the distribution of one categorical variable (group)
varies according to the levels of a second categorical variable
(experimental task or age class), thus revealing clusters that were
associated with either group in one task (e.g., reading-like tasks
in controls), but with the opposite group in another task (e.g.,
dyslexic in non-reading-like tasks).

The odds ratio under the null hypothesis of the Fischer’s test
on the individual clusters was corrected to reflect the distri-
bution of the categories under examination in the entire data-
set. The odd ratio for group-by-task interaction was 1.09, for
group-by-age interaction was 0.81 and for task-by-age interaction
was 1.27.

Some of the interaction effects were tested to replicate previous
analyses published in other meta-analytical papers: for example,
the age-by-group interaction described by Richlan et al. (2013).
We believe that describing these results, even if not all discussed
in detail later on, leaves an important trace behind this paper for
future assessments.

Finally, clusters that did not show a significant group prefer-
ential association were assigned to a class called undifferentiated.
Among these clusters, we attempted to highlight those having
higher probability of actually being completely non-specific, by
performing binomial tests along the group axis. In particular,
we assumed that clusters whose one-tailed p-value was greater
than 0.5 for both groups are of high chance of being genuinely
non-specific.

All post-clustering statistical analyses were performed using
the free statistical software R (the code is available upon request
to Manuela Berlingeri).

COMPARISON WITH DANELLI ET AL. (2013) MAPPING OF READING
AND SYSTEMS INVOLVED IN DYSLEXIA
The results of the clustering analyses were also compared with
the independent fMRI data described by Danelli et al. (2013). In
that paper, the authors described fMRI patterns of intersection
between the normal reading system and the auditory phono-
logical system, or the visual motion/magnocellular system, or
the motor/cerebellar system: they also reported reading per-se

4To make some justice of the fine-grained variability of the tasks that con-
tributed to each cluster, beyond the two broad categories described above,
each cluster was explored qualitatively (the raw data are available in the
supplementary materials).

activations, that is, areas activated for single pseudowords read-
ing, once any trend for the other aforementioned tasks was
excluded by the analysis5 . Comparison with this independent
data-set helped in the interpretation of the functional relevance
of the data of the present meta-analysis.

ADDITIONAL ANALYSES
The paucity of data on MT/V5 due to the lack of group-based
data would inevitably dismiss the MT/V5 finding: to avoid this,
we identified the average MT/V5 of the normal controls in Eden
et al. (1996) and looked for the closest cluster in the meta-analysis.

Finally, the data of the regional effects associated with non-
reading-like tasks (e.g., motor tasks, attentional tasks, visual
perception tasks etc.) were also submitted to a separate meta-
analysis. This additional meta-analysis was motivated by the
desire of excluding the possibility that the overwhelmingly larger
number of peaks from the reading-like experiments (# of peaks:
1915) could have masked the manifestation of specific clusters
from the non-reading-like data (# of peaks: 406)6 . As above,
we tested whether the distribution of control- and dyslexic-
related peaks within each cluster was significantly different from
the overall proportion of control- and dyslexic-related peaks
included in the whole sample of coordinates (0.58 for con-
trols and 0.42 for dyslexics). To this end, we used the bino-
mial distribution and computed the probability of observing
a specific number of peaks associated with a given group as
the number of successes in a series of independent randomly-
distributed trials: when this probability was below 0.05, the
cluster was considered to be associated with either the con-
trol or dyslexic groups. These analyses were performed only on
clusters that showed a spatial congruence in the HC and ALE
procedures.

RESULTS
The hierarchical algorithm identified a total of 193 clusters
(Figure 3A)—96 clusters in the left hemisphere and 97 ones in
the right hemisphere—with 2 to 51 peaks each, from 2 to 18 dif-
ferent studies; mean standard deviation along the three axes were
4.54 mm (x-axis), 4.83 mm (y-axis), and 4.76 mm (z-axis).

After the comparison of these results with ALE maps
(Figure 3B), only 92 out of 193 clusters (Figure 3C) were con-
sidered for subsequent analyses.

