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Abstract: Ferroptosis is a relatively new form of programmed cell death, which can enhance the
efficacy of tumor immunotherapy by regulating the tumor microenvironment (TME). In the face of the
dilemma of a great difference in the efficacy of immunotherapy for gastric cancer (GC) patients, the
exploration of ferroptosis may assist us in predicting immunotherapy efficacy prior to treatment. The
potential role of ferroptosis in TME still needs further elucidation. Based on ferroptosis-related genes
(FRGs), we systematically evaluated ferroptosis molecular subtypes in gastric cancer. Additionally,
the association between these molecular subtypes and the characteristics of TME was examined.
A ferroptosis score was constructed to further explore the predictive efficacy of ferroptosis on the
immunotherapy response in gastric cancer. There were also 32 other cancers that were evaluated.
Three molecular subtypes of ferroptosis in gastric cancer were identified. The three immunophe-
notypes of tumor immune inflamed, immune excluded, as well as immune desert were mostly in
agreement with the TME features of these three subtypes. The individual tumor genetic variation,
TME characteristics, immunotherapy response, and prognosis could be assessed by a ferroptosis
score. High ferroptosis scores in gastric cancer suggest stromal activation and immunosuppression.
It is noted that tumors with a low ferroptosis score are characterized by extensive tumor mutations as
well as an immune activation, which are associated with an enhanced immunotherapy response and
an improved prognosis. This study reveals that ferroptosis plays an integral role in the regulation of
the tumor immune microenvironment. The ferroptosis score may serve as an independent prognostic
factor for GC and will deepen our understanding of the TME infiltration mechanisms as well as lead
to more rational immunotherapy regimens.

Keywords: ferroptosis; tumor microenvironment; stromal activation; tumor mutation burden;
immunotherapy

1. Introduction

Gastric cancer is one of the five most common cancers worldwide [1,2], and although
the incidence and mortality rates of gastric cancer have declined to varying degrees
in recent years, the level of public health threat posed by gastric cancer is undeniably
high. The development and progression of gastric cancer is complex and also involves
multiple molecular mechanisms and complex signal transduction systems [2]. Differ-
ences in tumor aggressiveness, histopathological features, and the response to therapy
exist among patients [3]. There has been a considerable increase in the survival bene-
fits among advanced gastric cancer patients since immunotherapy has broken the pre-
viously monopolistic role of chemotherapy and targeted therapy [4–7]; however, the
major challenge of immune checkpoint blockade therapy is the disparity in patient out-
comes caused by the intricacy of the tumor microenvironment and the under-activation
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of the parasitifer immune system [8,9]. Consequently, there is an urgent need to de-
velop more precise markers to provide insight into carcinogenesis and predicting the
therapeutic response.

Ferroptosis involves a complex biological process caused by the disturbance of iron
metabolism and the accumulation of reactive oxygen species (ROS) leading to lipid peroxi-
dation [10,11]. Recent studies have reported that ferroptosis is vital for eliminating tumor
cells and suppressing tumor development [12–14]. As a recognition signal, ferroptosis-
associated lipid peroxides stimulate dendritic cells to recognize, phagocytose, and process
tumor antigens before presenting them to CD8+ T lymphocytes. The CD8+ T cells inhibit
tumor cell cystine uptake by releasing IFN-γ, which can activate cytotoxic T lymphocytes
to enhance tumor immunotherapy [15–17]; thus, using ferroptosis to improve tumor im-
munotherapy by focusing on the tumor microenvironment may be a new and effective way
to improve tumor immunotherapy.

Cancer relies on a complex tumor microenvironment to sustain growth, invasion,
and metastasis [18,19]. Heterogeneous non-malignant cells, including cancer-associated
fibroblasts (CAFs), tumor-associated immune cells (TICs), and vascular cells, form the
tumor microenvironment [18]. The inflammatory state of the TME has now been shown
to be essential for the initiation, progression, and metastasis of almost all solid tumors [8].
The epithelial-mesenchymal transition (EMT) in the TME was previously thought to be as-
sociated only with the invasive metastasis of cancer cells, but recent studies have identified
EMT as an important mechanism of tumor drug resistance. Several studies have shown
that growth factors, tumor microenvironment (e.g., hypoxia), and multiple oncogenic-
related signaling pathways (e.g., the TGF-β signaling pathway, Notch signaling pathway,
MAPK signaling pathway, and KRAS signaling pathway) can all initiate the EMT pro-
cess [20–22]. Mariathasan et al. collected previous studies to construct a set of EMT marker
genes: EMT1 (breast cancer) [23], EMT2 (urothelial carcinoma) [24], EMT3 (metastatic
melanoma) [25], angiogenic signature [26], and WNT targets [27]. To specifically mea-
sure the TGF-β pathway activity in fibroblasts, they developed a pan-fibroblast TGF-
response signature (Pan-F-TBRS) [28]. They collected a large number of patients with
uroepithelial carcinoma from patients treated with an anti-PD-L1 drug (atezolizumab)
and found that a good immunotherapy response was associated with a CD8+ T-effector
cell phenotype and tumor mutational load (TMB). In fibroblasts, a signature of trans-
forming growth factor (TGF-β) signaling was associated with a lack of immunotherapy
response. Tumor cells and their surrounding microenvironment can be shaped by different
degrees of ferroptosis activation [29,30]. Through a series of signaling pathways [31,32],
cancer cells going through ferroptosis have been shown to be able to find and activate
immune cells in the TME [31,32]. Schreiber et al., co-founders of the Harvard Boulder
Institute, found that an inhibition of glutathione peroxidase 4 (GPX4) induced ferroptosis
in mesenchymal state resistant cancer cells [33]. Similar to GPX4-dependent mesenchymal
resistant cancer cells, cancer cells with persistent drug resistance are also highly sensi-
tive to ferroptosis, probably because they also exhibit mesenchymal characteristics [14];
therefore, studying the role of ferroptosis on the regulation of EMT will help us fur-
ther understand the tumor microenvironment and explore the mechanisms of tumor
drug resistance.

In this study, we combined the genomic information of gastric cancer samples from
four different datasets and identified and comprehensively evaluated three different ferrop-
tosis molecular clusters. We found that the TME characteristics of these three molecular
clusters were highly consistent with the immune rejection phenotype, the immune inflam-
mation phenotype, and the immune desert phenotype, which indicated that ferroptosis
played a non-negligible role in shaping the characteristics of the individual tumor mi-
croenvironment. In addition, the ferroptosis molecular clusters were closely related to the
immunotherapeutic response and prognosis of gastric cancer patients. To this end, we
established a scoring system to quantify the ferroptosis molecular clusters of individual
patients. The scoring system can help us target the tumor microenvironment through
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ferroptosis to enhance the effect of tumor immunotherapy, which may be a new cancer
treatment strategy.

