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EndogEnous hydrogEn sulfidE 
production confErs vErsatilE 
cardiovascular protEction
In recent years, research has established that 
hydrogen sulfide (H2S) is generated enzy-
matically within the body, and functions as 
an important modulator of physiological 
function—akin in this respect to the physio-
logical gases nitric oxide (NO) and carbon 
monoxide (CO). Moreover, there is now 
substantial evidence that physiological levels 
of H2S work in a wide range of comple-
mentary ways to promote and preserve 
cardiovascular (CV) health.1–3 Studies in 
rodents and in cell cultures—employing 
molecules which give rise to H2S in vivo, 
drugs which inhibit or boost the activity of 
the enzymes which generate it, and trans-
genic rodents in which these enzymes are 
knocked out or upregulated—have estab-
lished that physiological concentrations of 
H2S can oppose atherogenesis, ameliorate 
systemic and pulmonary hypertension, as 
well as protect the heart subjected to pres-
sure overload, endoplasmic reticulum (ER) 
stress or adrenergic overstimulation.1 2 4–8 
With respect to atherogenesis, H2S has been 
found to decrease endothelial inflammation, 
suppress monocyte adhesion, amplify endo-
thelium-dependent vasodilation, decrease 
the formation and inflammatory activity of 
foam cells, inhibit smooth muscle migration, 
oppose intimal hyperplasia, inhibit vascular 
calcification and oppose thrombogenesis.1 

9–21 Although H2S does not modulate plasma 
lipoprotein levels, it has been shown to 
protect low-density lipoprotein (LDL) from 
oxidation mediated by the myeloperoxidase 
product hypochlorous acid.22 Hypochlorous 
acid-mediated oxidation of LDL seems likely 

to play a role in the pathogenesis of athero-
sclerosis; curiously, alpha-tocopherol, which 
notoriously failed to confer CV protection in 
multicentre trials, fails to prevent this oxida-
tion.23–25

With respect to regulation of blood pres-
sure (BP), H2S acts directly as a vasodilator 
of smooth muscle, via activation of hyper-
polarising potassium channels, and also 
promotes the vasodilatory activity of NO.26 

27 In hearts challenged by pressure overload 
or adrenergic overstimulation, H2S opposes 
cardiomyocyte hypertrophy and cardiac 
fibrosis, aids angiogenesis, and prevents 
heart failure.2 28–33 H2S also limits the cardiac 
tissue damage induced by coronary isch-
aemia reperfusion, and reduces incidence of 
ischaemic arrhythmias.34–37

A bewildering variety of molecular targets 
have been suggested as mediators of these 
benefits; it remains to be seen which of these 
are direct targets that are of physiological 
importance. H2S can modify a number of 
proteins on specific cysteine groups through 
S-sulfhydration, and this is thought to be the 
chief basis of its modulatory impact.38 39 Direct 
targets reported to date include ATP-sensi-
tive, intermediate conductance, and small 
conductance potassium channels—the acti-
vation of which by H2S induces membrane 
hyperpolarisation and smooth muscle 
relaxation; TRPV1 channels in endothelial 
cells—leading to endothelial hyperpolarisa-
tion and calcium influx; phosphodiesterase-5 
(inhibition); Keap1 (leading to induction of 
phase 2 enzymes); the transcription factor 
Sp1 (the stabilisation of which modulates 
expression of many proteins); and endothe-
lial nitric oxide synthase (eNOS)—boosting 
its activity.40–46 Under various circumstances, 
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H2S has been found to promote antioxidant expres-
sion via activation of nrf2, quell oxidative stress, activate 
haem oxygenase, boost expression of vasoprotective 
miRNAs, stimulate production of mediators of angiogen-
esis, activate or suppress ion channels, inhibit nuclear 
factor-kappaB-mediated inflammation, and suppress or 
promote apoptosis.2 26 29 44 47–50 Like NO and CO, H2S 
tends to be toxic in relatively high concentrations, but 
protective in modest physiological concentrations. H2S 
is rapidly oxidised, and, again like NO, its chief physi-
ological effects are expected to be exerted within the 
microenvironment in which it is produced.

Many of H2S’s protective effects may be at least 
partially attributable to its ability to support effective 
NO function.27 H2S has been shown to promote acti-
vating phosphorylations of eNOS.39 42 It can also directly 
boost eNOS activity through S-sulfhydration, and by 
promoting endothelial influx of calcium via activation 
of TRPV1 channels.41 46 However, as a countervailing 
effect, H2S can inhibit endothelial eNOS activation by 
certain agonists owing to its ability to suppress inosi-
tol-1,4,5-triphosphate-mediated release of calcium from 
intracellular stores.51 52 The same mechanism opposes 
vasoconstriction of smooth muscle and platelet aggrega-
tion.52 Although, unlike NO and CO, H2S cannot directly 
activate soluble guanylate cyclase, it functions to reverse 
an inhibitory oxidation of this enzyme that occurs in 
oxidatively stressed cells and that renders this enzyme 
non-responsive to NO and CO.53 H2S can also boost cyclic 
guanosine monophosphate (cGMP) by inhibiting phos-
phodiesterase 5.42 Hence, while the impact of H2S on 
eNOS activity can vary depending on the circumstances, 
H2S tends to amplify the bioactivity of NO. Conversely, 
suppression of eNOS activity has been found to decrease 
expression of cystathionine γ-lyase (CSE) and synthesis 
of H2S in the rat vaculature.54–56 Perhaps it is appropriate 
to view NO and H2S as teammates that work together in 
complementary ways to promote CV health.