GROUP-PREFERENTIAL CLUSTERS
When we indicate a cluster as “related to” or “preferential for”
a group, we imply that there was a significantly greater propor-
tion of peaks in one group as opposed to the other. This would

5In Danelli et al. (2013) reading was tested with a pseudoword silent reading
task; the visual magnocellular/visual motion system with a visual motion per-
ception task using Gabor low-frequency patches; the auditory phonological
system was tested with a rhyming task for syllabic sounds; the motor cerebellar
system was tested with a finger tapping sequence learning task.
6The idea here is that the cloud of peaks from the reading-like experiments
may operate as geometrical attractors in the clustering procedure and mask
spatial effects coming from the less numerous data-set from non-reading-like
experiments. The separate meta-analysis should have protected us from this
hypothetical confound.
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FIGURE 3 | Clusters identified with HC (A), clusters identified using ALE approach (B) and the final data-set of clusters, identified in both HC and ALE

meta-analyses and considered for post-hoc statistical analyses (C).

correspond to the terminology suggested by Pernet et al. (2007),
the so-called “preferential response” for brain regions with a com-
paratively greater response in a given condition/group, with no
zero response in the control condition/control group. Nine clus-
ters were preferentially associated with controls, while five clusters
were associated with dyslexics (Table 2). The peaks distribution
for each significant cluster is reported in the contingency tables in
Supplementary Materials (Table S2).

Clusters associated with normal readers
There was a distributed left ventral occipito-temporal network
involving the infero-temporal (clusters L6, L23) and fusiform
(cluster L5) regions (areas in red in Figure 4). Within this net-
work, peaks coming from lexical decision tasks were present in
cluster L23 only, while all other reading-like behaviors were fairly
evenly present in the entire set of the three left occipito-temporal
clusters. Once compared with Danelli et al. (2013) statistical
maps, the cluster L5 fell in the reading network while L6 fell in a
region of the shared activations by an auditory phonological task
and reading. L23 fell in between these two regions.

Moving toward more dorsal regions, there were two areas
in the middle temporal and supra-marginal gyri (L86 and L89;
areas in blue in Figure 4) that were associated with the nor-
mal controls for a mixture of tasks including reading but also
active phonological manipulation tasks, involving some working
memory demands.

Even more dorsally, we also found a left hemispheric net-
work involving the posterior part of the supplementary motor
cortex, the superior parietal cortex, the dorsal portion of the infe-
rior parietal lobule (areas in green in Figure 4): these clusters
included peaks from tasks involving phonological manipulation
(e.g., phonological short-term memory), but also motoric or
visuo-spatial perception/attention. A comparison with Danelli
et al. (2013) data confirmed the mixed nature of the functional

properties of these regions, which were involved in motoric
tasks and, for the superior parietal region, in the visual motion
perception task as well.

Clusters associated with dyslexic readers
These included the left basal ganglia (head of the caudate; pal-
lidum), the right anterior cingulate, right precentral cortex and
the right inferior parietal lobule (areas in cyan in Figure 4). While
the left subcortical regions were brought about by reading-like
tasks, the right hemispheric ones were associated with a variety
of tasks, often of the non-reading-like kind.

Detailed description of group-related clusters is reported in
Table 2.

TASK-PREFERENTIAL CLUSTERS
Four clusters, located in the opercular parts of the left inferior
frontal gyrus, in the left insula and in the posterior portion of
the left inferior temporal gyrus, were preferential for reading-like
group, while five clusters, located in the right superior and infe-
rior parietal lobule, in the superior temporal cortex, bilaterally,
and in the left middle temporal gyrus, were significantly related
with non-reading-like tasks.

AGE-PREFERENTIAL CLUSTERS
Fifteen clusters were preferentially associated with adults, while 10
clusters were associated with children. In particular, adult-related
clusters were located in the left SMA, in the opercular part of the
inferior frontal gyrus, bilaterally, in the left insula, in the left supe-
rior and inferior temporal gyrus, in the cerebellum, bilaterally, in
the left pallidum and caudate nuclei, and in the left thalamus.

Children-related clusters were located in the pre-SMA, bilater-
ally, in the left middle frontal cortex, in the left superior temporal
gyrus, in the left superior and right inferior occipital gyri, in the
lingual gyri, bilaterally.
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FIGURE 4 | Distribution of group-related clusters that showed a spatial

congruence in the HC and ALE procedures. The red dots represent the
control-related clusters that fell in reading and phonological specific
activations in Danelli et al. (2013), the blue dots represent the control-related
clusters that were not observed in Danelli et al. (2013) and the green dots
represent the control-related clusters fell in visual motion and motoric
activations in Danelli et al. (2013). The right yellow dots represent the
control-related cluster identified by the meta-analysis restricted to the
non-reading-like tasks. Finally, dyslexic-related clusters are reported in cyan.

INTERACTION EFFECTS
Task-by-age interactions
Three clusters, located in the left middle frontal and middle tem-
poral cortex and in the left lingual gyrus, showed a task-by-age
interaction effect (see Table 3). The former cluster was associated
with reading-like tasks in children, the latter two clusters with
reading-like tasks in adults.