2. Results
2.1. Identification of Ferroptosis Molecular Subtypes and TME Characterization

We identified 59 FRGs differentially expressed (FDR < 0.001, |log FC| > 1; Figure 1A,
Table S1) between tumor and adjacent non-tumor tissues of the TCGA-STAD cohort by the
“limma” package. In KEGG and GO analyses, these differentially expressed genes (DEGs)
were enriched in regulating T cell differentiation, activation, regulating cell–cell adhesion,
involved in the immune response, protein kinase inhibitor activity, cytokine receptor
binding, hypoxia-inducible factor-1 signaling pathway, platinum resistance, and PD-L1
expression in tumors with the PD-1 checkpoint pathway (Figure 1B). We also examined
the prevalence of somatic mutations and copy number variants (CNVs) of FRGs in GC.
The mutation frequency of the FRGs of 433 samples was 34.18%, while KRAS was the
most common mutation in the samples (Figure S1A). Figure 1C shows the location of CNV
alterations in FRGs on the chromosome. The study of CNV alteration frequencies showed
that CNV alterations were very common among the 59 regulatory factors and most of them
were concentrated on copy number amplification (Figure 1D). The above analysis revealed
that the genetics of GC are highly heterogeneous, which suggests that imbalances in the
expression of FRGs are critical to the emergence and evolution of GC.

We used a consensus clustering approach to identify the molecular subtypes of ferrop-
tosis. On the basis of the mRNA expression data of 59 FRGs, GC patients from four cohorts
(TCGA-STAD, GSE84437, ACRG/GSE62254, and PRJEB25780) were classified into three
molecular subtypes, namely, ferroptosis clusters A, B, and C (A: n = 329, B: n = 648, and C:
n = 144; Figure 1E). The principal component analysis (PCA) confirmed that these three
subtypes were fully distinguishable (Figure 1F). A prognostic analysis revealed a particular
survival advantage for ferroptosis cluster A and the worst prognosis for ferroptosis cluster
C (p < 0.001; Figure 1G). We conducted a gene set variation analysis (GSVA) enrichment
analysis to investigate the biological behavior of the ferroptosis molecular subtypes (Table
S2). As shown in Figure 2A, ferroptosis cluster A was significantly enriched in DNA repair-
ing, basal transcription factor, and P53 signaling pathways. Cluster C was considerably
abundant in stromal activation pathways including the TGF signaling pathway, adhesion
plaque, ECM receptor interaction, MAPK signaling pathway, cell adhesion molecules
(CAMs), and leukocyte transepithelial migration.

Afterwards, an unsupervised cluster analysis was conducted to classify the immune
cell infiltration (ICI) subtypes of GC patients based on a cell-type identification by estimat-
ing the relative subsets of RNA transcript (CIBERSORT) calculations. As a result of the
analysis of four cohorts of GC patients, three immune subtypes were identified, which
are the ICI subtypes A, B, and C (A: n = 463, B: n = 221, and C: n = 259; Figure S1B). The
degree of immune cell infiltration overlapping between ICI subtype C and ferroptosis
cluster A was surprising to us. Figure 2B illustrates the distribution of each immune sub-
type in the ferroptosis clusters. A CIBERSORT analysis showed that ferroptosis cluster
A exhibited elevated levels of immune cell infiltration, including T cells CD4 memory
activated, NK cells resting, T cells follicular helper, macrophage M0, macrophage M1, and
mast cells activated. The cluster C immune cell infiltration included B cells, monocytes,
T cells, CD4 memory resting, and mast cells resting (Figure 2C). The ICI subtype C had
significant immune cell infiltration, which was comprised of CD8+ T cells, T cells follic-
ular helper, T cells CD4 memory activated, macrophage M1, and dendritic cells resting
(Figure 2D).
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Figure 1. Identification of ferroptosis molecular subtypes. (A) Volcano plot demonstrating the dif-
ferential expression of 59 ferroptosis-related genes in the TCGA-STAD cohort between tumors and 
adjacent non-tumor tissues. (B) Functional enrichment analysis of ferroptosis-related genes with 
differential expression. (C) CNV alteration sites of 59 ferroptosis-related genes. (D) CNV alterations 
of 59 ferroptosis-related genes. Column height indicates alteration frequency; green dots indicate 
deletions and red dots indicate amplifications. (E) The consensus cluster analysis divided the tumor 
samples into multiple subgroups, with the optimal K value = 3 (k is the number of subgroups di-
vided). Clustering algorithm = K means method. (F) PCA of the mRNA expression profiles of FRGs 
from the GC samples confirmed the three clusters, A (blue), B (yellow) and C (red). (G) Kaplan–
Meier survival curves for the three molecular clusters, A (blue), B (yellow) and C (red). 

Figure 1. Identification of ferroptosis molecular subtypes. (A) Volcano plot demonstrating the
differential expression of 59 ferroptosis-related genes in the TCGA-STAD cohort between tumors
and adjacent non-tumor tissues. (B) Functional enrichment analysis of ferroptosis-related genes with
differential expression. (C) CNV alteration sites of 59 ferroptosis-related genes. (D) CNV alterations
of 59 ferroptosis-related genes. Column height indicates alteration frequency; green dots indicate
deletions and red dots indicate amplifications. (E) The consensus cluster analysis divided the tumor
samples into multiple subgroups, with the optimal K value = 3 (k is the number of subgroups divided).
Clustering algorithm = K means method. (F) PCA of the mRNA expression profiles of FRGs from the
GC samples confirmed the three clusters, A (blue), B (yellow) and C (red). (G) Kaplan–Meier survival
curves for the three molecular clusters, A (blue), B (yellow) and C (red).
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Figure 2. Tumor microenvironment characteristics of ferroptosis molecular subtypes. (A) GSVA
analysis of distinct biological pathway activation in ferroptosis clusters A and C. Blue represents
the repression pathway and red represents the activation pathway. (B) Percentage distribution of
immune cell infiltration subtypes in each ferroptosis molecular subtype. (C,D) Box plots of immune
infiltration levels in ferroptosis molecular subtypes (C) and immune cell infiltration subtypes (D). ns:
not significant; * p < 0.05; ** p < 0.01; *** p < 0.001. (E,F) Differences in stromal activation pathway
(E) and carcinogenesis-related pathways (F) in the three ferroptosis molecular subtypes. ns: not
significant; * p < 0.05; ** p < 0.01; *** p < 0.001.

Similar to the ferroptosis molecular subtypes, the ICI subtype C had a particularly
prominent survival advantage, and the ICI subtype A group had the worst prognosis
(p = 0.04; Figure S1C). Despite having a significant immune cell infiltration, ferroptosis
cluster C did not exhibit a corresponding survival benefit, according to our data. According
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to earlier research, tumors with an immune rejection phenotype also contain an abundance
of immune cells, which remain within the peritumor stromal and do not exert an effective
immune response [34]; therefore, we hypothesized that stromal activation of the ferroptosis
cluster C inhibited the immune response against tumor cells. To this end, we performed an
EMT analysis using the single sample Gene Set Enrichment Analysis (ssGSEA) method and
showed significantly enhanced stromal activity in cluster C, such as an enrichment of the
epithelial–mesenchymal transition (EMT), Pan-F-TBRS, and angiogenic pathways, which
supported our hypothesis (Figure 2E). Further exploration of the relationship between the
ferroptosis molecular subtypes and the regulatory mechanism of the EMT is shown in
Figure 2F. We found that ferroptosis cluster C showed a significant enrichment in depleted
oxygen-related signaling pathways as well as EMT-related signaling pathways (e.g., the
TGF-β signaling pathway, MAPK signaling pathway, Notch signaling pathway, and KRAS
signaling pathway).