Case–control studies have found that plasma H2S levels 
are lower in patients with coronary disease than with angi-
ographically clean arteries, lower in in those with unstable 
angina or myocardial infarction than in those with stable 
angina, and lower in smokers, diabetics and hyperten-
sives.57 58 While low H2S production may contribute to 
progression of these syndromes (aside from smoking), it 
may also be a marker for loss of NO bioactivity or other 
metabolic dysfunctions associated with vascular disease. 
Epidemiologists should now be encouraged to measure 
plasma H2S levels in prospective studies focusing on 
vascular health; such studies might well establish low 
plasma H2S as a potent CV risk factor.

Even though we are very far from having a full under-
standing of how H2S works at the molecular level to guard 
the vascular system, it seems highly likely that practical 
strategies which either boost endogenous enzymatic 
synthesis of H2S, or that provide an exogenous source 
of this mediator (eg, drugs that gradually degrade to 
release H2S), will have a bright future in CV medicine.59 

In regard to the former possibility, a simple nutraceutical 
protocol can be proposed.

Enzymatic synthEsis of h2s
At least three enzymes generate H2S in the human body.2 

60CSE, better known for its ability to cleave cystathi-
onine to generate cysteine, α-ketobutyrate and ammonia 
(an essential step in methionine catabolism), can also 
act on cysteine to yield pyruvate, ammonia and H2S.61 
CSE is the primary source of H2S in the vasculature; it 
is also expressed in the liver, kidney, ileum, uterus and 
placenta.2 The chief source of H2S in the central nervous 
system is the enzyme cystathionine-β-synthase (CBS). 
Although this is best known for generating cystathionine 
from homocysteine and serine (likewise participating in 
methionine catabolism), it can also synthesise cystathi-
onine from homocysteine and cysteine, producing H2S 
in the process.62 A third route to H2S production involves 
deamination of cysteine by cysteine aminotransferase; 
the product 3-mercaptopyruvate can then be acted on 
by 3-mercaptopyruvate sulfurtransferase (3-MST), an 
enzyme found in neurons, the retina and vascular endo-
thelium, to yield pyruvate and H2S.63 64 A recent study 
indicates that 3-MST may be the chief source of H2S in 
human coronary arteries.65

cystEinE availability is ratE limiting for h2s 
synthEsis
From the standpoint of vascular health, CSE appears to 
be of primary importance. CSE-knockout mice are prone 
to hypertension, atherogenesis and heart failure.66–69 
It is notable that CSE’s Km for cysteine has been found 
to be around 3.5 mM—a concentration far higher than 
ambient levels of free cysteine in cells.70 It should follow 
that supplementation with nutraceuticals that can boost 
cellular levels of cysteine will boost CSE-mediated H2S 
production to a commensurate degree. CBS’s Km for 
cysteine is even higher—around 6 mM.71 With respect to 
3-MST, its Km for 3-mercaptopyruvate has been measured 
at over 7 mM, and the Km of cysteine aminotransferase for 
cysteine is 22 mM.63 72 Hence, there is reason to suspect 
that increasing cellular cysteine levels should propor-
tionately increase H2S generation by all three enzymatic 
sources of this gas.

N-acetylcysteine (NAC), a well-tolerated and well-ab-
sorbed nutraceutical that is rapidly cleaved in vivo to 
yield cysteine, has long been employed clinically to 
enhance cellular levels of glutathione.73 74 (L-cysteine 
per se, when administered as a pure chemical, is more 
reactive, tending to oxidise spontaneously to cysteine; it 
is less bioavailable and more prone to evoke side effects 
than NAC.) The rate-limiting enzyme for glutathione 
synthesis, γ-glutamylcysteine synthetase, also has a rather 
high Km for cysteine, which is why NAC supplementation 
is effective for boosting glutathione levels.75 The clinical 
efficacy of NAC in this regard demonstrates that feasible 
NAC intakes do indeed meaningfully enhance the 
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cysteine content of cells. There is no evident reason why 
supplementary NAC should not in a comparable manner 
stimulate H2S production by CSE.