Group-by-task interactions
Three clusters, located in the left superior and middle temporal
gyri and in the right inferior parietal lobule, showed a group-by-
task interaction effect (see Table 3 and Figure 5 for details). The
former two were associated with the normal controls for reading-
like tasks, the third with the dyslexics for the non-reading-like
tasks.

Group-by-age interactions
Three clusters, located in the opercular part of the left inferior
frontal gyrus, in the triangular part of the right inferior frontal
gyrus and in the right precentral gyrus, showed a group-by-age
interaction effect (see Table 3 and Figure 5 for details). The for-
mer two clusters were associated with adult controls, the third
with young controls.

UNDIFFERENTIATED CLUSTERS
Seven clusters, located in the pre-SMA, bilaterally, in the triangu-
lar part of the right inferior frontal gyrus, in the right insula, in the

Frontiers in Human Neuroscience www.frontiersin.org November 2014 | Volume 8 | Article 830 | 10

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Paulesu et al. Reading the dyslexic brain

Table 3 | Group-by-task, group-by-age, and task-by-age distribution of

the activation peaks included in each of the four clusters showing

significant interaction between two factors.

Controls Dyslexics

LEFT MIDDLE TEMPORAL GYRUS (B.A. 37; CLUSTER ID: L86);

x = −58, y = −58, z = 6

Task Reading-like 14 0 14

Non-reading-like 0 2 2

14 2 16

p-value 0.008

LEFT SUPERIOR TEMPORAL GYRUS (B.A. 42; CLUSTER ID: L87);

x = −60, y = −44, z = 16

Task Reading-like 18 6 24

Non-reading-like 0 3 3

18 9 27

p-value 0.028

RIGHT INFERIOR PARIETAL LOBULE (B.A. 2; CLUSTER ID: R71);

x = 50, y = −35, z = 48

Task Reading-like 3 2 5

Non-reading-like 0 7 7

3 9 12

p-value 0.045

LEFT INFERIOR FRONTAL GYRUS, PARS OPERCULARIS (B.A. 44;

CLUSTER ID: L57); x = −56, y = 15, z = 12

Age Children 3 8 11

Adults 12 2 14

15 10 25

p-value 0.004

RIGHT INFERIOR FRONTAL GYRUS, PARS TRIANGULARIS (B.A. 45;

CLUSTER ID: R57); x = 45, y = 32, z = 14

Age Children 3 3 6

Adults 10 0 10

13 3 16

p-value 0.036

RIGHT PRECENTRAL GYRUS (B.A. 6; CLUSTER ID: R73); x = 47,

y = −1, z = 34

Age Children 7 0 7

Adults 2 4 6

4 13

p-value 0.021

Children Adults

LEFT LINGUAL GYRUS (B.A. 18; CLUSTER ID: L84); x = −20,

y = −88, z = −12

Task Reading-like 11 15 26

Non-reading-like 5 0 5

16 15 31

p-value 0.04

LEFT MIDDLE TEMPORAL GYRUS (B.A. 21; CLUSTER ID: L14);

x = −65, Y = −26, z = 6

Task Reading-like 1 9 10

Non-reading-like 4 2 6

5 11 16

p-value 0.04

(Continued)

Table 3 | Continued

Children Adults

LEFT MIDDLE FRONTAL GYRUS (B.A. 44; CLUSTER ID: L44); x = −47,

y = 16, z = 38

Task Reading-like 13 2 15

Non-reading-like 2 4 6

15 6 21

p-value 0.03

x, y, and z refer to stereotactic coordinates of the centroid of each cluster.

right middle cingulum, and in the right inferior occipital gyrus,
did not showed a group-related preferential association (p >

0.5 in the binomial test) and were classified as undifferentiated
activations (see Table 4 for details).

ADDITIONAL ANALYSES
Because of the historical importance of the theories behind the
scenes of the MT/V5 and cerebellar findings, ad-hoc special
analysis was made for these two sets of findings.

MT/V5
We first identified “group” average stereotactic coordinates from
Eden et al. (1996) from their eight normal subjects. This was done
by using the same hierarchical clustering software of the meta-
analysis. The centroid stereotactic locations of the MT/V5 region
were located at X = -52; Y = -75; Z = 7; the SDs were: 11, 8, 5 mm
in the three directions; on the right, the stereotactic coordinates
were X = 50; Y = −70; Z = 5; the SDs were: 8, 8, 3 mm (areas in
orange in Figure 6). As expected, Eden’s et al. (1996) clusters fell
within the statistical maps for visual motion perception described
in Danelli et al. (2013).