2.2. Generation and Functional Annotation of Genomic Patterns Associated with Iron Deficiency

As a further investigation into the potential biological properties of ferroptosis molec-
ular subtypes, we identified four DEGs (APOD, MFAP4, MYH11, and SPON1) associated
with ferroptosis molecular subtypes using the “limma” package (FDR < 0.01, |log FC| > 1;
Figure 3A). The Human Protein Atlas (HPA) database (https://www.proteinatlas.org/;
accessed on 19 August 2022) was applied to compare the protein expression of these fer-
roptosis subtype-related DEGs in tumor and normal tissue (Figure S4) [35]. In a univariate
Cox analysis, the four DEGs were strongly linked to the prognosis of patients with gastric
cancer. (p < 0.001; Figure 3B). As expected, the GSEA analysis showed that the DEGs were
enriched for many biological functions related to the chemokine signaling pathway, TGF-β
signaling pathway, gap junctions, focal adhesion, cell adhesion molecule CAM, and ECM
receptor interactions (Figure S2A–D).

A clustering analysis was conducted based on these DEGs in order to corroborate
this regulatory mechanism in further detail. Patients from four cohorts were classified
into three genomic patterns associated with ferroptosis, which we named gene clusters
A, B, and C (A: n = 393, B: n = 465, and C: n = 263; Figure S2E). It was discovered that
individuals in gene cluster A lived longer overall, while individuals in gene cluster C had
gloomy outlooks (p < 0.001; Figure 3C). The heat map showed that the gene clusters were
similar to the ferroptosis molecular subtypes. And the expression of four DEGs (APOD,
MFAP4, MYH11, and SPON1) associated with the ferroptosis molecular subtypes was
significantly up-regulated in gene cluster C (Figure 3D). The genomic pattern of immune
infiltration, EMT, and other biological signaling pathways were explored using the ssGSEA
analysis, and the findings also verified that gene cluster C was typified by the same stromal
activation and tumor-promoting state as ferroptosis cluster C (Figure 3E–G). Figure S2F
stated the distribution of each immune subtype in the gene clusters. In conclusion, the
genomic pattern of ferroptosis was consistent with the expected outcome of the molecular
subtypes of ferroptosis in terms of the immune infiltration, stromal activation, and survival.

2.3. Development of an Independent Prognostic Model for Gastric Cancer Based on Ferroptosis

The aforementioned research based solely on the patient group is unable to effectively
forecast the pattern of ferroptosis in specific patients due to the variety and complexity
of individual gastric cancers. We used a principal component analysis (PCA) to quantify
the ferroptosis molecular subtypes of individual tumors and constructed a scoring system,
which we refer to as the ferroptosis score [36,37]. We first removed samples with missing
clinical data and finally included 616 samples. The ferroptosis score was confirmed as
an independent prognostic factor for gastric cancer by a univariate and multivariate Cox
analysis (p < 0.001; Figure 4A). Sensitivity (TRP) in the diagnostic receiver operating
characteristic (ROC) curve and time-dependent ROC curve represents the true positive rate
(sensitivity), and 1-Sensitivity (FRP) represents the false positive rate (specificity). The area
under the curve (AUC) of the ROC was all greater than 0.5, suggesting that the ferroptosis

https://www.proteinatlas.org/
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score had good sensitivity and specificity (Figure 4B,C). Next, a nomogram plot was used to
analyze and visualize the prognostic multifactorial regression model for the scenario. The
ferroptosis score and other independent clinical risk factors (age and stage) were evaluated
according to their survival risk. Compared with other clinical characteristics, the ferroptosis
score contributed risk points from 0 to 80, second only to age (Figure 4D). The calibration
curves for the overall survival (OS) are shown in Figure 4E. The comparison lines between
the 1-year survival, 3-year survival, and 5-year survival predicted by the model and the
actual situation were close to the diagonal, suggesting that the ferroptosis scoring model
had a good fitting effect. Compared with the ROC curve, only sensitivity and specificity
can be used to evaluate the quality of the model, and only the accuracy is considered. The
prognostic decision curve analysis (DCA) diagram considers the clinical utility or patient
benefit of the model. When it comes to the patient benefit, the multivariate prognostic
model made by combining the ferroptosis scores is better than either age or stage alone
(Figure 4G).

2.4. Correlation Study of Ferroptosis Scores and Clinical Characteristics in GC Patients

To continue, we sought to further determine the correlation between ferroptosis scores
and clinical features of gastric cancer. According to the ideal cutoff (1.131985), patients
from the three cohorts (TCGA-STAD, GSE84437, and ACRG/GSE62254) were separated
into high and low ferroptosis score groups (high group: n = 294, and low group: n = 755).
Consistent with our previous study, patients with low ferroptosis scores had a considerably
better outcome than those with high ferroptosis scores, according to Kaplan–Meier curves
(p < 0.001; Figure 5A). The Kruskal–Wallis test revealed that the ferroptosis scores in
the ferroptosis clusters were significantly different, as were the gene clusters (p < 0.01;
Figure 5B,C). Consistent with the predicted results, the ferroptosis cluster C patients had
the poorest prognosis and the highest ferroptosis score, whereas the class A patients
displayed the opposite characteristics. Not surprisingly, Figure 5C shows that the gene
clusters showed the same results in the ferroptosis score.