We explored the anatomical congruence of these clusters with
those that proved significant in the comparisons of controls
and dyslexics in the meta-analysis. We also compared the Eden’s
MT/V5 location with the distribution of the raw data of the acti-
vations that were significantly larger in controls than in dyslexia.
None of these analyses showed a systematic overlap of Eden’s et al.
(1996) MT/V5 and the data from other experiments on dyslexia.

We also compared the clusters associated with controls or
dyslexics in the present study (see Table 2) with the mapping of
the magnocellular system as identified by Danelli et al. (2013).
There was one area of overlap (shared with an overlap for the
motor learning task of Danelli et al., 2013) in one cluster located
in the left superior parietal lobule (cluster L34). The experiments
that generated these clusters in the data-set considered in this
paper were based on phonological tasks, on a motor task in one
case and on a visuo-spatial attentional tasks.

Cerebellum
There were five clusters identified by the general meta-analysis
in the cerebellum (see Table 5 and Figure 7). These regions were
identified by a variety of reading-like tasks (66 peaks overall) and
non-reading-like tasks (11 peaks), with no specific association
with either normal controls or developmental dyslexics for any
of these clusters. Of the 77 peaks, only three peaks came from a
comparison controls > dyslexics, 8 came from the comparison
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FIGURE 5 | Clusters that showed a significant group-by-task and group-by-age interaction effect. For each clusters a histogram describe the peak
distribution across group/conditions.

Table 4 | List of the undifferentiated clusters.

Cluster ID Brain area X Y Z SD x SD y SD z Controls Dyslexics

UNDIFFERENTIATED CLUSTERS ACROSS NORMAL OR DYSLEXIC READERS GROUPS

R59 Right inferior occipital gyrus 23 −91 −2 5 6 5 10 7

R68 Right middle cingulum 10 26 33 6 5 5 11 8

R65 Right insula 34 21 −5 5 3 4 11 7

L90 Left inferior frontal gyrus, pars triangularis −49 28 16 4 5 4 16 11

L47 Left SMA −4 7 46 3 5 2 8 6

R52 Right SMA 2 3 65 3 4 3 7 4

R53 Right SMA 3 12 55 4 2 3 8 6
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FIGURE 6 | Overlap of raw data, group-related clusters and the MT/V5 region of interest extracted from activations reported by Eden et al. (1996) in

normal controls.

Table 5 | Clusters emerged in the cerebellum.

Cluster I.D. Area X Y Z SD x SD y SD z Co/D p R/NR p Ch/A P

L45 Left cerebellum (lobule 6) −26 −63 −27 4 3 3 5/9 n.s. 12/2 n.s. 2/12 0.007A

L93 Left cerebellum (crus I) −42 −55 −30 4 5 4 15/9 n.s. 22/2 n.s. 5/19 0.004A

R70 Vermis (lobule 7) 8 −69 −27 4 5 4 12/9 n.s. 9/20 n.s. 1/20 <0.001A

R26 Right cerebellum (lobule 6) 34 −63 −19 3 6 4 6/5 n.s. 5/8 n.s. 2/9 0.063

R3 Right cerebellum (lobule 6) 24 −62 −31 2 3 4 2/5 n.s. 5/4 n.s. 2/5 n.s.

Co, controls; D, Dyslexics; NR, non-reading-like tasks; R, reading-like tasks; A, Adults; Ch, Children.

FIGURE 7 | Cerebellar clusters identified in both HC and ALE

meta-analyses. In none of these there was a significant association

with normal controls.

dyslexics > controls, 37 came from simple effects in the controls
and 29 from simple effects in the dyslexics. Three of such clus-
ters were significantly associated with data coming from adult
volunteers.

Meta-analysis restricted to the non-reading-like tasks
The hierarchical algorithm identified a total of 85 clusters with
2–10 peaks each, and had mean standard deviation along the
three axes of 4.56 mm (x-axis), 5.21 mm (y-axis) and 5.09 mm (z-
axis). After the comparison of these results with ALE maps, 40 out
of 85 clusters were considered for subsequent analyses.

The post-hoc analyses identified only one cluster that could
be associated with the normal controls to a statistically greater

(p = 0.05) degree than with dyslexics: the cluster (centroid coor-
dinates: X = 35; y = −41; Z = 41; the SDs were: 5, 6, 7 mm) was
located in the right inferior parietal cortex. The cluster included
peaks from motor tasks (#3), auditory perception tasks (#3) and
three dimensional visual discrimination tasks (#3). The centroid
of this cluster is very close to that of cluster R86 (centroid coordi-
nates: X = 37; y = −45; Z = 43; the SDs were: 5, 5, 7 mm) of the
general analysis in which again specificity for controls (i.e., lack of
activation for dyslexics) was seen. This cluster was not observed
in the ALE analysis.

DISCUSSION
The problem of co-occurrence of neural dysfunctions in dyslexia
remained not explored by meta-analytic studies to date; it
remained to be seen whether, besides the well replicated finding
of a left occipito-temporal hypoactivation, there is a systematic
co-occurrence of dysfunctional patterns of different functional
systems, perhaps converging on the same brain regions associ-
ated with the reading deficit. Such evidence would be relevant
for theories like, for example, the magnocellular or the cerebel-
lar ones, which postulate a more basic and possibly more broadly
distributed disorder in dyslexia.

In the present study this issue was tested by submitting
to the meta-analysis all the suitable data7 from the literature
on dyslexia, published up to September 2013, independently
from the nature of the task, the materials, and the age-groups.
Functional interpretation of the regional effects was made by
direct exploration of the cluster compositions, by looking at

7See inclusion criteria for the raw data in the methods section.
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the group or task that generated one effect, and appropriate
post-hoc statistical tests, when possible, for broad categories. In
addition, our evaluations of the results were also based on a
direct comparison with the functional mapping of the reading,
auditory phonological, visual magnocellular and visual motion,
motor/cerebellar systems, and their intersections, as described by
Danelli et al. (2013) for normal subjects using fMRI.

Our meta-analysis confirms one major milestone of previ-
ous empirical imaging studies and previous meta-analyses on
dyslexia: the commitment to reading in normal controls for left
occipito-temporal cortex (Paulesu et al., 2000; Cohen et al., 2002;
Price et al., 2003), and the lack of such commitment in the same
region for dyslexics (Shaywitz et al., 1998; Paulesu et al., 2001;
Maisog et al., 2008; Richlan et al., 2009).

Because of the finer grained analysis afforded by our method,
and thanks to the comparison with the independent fMRI data of
Danelli et al. (2013), the same left occipito-temporal region iden-
tified by previous meta-analyses using ALE (Maisog et al., 2008;
Richlan et al., 2009), was fractionated into three different clus-
ters preferentially associated with the normal controls (L5, L6,
and L23): clusters L5 and L23 are most likely associated with ini-
tial visual processing of the orthographic strings, while cluster L6
with the integration orthography with phonology.

By comparison with the data of Cohen et al. (2004) these cor-
responded to the visual-word form area (L5, VWFA), to the lateral
inferior temporal multimodal region (L6; LIMA), and to an inter-
mediate area (L23) that, to the best of our knowledge, has not
been further characterized in the literature as yet.

There was more in our new data. The two more dorsal
regions in the middle temporal and supra-marginal gyri (L86 and
L89), were associated with the normal controls for a mixture of
tasks including reading but also active phonological manipula-
tion tasks, involving some working memory demands. These were
not identified in the intersection paper of Danelli et al. (2013)
most likely because the auditory phonological task had mini-
mal demands in terms of manipulation and working memory
processes.

Further up more dorsally, there was a new set of left hemi-
spheric regions with different functional associations in parietal
and premotor cortices and the supplementary motor area: these
were brought about by a mix of reading, motor, phonological
manipulation and visual attention tasks. Interestingly, once com-
pared with Danelli et al. (2013) maps, some clusters overlapped
with motoric regions (inferior parietal and SMA), while the left
superior parietal lobule cluster overlapped with an intersection of
motor learning and visual motion perception maps.

It is also worth noting that the meta-analysis restricted to the
non-reading-like tasks revealed a right hemispheric inferior pari-
etal cluster (R86; centroid coordinates: X = 37; y = −45; Z = 43;
the SDs were: 5, 5, 7 mm) preferentially associated with normal
readers, that is not present in developmental dyslexics. However,
a more lateral right parietal cluster was preferential for the dyslex-
ics (see Figure 4). There is overwhelming evidence of a role of
the right parietal cortex in spatial attention (for review see Vallar
et al., 2003; Corbetta and Shulman, 2011). The disorganized
response in the right inferior parietal cortex of dyslexics (in some
cases “more active,” in other cases “less active”) may be evidence

for an anatomically grounded dysfunctional right hemispheric
spatial attentional system in dyslexia.

On the other hand, no evidence was found either for a cerebel-
lar dysfunction, nor for a left inferior frontal cortex hyperactiva-
tion in dyslexics, as in the previous meta-analyses (Maisog et al.,
2008; Richlan et al., 2009).