Then, using the Kruskal–Wallis test method in the ACRG cohort of GC patients, we
looked into the correlation between the ferroptosis scores and ACRG typing. Figure 5D
shows that the ferroptosis scores were significantly different in all ACRG types except
for MSS/TP53- and MSS/TP53+ (p < 0.001). It has been demonstrated that the diffuse
histological type and EMT subtype are substantially linked to a worse prognosis in cases
of gastric cancer [38]. Microsatellite instability (MSI), which accompanies DNA mismatch
repair defects, is a crucial clinical tumor indicator and one of the most common predictors
of efficacy in immunotherapy [38,39]; therefore, MSI subtypes were associated with better
clinical outcomes. Most EMT subtype patients in our study clustered in ferroptosis cluster
C and gene cluster C, whereas hardly any EMT subtype patients clustered in cluster A.
This finding further highlighted the important relationship between stromal activation
and ferroptosis cluster C (Figure 5E,F). The TCGA study classified primary gastric cancer
into four subtypes based on the clustering results: microsatellite instability (MSI), EB virus
infection (EBV), chromosomal instability (CIN), and genomic stability (GS) [3]. Among the
four subtypes, GS type gastric cancer has the worst prognosis, while the EBV subtype has
the best prognosis. Although the ferroptosis scores did not differ significantly between the
EBV and MSI subtypes in TCGA, patients with the GS subtype had the highest ferroptosis
scores and those with the EBV subtype had the lowest ferroptosis scores, which was
consistent with our expected results (Figure 5G). We also explored the connections between
the ferroptosis scores and other clinical traits in GC patients using the Wilcoxon rank sum
test and Kruskal–Wallis test method. A significant difference was found in the ferroptosis
scores according to MSI, staging, grading, Lauren pathology, and age (Figure 5H–L). The
clinical features associated with a good prognosis all had relatively low ferroptosis scores.
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mune infiltration of the three genomic patterns. ns: not significant; * p < 0.05; ** p < 0.01; *** p < 0.001. 
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Figure 3. Generation and functional annotation of genomic patterns associated with iron deficiency.
(A) Venn diagram showing the intersection of differentially expressed genes in the ferroptosis cluster.
(B) Forest plot demonstrating univariate Cox analysis of genes associated with ferroptosis molecular
subtypes. (C) Kaplan–Meier survival curves for the three gene clusters. (D) Heat map illustrating
the relationship between the ferroptosis molecular subtype-associated gene expression, ferroptosis
clusters, and various clinicopathological features. (E) Box plots depicting the levels of immune
infiltration of the three genomic patterns. ns: not significant; * p < 0.05; ** p < 0.01; *** p < 0.001.
(F,G) Differences in stromal activation pathway (F) and carcinogenesis-related pathways (G) in the
three gene clusters. ns: not significant; * p < 0.05; ** p < 0.01; *** p < 0.001.
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Figure 4. Development of an independent prognostic model for gastric cancer based on ferroptosis. 
(A) Univariate and multivariate Cox analysis of ferroptosis score. (B,C) Diagnostic ROC curve (B) 
and time-dependent ROC curve (C) for ferroptosis score. AUC: area under the curve. (D) A nomo-
gram plot of prognostic multivariate regression model. (E) Prognostic calibration plot evaluating 
the fit analysis of the model to the actual situation. (F) Risk factor plot showing the distribution of 
survival outcomes using the median risk score of the prediction model for grouping patients with 
gastric cancer. (G) Prognostic DCA plot evaluating the clinical utility of the prognostic model. 

Figure 4. Development of an independent prognostic model for gastric cancer based on ferroptosis.
(A) Univariate and multivariate Cox analysis of ferroptosis score. (B,C) Diagnostic ROC curve (B) and
time-dependent ROC curve (C) for ferroptosis score. AUC: area under the curve. (D) A nomogram
plot of prognostic multivariate regression model. (E) Prognostic calibration plot evaluating the fit
analysis of the model to the actual situation. (F) Risk factor plot showing the distribution of survival
outcomes using the median risk score of the prediction model for grouping patients with gastric
cancer. (G) Prognostic DCA plot evaluating the clinical utility of the prognostic model.
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Figure 5. Correlation study of ferroptosis scores and clinical characteristics in GC patients. (A) Kaplan–
Meier survival curves for the ferroptosis score group. (B,C) Differences in ferroptosis scores in the
ferroptosis cluster (B) and gene cluster (C). (D) Differences in ferroptosis scores between ACRG
types. (E,F) ACRG type distribution in ferroptosis clusters (E) and gene clusters (F). (G) Differences
in ferroptosis scores for TCGA types. (H–L) Relationship between ferroptosis scores and clinical
features such as MSI (H), stage (I), grade (J), Lauren pathological classification (K), and age (L).
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2.5. Ferroptosis Score for Tumor Somatic Cell Mutation Characterization

Based on our data, we discovered that gene mutations differed significantly between
those with high and low ferroptosis scores (Figure 6A,B). We applied a Fisher’s test and
found 136 genes exhibiting significant mutational differences across the ferroptosis score
groups (p < 0.05; Table S3). Additionally, we explored TCGA-TSAD in specific altered genes
and the ferroptosis scores for the mutant ARID1A and PIK3CA phenotypes were markedly
lower than those for the wild-type (Figure 6C). Patients with low ferroptosis scores had a
relatively higher TMB (Figure 6D,E). In GC patients, a high TMB has been shown to lead to
improved outcomes [40], which is in agreement with our findings (Figure 6F,G).

2.6. Ferroptosis Scores Correlated with TME Characteristics

The tumor microenvironment consists primarily of resident stromal cells and immune
cells that recruit from the surrounding tissues; therefore, in order to facilitate the assess-
ment of immune as well as stromal elements of the TME, we calculated the immune score,
stromal score, and Estimation of Stromal and Immune Cells (ESTIMATE) score of GC
samples using the ESTIMATE. The results of the Spearman’s Rank Correlation analysis
revealed a positive association between the ferroptosis score and the ESTIMATE score,
immune score, and stromal score (Figure 7A–C). We subsequently found statistically sig-
nificant differences in the ferroptosis scores between the immune subtypes, with the ICI
subtype A having the highest score (Figure 7D). In 2018, Oh et al. examined genomic and
proteomic data to identify two distinct types of gastric cancer: the mesenchymal phenotype
(MP) and epithelial phenotype (EP) [41]. The survival and chemosensitivity of these two
subtypes differed significantly; therefore, we analyzed the difference in ferroptosis scores
between the EP and MP subtypes in the ACRG cohort. According to the findings, the MP
subtype ferroptosis scores in the TCGA cohort were statistically higher than the EP subtype
(p < 0.001; Figure 7E). This was confirmed in the ACRG cohort as well (p < 0.001; Figure 7F).
Not surprisingly, in the subsequent analysis at ssGSEA, the ferroptosis scores showed a
significant positive correlation with tumor stromal activation (Figure 7G,I). In order to
determine if there was an association between the ferroptosis score and immune cell infil-
tration, we performed a Spearman’s Rank Correlation analysis (Figure 7H). The ferroptosis
score was found to be positively correlated with macrophage M2 infiltration and negatively
correlated with T cell CD4 memory activated, T cell follicular helper, macrophages M1,
mast cells activated, and neutrophil infiltration. These data suggest that ferroptosis may be
involved in regulating the tumor microenvironment, thereby influencing tumor growth
and progression.

2.7. The Ferroptosis Score Correlated with Immunotherapy Efficacy and Chemotherapy Drug
Sensitivity Prediction

To assess the immunological response and tolerance to immunotherapy in GC pa-
tients. As the immune checkpoint-related signatures, we chose CD274, CTLA4, LAG3,
HAVCR2, IDO1, and PDCD1; as the immunological activity-related signatures, we chose
CD8A, CXCL10, GZMA, CXCL9, GZMB, GZMA, IFNG, PRF1, TBX2, and TNF [42,43].
In the group with low ferroptosis scores, the majority of immunological checkpoint-
associated and immunoreactive-related markers were found to be significantly overex-
pressed (Figure 8A). Additionally, we investigated the connection between the ferroptosis
score and the gene expression of popular GC medication targets and discovered that the ma-
jority of the target genes were considerably overexpressed in the group with low ferroptosis
scores (Figure 8B).
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tosis scores differ between wild-type and mutant ARID1A, PIK3CA, and TP53. (D) Box diagram 
illustrating the difference in tumor mutation burden between ferroptosis score groups. (E) Spear-
man’s Rank Correlation of ferroptosis score, tumor mutation burden, and gene clusters. (F) Kaplan–
Meier curve for tumor mutation burden groupings. (G) Kaplan–Meier curve for ferroptosis and tu-
mor mutation burden. 