In addition, we could not find evidence for the
visual/magnocellular hypothesis of dyslexia, if this was to
be benchmarked by a reduced recruitment of area V5/MT (Eden
et al., 1996).

These findings expand previous evidence on the presence
of functional anatomical deficits in dyslexia and identify a
ventral to dorsal functional gradient with the more ventral
areas, normally involved in the decoding aspect of reading
(from orthography to phonology), the intermediate middle
temporal and supra-marginal areas being related to reading-
like behaviors or phonological processing and the more dor-
sal group being involved in reading but also in motoric or
visual motion perception aspects of functional anatomy. We
argue that the more dorsal left parietal and premotor cortex
might be normally associated with eye-movement control or
with visuo-spatial attention in language specific tasks. These
would be functionally associated with the left hemispheric net-
work of reading in normal controls but not in subjects with
dyslexia.

This evidence brings new fuel for those believing in the
existence of multiple dysfunctional systems in dyslexia without
implying the need for focal and highly localized hypo-activations,
preferentially associated with single classes of non-reading-like
tasks. Rather, this new evidence speaks in favor of a distributed set
of local malfunctions in “associative” regions normally involved
in more than one behavior/cognitive domain. At a quantitative
level, the number of peaks that contributed to the identification of
these group-specific clusters was fairly balanced: 50 peaks for the
occipito-temporal clusters, 31 for the intermediate network and
66 for the more dorsal network. It is worth noting that the more
dorsal clusters appear group “specific”, or preferentially associ-
ated with normal readers, only if one considers the entire data-set
rather than the non-reading-like behaviors on their own (data
not shown). This result speaks in favor of our strategy of merg-
ing the data from multiple classes of tasks to reach a critical mass
of observations.

COMPARISON WITH THE PREVIOUS LITERATURE WITH PARTICULAR
REFERENCE TO META-ANALYSES
There are other quantitative meta-analyses on the neural bases of
developmental dyslexia in literature (Maisog et al., 2008; Richlan
et al., 2009, 2011). In particular, these studies were focused
on the task of reading or of reading-like behaviors, excluding
auditory-verbal or non-linguistic tasks. Moreover, they included
only peaks derived from group-by-task comparisons and used the
ALE method (Maisog et al., 2008; Richlan et al., 2009). The poten-
tial advantages of our approach have been already commented
upon.

Our findings are only partially consistent with the meta-
analytic work published in literature. Indeed, control-related
clusters emerged not only at the level of the left occipito-temporal
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and temporo-parietal regions, but also in the left middle temporal
and parietal areas and in the supplementary motor cortex.
Consistent with previous meta-analyses are also the more fre-
quent subcortical effects for the dyslexics in the basal ganglia, for
reading tasks.

Contrary to what described by Maisog et al. (2008) and
Richlan et al. (2009), we could not find a reduced recruitment
for the dyslexic group at the level of the left inferior frontal
gyrus. However, it is worthy to note that a significant group-
by-age interaction emerged in this area showing an association
of this region with adult-control activations (as reported also by
Richlan et al., 2011). The same area shows a “difficulty effect
in phonological retrieval” in Cattinelli et al. (2013a) and Taylor
et al. (2013) meta-analyses of reading, whereby the inferior
frontal region is more active when reading non-words or low-
frequency irregular words. An interaction effect emerged also for
the right inferior frontal gyrus in the present study, while an asso-
ciation with control-children in the right precentral gyrus was
observed.

A final difference with Richlan et al. (2011) is the lack of group
by age interactions in the left parietal and occipito-temporal cor-
tex. While not significant, technically speaking, at a statistical
level, we note that an age effect in the left ventral occipito-
temporal cortex was present and it was driven by adult normal
readers (20 peaks for the controls, 1 peak for dyslexics) rather
than by young readers (young controls: 6 peaks; young dyslex-
ics: 0 peaks) and it is worth recalling that overall the number of
“adult” and “young” peaks is balanced across the entire data-set.
This is consistent with the idea that time is needed before the
occipito-temporal cortex develops a neural expertise for reading
(Dehaene et al., 2010).