Figure 6. Tumor somatic cell mutation characteristics of ferroptosis score. (A,B) Waterfall plots of
tumor somatic mutations in patients with low (A) and high (B) ferroptosis scores. Each column
represents one patient. The top bar indicates the degree of tumor mutation. The numbers on the
right indicate the frequency of mutations in each gene. The bars on the right show the proportion of
different types of mutations. Stacked bar graphs show the conversion rate for each sample. (C) Fer-
roptosis scores differ between wild-type and mutant ARID1A, PIK3CA, and TP53. (D) Box diagram
illustrating the difference in tumor mutation burden between ferroptosis score groups. (E) Spearman’s
Rank Correlation of ferroptosis score, tumor mutation burden, and gene clusters. (F) Kaplan–Meier
curve for tumor mutation burden groupings. (G) Kaplan–Meier curve for ferroptosis and tumor
mutation burden.
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(C). (D) Ferroptosis scores differ between ICI subtypes. (E,F) Differences in ferroptosis scores for 
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signaling pathways (I). 

Figure 7. Ferroptosis scores correlate with TME characteristics. (A–C) Spearman’s Rank Correlation
analysis between ferroptosis score and immune score (A), stromal score (B) and ESTIMATE score (C).
(D) Ferroptosis scores differ between ICI subtypes. (E,F) Differences in ferroptosis scores for EMT
typing in the TCGA cohort (E) and the ACRG cohort (F). (G–I) Heat map of the correlation between
ferroptosis score and stromal activity (G), immune cell infiltration (H), and EMT-related signaling
pathways (I).
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Figure 8. Ferroptosis score correlated with immunotherapy efficacy and chemotherapy drug sensi-
tivity prediction. (A,B) Box plots depicting the relative expression differences of checkpoints (A) 
and common targets of gastric cancer (B) between ferroptosis score groups. ns: not significant; * p < 
0.05; ** p < 0.01; *** p < 0.001. (C) Correlation heat map demonstrating the association of ferroptosis 
scores with TIDE scores. (D,E) Differences in ferroptosis scores between the ICB treatment response 
and non-response groups in the TCGA cohort (D) and PRJEB25780 cohort (E). (F–H) Correlation of 
ferroptosis scores with chemotherapeutic drug sensitivity, including 5-fluorouracil (F), Cisplatin 
(G), Gefitinib (H). (I–K) Differences in chemotherapy drug sensitivity between ferroptosis score 
subgroups, including 5-fluorouracil (I), Cisplatin (J), and Gefitinib (K). 

Figure 8. Ferroptosis score correlated with immunotherapy efficacy and chemotherapy drug sensitiv-
ity prediction. (A,B) Box plots depicting the relative expression differences of checkpoints (A) and
common targets of gastric cancer (B) between ferroptosis score groups. ns: not significant; * p < 0.05;
** p < 0.01; *** p < 0.001. (C) Correlation heat map demonstrating the association of ferroptosis
scores with TIDE scores. (D,E) Differences in ferroptosis scores between the ICB treatment response
and non-response groups in the TCGA cohort (D) and PRJEB25780 cohort (E). (F–H) Correlation
of ferroptosis scores with chemotherapeutic drug sensitivity, including 5-fluorouracil (F), Cisplatin
(G), Gefitinib (H). (I–K) Differences in chemotherapy drug sensitivity between ferroptosis score
subgroups, including 5-fluorouracil (I), Cisplatin (J), and Gefitinib (K).
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In light of the significance of immunotherapy in cancer treatment, we further ex-
amined the connection between the ferroptosis score and immune checkpoint blockade
(ICB) response using clinical data from TCGA-STAD and PRJEB25780. The Tumor
Immune Dysfunction and Exclusion (TIDE) algorithm was used to evaluate patients in
the TCGA-STAD cohort, and it was discovered that the ferroptosis score had a posi-
tive correlation with the TIDE score by using Spearman’s Rank Correlation (p < 0.01;
Figure 8C), whereas the ferroptosis score was significantly lower in the ICB treatment
response group than in the non-response group (p < 0.01; Figure 8D). This finding
was similarly validated in the PRJEB25780 cohort (p = 0.039; Figure 8E). Taken to-
gether, this evidence strongly supports the predictive efficacy of the ferroptosis score
on immunotherapy outcomes.

Studies have shown that sorafenib, as a classical targeted chemotherapy drug,
has been shown to exert cytotoxic effects on hepatocellular carcinoma cells through
ferroptosis [44,45]. A study has also shown that Cisplatin, a classical therapeutic drug,
can induce ferroptosis in A549 and HCT116 cells and shows significant synergistic
antitumor activity when combined with Cisplatin and erastin [46]. We examined the
connection between the ferroptosis score and the half maximum inhibitory concentration
(IC50) of chemotherapeutic medicines. Numerous medications, including 5-fluorouracil,
Cisplatin, Gefitinib, and many others, significantly correlated with the ferroptosis score.
The high ferroptosis score group reported greater IC50 estimates when compared to the
low ferroptosis score group (Figure 8F–K). In conclusion, a high ferroptosis score pre-
dicted an increased sensitivity to these therapeutic agents in GC patients. The ferroptosis
scoring system can stratify patients, screen sensitive patients, and find a new way to
overcome the related chemoresistance problems.

2.8. Pan-Cancer Analysis of Ferroptosis Scores

The differential expression analysis between tumor tissues and normal tissues adja-
cent to cancer showed that there were significant differences in the ferroptosis scores
among 18 cancers (p < 0.05; Figure 9A). To comprehensively describe the immunological
characteristics of ferroptosis and the clinical correlation with multiple malignancies, we
examined ferroptosis scores in 32 cancers and performed a Spearman’s Rank Correla-
tion analysis. Figure 9B illustrates the correlation between the ferroptosis score and
immune cell infiltration in the pan-cancer landscape. We found that the ferroptosis score
was associated with immune cells in most cancer types. The ferroptosis score was also
strongly connected with the stromal score and immune score according to the ESTI-
MATE (Figure 9C). In addition, the Spearman’s Rank Correlation analysis between the
ferroptosis scores and tumor mutational burden (TMB) in 32 cancer types showed that
in 1 cancer, the ferroptosis scores were positively related to TMB, whereas in 17 cancers,
they were negatively related to the TMB (p < 0.05; Figure 9D). Ferroptosis scores were
connected with MSI in one cancer in a positive way and in eight cancers in a negative
way (p < 0.05; Figure 9E). Forest plots of the univariate Cox analysis show that different
ferroptosis scores predicted survival in eight cancer types when the clinical outcome
was overall survival (OS) (p < 0.05; Figure 9F); however, when the clinical outcome was
disease-free survival (DFS), the ferroptosis scores were predictive in only five cancers
(p < 0.05; Figure 9G). The Kaplan–Meier survival curves show the survival difference of
the ferroptosis score when the clinical outcome was OS, DFS, disease-specific survival
(DSS), or progression-free survival (PFS) (p < 0.05; Figure S3). The Pan-cancer analysis
results are presented in Supplementary Table S6.
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Figure 9. Pan-cancer analysis of the ferroptosis score. (A) Differential expression analysis of the
ferroptosis score between tumor tissues and adjacent normal tissues. * p < 0.05; ** p < 0.01; *** p < 0.001.
(B) Pan-cancer landscape associated with ferroptosis score and immune cell infiltration. * p < 0.05;
** p < 0.01. (C) Lollipop charts describing the correlation of the ferroptosis score in pan-cancer with
the ESTIMATE score. (D,E) Lollipop charts of the Spearman’s Rank Correlation between ferroptosis
score and TMB (D) and MSI (E) in pan-cancer. (F,G) Univariate Cox analysis of ferroptosis score
when the clinical outcome was OS (F) and DFS (G).
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3. Discussion

With major advances in ICB monotherapy for progressive solid tumors in recent years,
clinical investigators have conducted numerous explorations in gastric cancer, ranging from
ATTRACTION-2 clinical studies after the failure of standard chemotherapy to KEYNOTE-
062 and CheckMate-649 s- and first-line clinical trials [4–7,47]. Despite the bumps along
the way, an important breakthrough has been made that offers hope for the treatment of
advanced gastric cancer patients; however, despite their impressive efficacy, treatment
failure, drug resistance, and recurrence remain common [48,49]. Numerous studies have
linked ferroptosis to the death of tumorigenic cells such as hepatocellular carcinoma,
glioma, non-small cell lung cancer, and breast cancer [14,50–53]. As a result, targeting
ferroptosis could be a novel approach to cancer treatment [54]; however, there are still
relatively few studies on the role of ferroptosis in gastric cancer, especially the potential
regulatory mechanisms in relation to TME characteristics, immunotherapy response, and
prognosis, which remain to be further investigated.

In this current investigation, 59 FRGs that displayed differential expression between
GC tumor tissues and surrounding non-tumor tissues were examined. These FRGs were
crucial for the malignant tumorigenesis, proliferation, metastasis, and even drug resis-
tance of malignant tumors; therefore, we identified three ferroptosis molecular subtypes
based on the mRNA expression profiles of the FRGs. In terms of prognosis, molecular
function, immune infiltration microenvironment, and immunotherapeutic response, these
three subtypes varied significantly. The immune cell infiltration and EMT assessment by
CIBERSORT revealed that cluster A was distinguished by significant immune activation
and immune cell infiltration, cluster B by immune deficiency, and cluster C by immunosup-
pression and tumor stromal activity. To verify the TME characteristics of the ferroptosis
subtypes, we also established ICI subtypes (e.g., immune-infiltrated phenotype, immune-
desert phenotype, and immune-excluded phenotype) by the results of the CIBERSORT
arithmetic. The results showed that the ICI subtypes and ferroptosis subtypes have a
high overlap. Hegde classified the tumor microenvironment into three types in 2016 [55].
Among them, the immunoinflammatory phenotype is characterized by tumor infiltration
with a high number of immune cells, such as T cells, and high levels of PD-L1 expression
in tumor cells. Numerous basic and clinical studies have shown that immunotherapy can
significantly benefit inflammatory tumors [34,55]. The immune-excluded phenotype, on
the other hand, is distinguished by the existence of significant immunosuppressive cells
in the tumor microenvironment, activation of the TGF-β signaling pathway, increased
infiltration of myeloid inflammatory cells, and significant tumor vascular proliferation.
Consistent with the above definition, we found that the ICI subtype A patients with the best
prognosis were significantly infiltrated with more CD8+ T cells and macrophage M1. Data
from the immunotherapy cohort of uroepithelial carcinoma demonstrated that patients
benefited more from checkpoint inhibitors with higher levels of infiltration of macrophage
M1 [28]. This is similar to the ferroptosis molecular subtypes, suggesting that CD8+ T
cell and macrophage M1 infiltration underlie the microenvironment in which patients
benefit from immunotherapy. In contrast, cluster C exhibited a significant state of stromal
activation, including a high expression of EMT associated signaling pathways (e.g., the
TGF-β signaling pathway, Notch signaling pathway, MAPK signaling pathway, and KRAS
signaling pathway), activation of Pan-F-TBRS, and angiogenic pathways, which are thought
to inhibit T cells [28,56]; thus, it is not surprising that cluster C innate immunity is activated
but has a poorer prognosis.

Transcriptome differential genes between the different ferroptosis molecular subtypes
showed enrichment for biological processes significantly associated with stromal compo-
nents and immune activation. As a result, these genes that were expressed differently
were regarded as ferroptosis-associated signature genes. Unsupervised cluster analysis
based on these ferroptosis-related signature genes identified three gene clusters. Moreover,
the genomic subtypes had almost the same prognostic and TME characteristics as the
ferroptosis molecular subtypes. These results suggest that different ferroptosis molecu-
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lar subtypes do exist in GC. Our comprehension of the cellular infiltration properties of
TME would be improved by a thorough analysis of the ferroptosis molecular subtypes.
In order to account for the individual heterogeneity of GC, we established a ferroptosis
score to assess the molecular subtypes of ferroptosis in specific GC patients and separated
GC patients into high and low ferroptosis score groups. Ferroptosis molecular subtypes
characterized by an immune rejection phenotype had higher ferroptosis scores, whereas
ferroptosis molecular patterns characterized by an immune inflammatory phenotype had
lower ferroptosis scores.

As expected, the survival analysis showed that individuals in the low ferroptosis
score group experienced better survival expectations. The diagnostic ROC curve and
time-dependent ROC curve also validated the sensitivity and specificity of the ferroptosis
score in predicting the survival outcomes in GC. We developed a prognostic multifactorial
regression model incorporating the ferroptosis score and other independent clinical risk
factors (age and stage). We verified that the ferroptosis score has a good predictive efficacy
on the outcome of gastric cancer patients and confirmed that the ferroptosis score is
a trustworthy indicator for patient survival assessment from various aspects. Further
investigation of the relationship between the ferroptosis score and clinical characteristics
of GC patients found that a high ferroptosis score was significantly associated with most
clinical features of a poor GC prognosis (e.g., MSS, advanced stage, diffuse type, advanced
age, and low PD-L1 expression). Moreover, ferroptosis cluster C was the predominant
component of the EMT subtype in the ACRG cohort, which again confirmed the ferroptosis
cluster C stromal activation feature. According to the aforementioned analysis, stromal
activity, a high malignancy, and rapid advancement were substantially related to tumors
with high ferroptosis scores.

The current state of research suggests that the formation of an immunoinflammatory
tumor microenvironment stems primarily from genomic variants in the tumor, such as MSI
and TMB, that increase the production of tumor neoantigens, resulting in a tumor microen-
vironment infiltrated with large numbers of TILs that can attack tumor cells [39,57–59].
The ferroptosis score and TMB had a very strong negative association according to the
correlation analysis [39,57,58]; thus, the above results indirectly suggest the potential of
ferroptosis scores to predict the responsiveness to immunotherapy.