Recently, Richlan et al. (2013) described a ALE-based meta-
analysis of VBM data from dyslexia studies. The paper was mainly
concerned with gray matter effects, as the papers that reported
white matter abnormalities were only two (Eckert et al., 2005;
Silani et al., 2005). The main trust of the paper is that there are
reproducible reductions of gray matter in the left superior tempo-
ral sulcus; one of the coordinates described by them is consistent
with the centroid of our cluster L86. The fact that functional
imaging data show broader differences between normal controls
and dyslexics when compared with the VBM ones, is a further
argument in favor of the hypothesis that an abnormally wired
cortex, rather than a focally damaged one, may better explain
the functional disorder of dyslexia (see Silani et al., 2005, for
further discussion; see also Paulesu et al., 1995; Klingberg et al.,
2000).

VISUAL MAGNOCELLULAR AND CEREBELLAR THEORIES: CHASING THE
WRONG USUAL SUSPECTS?
As discussed in the introduction there is a non-negligible evidence
of a visuo-perceptual deficit in children with dyslexia and some
evidence for motoric deficits. The neural counterpart of these
deficits has been sought by using visual motion perception tasks
or motor learning tasks. The visual motion perception experi-
ment of Eden et al. (1996) is the one that sits less comfortably with
our results as we could not find a cluster in V5/MT, and of course,
nor a group specific effect there. This difficulty may in part arise

by the fact that the testing of the visual-magnocellular/attentional
hypothesis has somewhat limited attention in the literature or by
the fact that the main replication of the V5/MT finding was made
using region of interest analyses (Demb et al., 1998), which were
not included in our study.

Our attempt to test the V5 hypothesis by all means (see the
results section) failed to identify a congruence with any of the
effects described in the dyslexia literature, Eden et al. (1996) and
Demb et al. (1998) excluded. However, our finding is consistent
with more recent evidence on area V5. In a recent study, again
based on a region of interest analysis of the data (preceded by a
localizer experiment) Olulade et al. (2013) were able to show that
if the dyslexics and the controls are equated for reading age rather
than by age per-se, a significant difference in V5/MT cannot be
found. A rehabilitation program on reading had a carry-over
effect on V5/MT response (Olulade et al., 2013).

However, the visual magnocellular V5/MT hypothesis could be
reformulated as a spatial attentional hypothesis. If so, activity in
V5/MT may not be the best benchmark as discussed elsewhere
(see Danelli et al., 2013, p. 2682). If the magnocellular hypoth-
esis may still give an account for oculomotor control difficulties,
there are better anatomical targets to be explored, for example, the
dorsal premotor and parietal areas that we found less frequently
activated in dyslexia. In the same vein, the evidence for a disorga-
nized recruitment of the right inferior parietal lobule in dyslexia
in non-linguistic tasks is a potentially revealing finding for all the
theorists of attentional hypotheses in dyslexia.

Similar considerations apply for the cerebellar hypothesis. This
could be easily reformulated in terms of deficient fine-grained
motor control/learning without an a-priori commitment to the
cerebellum. Indeed, none of the tasks whose deficit is attributed
to the cerebellum by the believers in the cerebellar hypothesis,
can be univocally and exclusively attributed to that organ: posture
tasks, walking tasks, subtle finger coordination or bimanual tasks,
motor learning tasks all depend on widely distributed neural sys-
tems in which the cerebellum is just one of the players (Kandel
et al., 2012).

We found reduced recruitment of a series of motor regions
in which there was a mixture of peaks derived from reading-like
and non-reading-like tasks. Observation of these focal effects may
contribute to a re-evaluation of motoric disorders in develop-
mental dyslexia. Of course, fresh new experiments are needed to
further address this hypothesis.

THE CONTRIBUTION OF FUNCTIONAL CONNECTIVITY APPROACHES
AND THE DISCONNECTION HYPOTHESIS OF DYSLEXIA
Finally, our data could be discussed in the context of a more
network based approach, such as that provided by functional
or effective connectivity analyses. It has been repeatedly sug-
gested that dyslexia could be associated with a failure of the
functional interaction between distant brain regions that subserve
diverse, perhaps elementary, cognitive operations needed for the
task of reading and the like (Paulesu et al., 1995; Horwitz et al.,
1998). These regions should have greater functional and effective
connectivity in normal controls. Even though this disconnec-
tion hypothesis of dyslexia is particularly dear to us (Paulesu
et al., 1995; Klingberg et al., 2000; Silani et al., 2005), the
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number of the connectivity studies is still limited and there-
fore our analysis was concentrated on classical studies based on
univariate assessments of regional effects. There are two classes
of such connectivity studies: task-based and resting state stud-
ies. Task-based studies reported reduced functional connectivity
between reading-related areas like the left angular gyrus and the
occipito-temporal cortex (Horwitz et al., 1998) or the occipito-
temporal cortex and the frontal cortex (van der Mark et al.,
2011; Finn et al., 2013; Schurz et al., 2014)8 . In one study
(Finn et al., 2013), a stronger right hemispheric connectivity
for dyslexics was described. In the lone dynamic causal mod-
eling (DCM) study performed on developmental dyslexia to
date (Cao et al., 2008), reduced modulatory effects and con-
nectivity were demonstrated in a temporo-parietal network for
visual rhyming trials with conflicting orthography/phonology.
It is worthy to note that task-based connectivity studies have
an important limitation: the connectivity patterns explored are
task dependent, the number of connections explored are limited
in some cases (e.g., when using DCM), and different patterns
could be produced by different reading tasks (see for example
Levy et al., 2009); as a consequence, different dysfunctional pat-
terns could emerge from the comparison between controls and
dyslexics depending on the task under examination (Pugh et al.,
2000). Resting-state connectivity studies, independent compo-
nent analysis (ICA) studies (Wolf et al., 2010) or the technique
proposed by Finn et al. (2013), may be more task-independent9