According to the Spearman’s Rank Correlation analysis, the ESTIMATE score, immune
score, and stromal score all had favorable correlations with the ferroptosis score. These
findings suggest that ferroptosis is related to the ratio of immune and stromal components.
Furthermore, we looked into the molecular underpinnings of EMT. The scores for ferrop-
tosis demonstrated a substantial positive connection with stromal activity and signaling
pathways connected to EMT. Previous research has shown that activating the EMT and
TGF-β related pathways decreases the transport of T cells into tumors and their ability to
destroy malignancies [28,56]. According to earlier theories, activated stromal TME may
impact the accuracy of gastric cancer immunotherapy and induce therapeutic resistance to
immune checkpoint inhibition. The aforementioned findings, therefore, infer that variations
in tumor ferroptosis have a non-negligible role in forming various stromal and immunolog-
ical TME landscapes and may be a significant component in modulating the clinical efficacy
of ICB therapy. Consequently, we validated the predictive effect of the ferroptosis scores on
the immunotherapy response in the TCGA-STAD and PRJEB25780 cohorts. It was observed
that patients tended to respond better to immunotherapy when their ferroptosis scores
were lower. The half maximum inhibitory concentration (IC50) of several medications,
including 5-fluorouracil, Cisplatin, and Gefitinib, revealed a significant positive connection
with the ferroptosis score, according to our analysis of drug sensitivity. In conclusion,
high ferroptosis scores predicted an increased sensitivity to these therapeutic agents in GC
patients. In a pan-cancer analysis, we examined the relationships between the ferroptosis
scores and MSI, TMB, survival prognosis, and ESTIMATE scores in 32 cancers. It has been
shown that the ferroptosis gene signature combines several factors, including stromal and
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immunological TME, mutational burden, MSI condition, and PD-L1 expression, and may
be a more accurate immunotherapy prediction method.

4. Materials and Methods
4.1. Data Collection

Publicly available gastric cancer transcriptomes and corresponding clinical annota-
tions were collected from The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.
gov/repository; accessed on 20 February 2022) database. For validation, 733 gastric cancer
patients were acquired from two datasets, GSE84437 and ACRG/GSE62254, from the Gene
Expression Compendium (GEO) database (https://www.ncbi.nlm.nih.gov/geo; accessed
on 12 February 2022). The anti-PD-1 treatment cohort PRJEB25780 with clinical and stan-
dardized RNA expression data was obtained from the Tumor Immune Dysfunction and
Exclusion database (TIDE, http://tide.dfci.harvard.edu/; accessed on 20 March 2022) [60].
We collected clinical data from the manuscript [61]. The TCGA-STAD copy number vari-
ant (CNV) data was extracted from the UCSC xena (https://xena.ucsc.edu/; accessed on
20 February 2022) database. We used the ComBat method to remove the batch effect of the
gene expression data.

A list of ferroptosis-related genes (FRGs) was obtained from the FerrDb website
(http://www.zhounan.org/ferrdb; accessed on 21 March 2022), which is the first database
on ferroptosis regulators and indicators and associations with disease [62]. In addition, we
removed duplicate genes, leaving us with 380 genes for further investigation (Table S4).
All data from TCGA, GEO, TIDE, and FerrDb is publicly available. Data access policies
and release guidelines for TCGA and GEO were strictly adhered to in this study.

4.2. Construction of Ferroptosis Molecular Subtypes in the TCGA-STAD Cohort

The RNA sequencing data (FPKM values) from the TCGA-STAD dataset were con-
verted to TPM using R (version 4.0.3) and the R package “TCGAbiolinks” [63]. The
R “limma” package was used to analyze and screen gastric cancer samples and para-
cancerous tissues from the TCGA database for differentially expressed FRGs (FDR < 0.01,
|logFC| > 1) [64].

We performed unsupervised clustering analysis using the “ConsensuClusterPlus”
to identify the molecule subtypes of ferroptosis according to the mRNA expression data
of differentially expressed FRGs [65]. The number of clusters and their stability were
calculated using the consensus clustering approach [66]. In order to ensure the stability of
the classification, the analysis was repeated 1000 times; therefore, patients from the TCGA-
STAD, GSE62254, GSE84437, and PRJEB25780 cohorts were classified for further analysis.

4.3. Functional Enrichment Analysis and Immune Microenvironment (TME) Characterization

Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses
of differential genes (FDR < 0.05) were performed utilizing the “clusterProfiler” [67]. In
order to investigate potential differences in the biological processes between the ferroptosis
clusters, we downloaded the gene set “c2.cp.kegg.v7.4” from the MSigDB database and
completed a gene set variation analysis (GSVA) through the “GSVA” R package. GSVA is a
commonly used, non-parametric, unsupervised method for estimating biological pathways
and processing variation in samples of expression datasets [68]. The difference between the
two groups was assessed as statistically significant when the corrected p < 0.05 was reached.
To investigate the stromal state in the tumor microenvironment, we obtained a set of genes
associated with multiple biological processes from Mariathasan et al., including epithelial–
mesenchymal transition (EMT) marker gene sets EMT1, EMT2, and EMT3; angiogenic
signature; TGF-β response signature of pan-fibroblasts (Pan-FTBRS); WNT targets [28]. To
further reveal the mechanisms by which ferroptosis affects the tumor immune microenvi-
ronment, we downloaded EMT-related gene sets from the MSigDB database [69], including:
TGF-EMT signaling down; TGF-EMT signaling up; MAPK signaling; NOTCH signaling;
KRAS signaling up; KRAS signaling down; hallmark-hypoxia; HIF-1 signaling to increase

https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
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http://www.zhounan.org/ferrdb
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oxygen delivery; HIF-1 signaling to decrease oxygen consumption [20,70]. The relevant
signaling pathway information is presented in Supplementary Table S5. The mechanism
of the TME signature generation was then explored through a Single Sample Gene Set
Enrichment Analysis (ssGSEA) [42]. Estimation of Stromal and Immune Cells (ESTIMATE)
implements an estimation algorithm through gene expression profiling, generating scores to
calculate the level of infiltrating stromal cells, immune cells, and tumor purity in malignant
tissues [71].

CIBERSORT from the Alizadeh lab is an analytical tool developed by Newman et al.
It was first published in Nature Methods in 2015 and has since become one of the most
widely used tools for quantifying and analyzing immune cell infiltration [72]. It allows
large-scale analysis of RNA mixtures of potential therapeutic targets and cellular markers
(http://cibersort.stanford.edu/; accessed on 15 May 2022). Subsequently, an unsupervised
cluster analysis based on CIBERSORT calculations was performed to classify the immune
infiltrate subtypes in the TCGA-STAD, GSE62254, GSE84437, and PRJEB25780 cohorts of
patients to obtain immune cell infiltration (ICI) subtypes.