and better suited to test broader dysfunctions: while the ICA
studies (Wolf et al., 2010) are difficult to interpret because
one has to make assumptions on the functional meaning of
the identified components and their comparability across differ-
ent groups, the seed-based resting state functional connectivity
studies have shown a reduction of connectivity between read-
ing specific areas and regions not strictly involved in reading
tasks, like, for example, between the left inferior parietal lob-
ule and the left dorsal middle frontal areas (Koyama et al.,
2013).

Taken together, these results are in line with the present
findings, as they support the hypothesis that dyslexia could
be the consequence of the co-occurrence of distributed dys-
functional patterns of different functional systems (see also
Schurz et al., 2014): our data, however, also suggest a more
limited degree of convergence of the multiple systems on
high-level regions involved in reading-like as much as in
non-reading-like tasks, particularly for the dorsal network
identified here. Similar conclusions have not been made on
the basis of a single study, even if based on a connec-
tivity analysis. However, a more explicit demonstration of
this general principle in the same sample of subjects is still
in need.

8Finn et al. (2013) is a task-based study in which the weight of the task was
regressed out. There are studies, however, in which reduced of connectivity
was not found in dyslexics (Richards and Berninger, 2008). Here, an enhanced
connectivity between the left inferior frontal gyrus and the right homolog was
reported.
9The resting state condition, with the vaigue instructions attached, remains a
task on its own.

CONCLUSIONS
Taken together our results provide a partial reconciliation of dif-
ferent accounts of dyslexia, those more concerned with the decod-
ing problem of dyslexia, the underlying phonological deficit and
the deficit in the conversion from orthography to phonology, and
those more focused on motoric and visuo-attentional problems.
Interestingly, the more dorsally one moves within the system
identified here, the more the contribution of non-reading-like
tasks becomes relevant with a mixture of phonological awareness
tasks and motoric/attentional tasks.

In at least one cluster, it was possible to make an indirect refer-
ence to a likely component of the magnocellular cortical network
thanks to its intersection with the visuo-motor perception maps
and motor learning maps of Danelli et al. (2013). The same clus-
ter was observed in an independent meta-analysis on reading by
Cattinelli et al. (2013a), the cluster being associated with reading
tasks that are more demanding (e.g., as in pseudoword reading)
because the stimuli seek greater visuo-attentional resources and
require a finer grained control of eye-movement. The right infe-
rior parietal cluster is also giving support to a multidimensional
account of dyslexia. It would have been hard to make these con-
clusions on the basis of a single experiment or with a conventional
meta-analysis based on ultra-specific and similar tasks. Yet, as we
value the original contributions of the colleagues who produced
the 53 papers submitted to a meta-analysis here, we urge the read-
ers to refer to that original work for further discussions of the
functional anatomical patterns of dyslexia.
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Table S1 | For each peak we reported the MNI coordinates (MNIx,y,z), the

name of the first author, the journal and the year of publication of the

article, the technique (PET or fMRI) and the stereotactic space used, the

mean age of participants and the composition of the sample, the nature of

the task, the nature of the functional contrast from which the peak was

extracted. Moreover, we reported, for each peak, the corresponding

cluster ID and the cluster label. In particular, for each cluster we reported

the coordinates of the centroid (Mean MNIx,y,z) and the standard

deviation on the three axes (SDx,y,z), the corresponding anatomical area.

Finally, we reported, for each peak, the binomial classifications

(non-reading or reading-like task; children or adults, controls or dyslexics)

used for the post-hoc analyses.

Table S2 | Peak distribution in group-related clusters.
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