4.4. Building a Ferroptosis Score to Assess Individual Tumors

To more thoroughly examine the probable biological behavior among the ferroptosis
molecular subtypes, overlapping differentially expressed genes (DEGs) between the ferrop-
tosis subtypes were detected by the “limma” package (FDR < 0.001), and the prognosis was
analyzed using a univariate Cox model (p < 0.05). Then, based on these DEGs, the patients
were classified into genomic subtypes using an unsupervised clustering approach.

We used a principal component analysis (PCA) to quantify the ferroptosis molec-
ular subtypes of individual tumors and to construct a scoring system that we termed
the ferroptosis score [36,37]. We defined the ferroptosis score as follows: Ferroptosis
score = ∑ (PC1i + PC2i), where i represents the expression of prognostic DEGs associ-
ated with the ferroptosis molecular subtypes. According to the threshold values deter-
mined by the “Survminer” R package, the patients were categorized into low and high
ferroptosis groups.

4.5. Establishment and Validation of a Prognostic Model Based on Ferroptosis

The independent prognostic value of the ferroptosis score was determined with a
univariate and multivariate Cox analysis. The diagnostic ROC curve and time-dependent
ROC curve were employed to confirm the sensitivity and specificity of the ferroptosis
score in predicting survival outcomes in GC. Next, a prediction model was constructed by
integrating the ferroptosis score and other independent clinical risk factors according to the
prognostic multivariate profile. A nomogram plot was used to visualize the relationship
between the variables in the prediction model by following a certain scale in the same
plane. A prognostic calibration plot was used for a fit analysis of the model to the actual
situation and to determine the predictive efficacy. A risk factor plot was used to visualize
how patients with gastric cancer were grouped by the median risk score of the multivariate
Cox prediction model. The Prognostic DCA plot assessed the role of the prognostic model
in terms of the clinical utility (patient benefit).

4.6. Immunotherapy Response Prediction and Chemotherapeutic Drug Sensitivity Prediction

In order to forecast the response to the immune checkpoint blockade (ICB), we assessed
the tumor mutation burden (TMB). The “maftools” software package was used to visualize
somatic mutation data extracted from the mutation annotation format (MAF) files [73]. For
each patient, the TMB was estimated using the following formula: TMB = (total number of
mutations)/(length of entire exon). In addition, the TIDE method was proposed by Jiang et al.
in order to model the immune evasion mechanisms in cancer, including T-cell dysfunction
and T-cell rejection [61]. In the present study, we used TIDE to assess the patient reactions to
immunotherapy. Higher TIDE scores not only indicated a tumor with an immune evasion
phenotype, but they also predicted a less favorable response to ICB in cancer patients.

http://cibersort.stanford.edu/
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The sensitivity of ferroptosis to chemotherapeutic agents was evaluated by the tumor
drug sensitivity genomics (GDSC; https://www.cancerrxgene.org/; accessed on 20 May
2022) database [74]. The half maximum inhibitory concentration (IC50) was calculated by
the “prophetic”.

4.7. Pan-Cancer Analysis: Ferroptosis Scores for 32 Cancers

We collected the gene expression information and relevant clinical data from the TCGA
database for 32 tumor types. Over 11,000 tumor samples and normal tissues were scored
for ferroptosis by a PCA analysis. The relationship between the ferroptosis scores and
clinical characteristics (OS, DFS, DSS, PFS, Stage, TMB, and MSI) was further analyzed by a
Spearman’s Rank Correlation.

4.8. Statistical Analysis

For comparisons between two groups, Wilcoxon rank sum tests were applied, while
Kruskal–Wallis tests were employed for comparisons between multiple groups. The thresh-
olds of each subgroup were calculated by “survminer”. We used Kaplan–Meier curves to
compare the overall survival (OS) between subgroups and a log-rank test to determine.
Using the maximum selected log-rank statistic, the ferroptosis scores were classified into
high and low ferroptosis groups depending on the “surv-cutpoint”. The risk ratio (HR) of
FRGs was calculated using a univariate Cox model.

5. Conclusions

In our study, we systematically investigated the molecular pattern of ferroptosis in
GC and we proposed a ferroptosis score system, which is applicable to clinical practice to
accurately assess the molecular subtypes of ferroptosis and corresponding TME charac-
teristics within specific patients to further determine the immunophenotype and instruct
more efficient clinical treatment. We also found that the ferroptosis score can be utilized
as a separate prognostic factor to forecast patient survival. The clinical and pathological
features of patients, such as stage, grade, histological subtypes, molecular subtypes, genetic
variations, MSI status, and tumor mutation burden, could also be evaluated using this
method. By the ferroptosis score, we also anticipated the efficacy of chemotherapy and the
treatment response of patients to anti-PD-1/PD-L1 immunotherapy. This has provided
some unique perspectives into immunotherapy for cancer, focusing on ferroptosis or ferrop-
tosis molecular subtype-related genes to alter the ferroptosis scores and further ameliorate
the unfavorable properties of TME. This research offers novel perspectives on how to
enhance responses to immunotherapy, recognize different tumor immune characteristics,
and advance individualized tumor immunotherapy in GC patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23179767/s1.

Author Contributions: Conceptualization, X.X. and X.Z.; methodology, X.X.; software, X.X.; valida-
tion, H.L., F.Y. and N.Z.; formal analysis, X.X.; investigation, N.Z.; data curation, B.D.; writing—original
draft preparation, X.X.; writing—review and editing, N.Z.; funding acquisition, X.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: Funding for this research was provided by the Qingdao Key Discipline Foundation;
Shandong Health Science and technology development foundation (202102040497).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Please contact the corresponding author to discuss availability of the
data presented in this study.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.cancerrxgene.org/
https://www.mdpi.com/article/10.3390/ijms23179767/s1
https://www.mdpi.com/article/10.3390/ijms23179767/s1


Int. J. Mol. Sci. 2022, 23, 9767 22 of 25

Abbreviations

TME tumor microenvironment
GC gastric cancer
FRGs ferroptosis-related genes
ROS reactive oxygen species
CAFs cancer-associated fibroblasts
TICs tumor-associated immune cells
EMT epithelial-mesenchymal transition
Pan-F-TBRS pan-fibroblast TGF-β response signature
TMB tumor mutational load
GPX4 glutathione peroxidase 4
CNVs copy number variants
ICI immune cell infiltration
CIBERSORT cell-type identification by estimating relative subsets of RNA transcript
GSVA gene set variation analysis
ssGSEA Single Sample Gene Set Enrichment Analysis
GO Gene ontology
KEGG Kyoto Encyclopedia of Genes and Genomes
DEG Differentially expressed gene
PCA principal component analysis
ROC Receiver operating characteristic
AUC area under the curve
DCA decision curve analysis
OS overall survival
MSI Microsatellite instability
EBV EB virus infection
CIN chromosomal instability
GS genomic stability
MP mesenchymal phenotype
EP epithelial phenotype
ICB immune checkpoint blockade
TIDE Tumor Immune Dysfunction and Exclusion
IC50 the half maximum inhibitory concentration
DFS disease-free survival
DSS disease-specific survival
PFS progression-free survival
MSS Microsatellite stability
MAF mutation annotation format
ESTIMATE Estimation of Stromal and Immune Cells
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