supplEmEntal taurinE incrEasEs vascular csE 
ExprEssion
An exciting recent research discovery may provide an 
additional complementary strategy for boosting CSE-me-
diated H2S production. In relatively high dietary doses, 
the physiologically essential amino acid osmolyte taurine 
has long been known to exert important protective 
effects in rodent models of atherogenesis, hyperten-
sion and heart failure.76–78 However, with the exception 
of several early promising clinical studies showing that 
supplemental taurine can improve cardiac function 
in heart failure, little effort to date has been made to 
explore taurine’s clinical utility for CV protection.79 80 
This likely reflects the fact that, aside from a few pilot 
scale clinical studies suggesting a modest favourable 
impact on elevated BP, supplemental taurine does not 
seem to influence documented CV risk factors.81 82 If, 
for example, taurine notably reduced LDL cholesterol, 
C-reactive protein or homocysteine, it likely would have 
received respectful attention from clinical researchers. 
But to date it has remained a research curiosity that for 
inexplicable reasons exerts interesting effects on rodents. 
This is all the more distressing in light of the fact that 
taurine is essentially free of toxicity (except in severe 
kidney failure), well absorbed, quite inexpensive in multi-
gram doses, highly soluble and so devoid of flavour that it 
can be added in high amounts to any food or beverage.83 
Indeed, taurine is currently a standard constituent 
of so-called ‘energy drinks.’ (Unjustly, the dangerous 
side effects of the hypercaffeination which overconsump-
tion of these drinks can induce have led some to question 
taurine’s safety; ironically, the taurine may make these 
drinks safer.)84 85

Recently, clinical researchers elected to conduct an 
adequately powered assessment of taurine’s ability to 
lower modestly elevated BP.86 They enrolled 120 prehy-
pertensive subjects, who were randomised to receive 1.6 g 
taurine daily, or matching placebo, for 12 weeks. BP was 
assessed both at clinic visits and by 24 hours of ambulatory 
monitoring. In the taurine group, average BP reductions 
were significant relative to both placebo and baseline, 
for both systolic and diastolic pressure (for the clinic, a 
mean reduction of 7.2/4.7 mm Hg; for ambulatory read-
ings, 3.8/3.5 mm Hg). Both endothelium-dependent and 
endothelium-independent vasodilation was amplified in 
the taurine group. But the truly intriguing finding was 
this: plasma H2S levels in the taurine group rose from 
43.8 µmol/L at baseline to 87.0 µmol/L after 12 weeks 
(p<0.001)—a virtual doubling of plasma H2S.

In an effort to determine why H2S rose in the 
taurine-supplemented group, the researchers fed sponta-
neously hypertensive rats a diet enriched with 2% taurine 
for 12 weeks, and then measured the protein expression 

levels of CSE and CBS in the aortas of these rats—each of 
these levels had risen by about 50%. They also exposed 
human mesenteric arteries ex vivo to either 20 mM or 
40 mM taurine for 24 hours, and found that expressions of 
both CSE and CBS rose markedly and dose dependently; 
the increase in CSE expression was over fivefold at 40 mM 
taurine.

Unfortunately, these researchers did not determine 
whether taurine supplementation boosts the expres-
sion of 3-MST or of cysteine aminotransferase in the 
vasculature. This could have implications for endothe-
lial function and atherogenesis in human coronary 
arteries.65 In this regard, it is interesting to note that 
some of the first clinical studies evaluating high-dose 
taurine supplementation found that it conferred symp-
tomatic benefit in angina.87 88 These Italian studies were 
open label, and unfortunately were not followed up with 
a published controlled trial to validate their findings. 
Nonetheless, if these observations were accurate, they 
might be rationalised by a taurine-mediated upregulation 
of 3-MST activity, and a consequent amplification of NO 
bioactivity via H2S.

The ability of taurine to enhance the expression of 
CSE is not unprecedented. The drug S-propargyl-cys-
teine likewise has shown this effect.89 90 But this drug is 
not available for clinical use—whereas taurine is a widely 
available nutraceutical. In light of the increase in CV risk 
that accompanies menopause, it is intriguing to note that 
oestrogen administration boosts expression of CSE in the 
vasculature of ovariectomised mice, an effect dependent 
on the oestrogen receptor alpha.91 92 Whereas oestrogen 
protects ovariectomised mice from diet-induced athero-
genesis, it fails to do so in ovariectomised mice in which 
the CSE gene has been knocked out.92

In regard to the multiple protective effects of taurine 
supplementation documented in rodents—neuropro-
tective as well as vasoprotective—it will be of interest to 
determine which of these are mediated by H2S. This can 
be done by noting whether drug-mediated inhibition 
of H2S synthesis, or use of transgenic mice deficient in 
H2S synthesis, eliminates the protective effects of taurine 
administration. The positive inotropic effect of taurine 
in heart failure might not be attributable to H2S, as the 
latter is not known to have such an effect.79 93–96

a nutracEutical rEgimEn for boosting h2s 
synthEsis
Assuming that the recent research linking taurine with 
H2S can be replicated (one must bear in mind that, to 
date, only one clinical study has reported the impact of 
supplemental taurine on plasma H2S levels), it is logical to 
propose that a supplementation regimen featuring clin-
ically meaningful doses of both NAC and taurine should 
boost endogenous production of CSE, and thereby 
promote vascular health in a number of complementary 
ways. Clinical studies evaluating the impact of various 
dose regimens of taurine and NAC on plasma H2S levels 
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appear warranted. The dose range in which NAC has 
shown clinical benefits—and hence presumably achieves 
a meaningful increase in tissue cysteine levels—is 1200–
1800 mg daily, in divided doses.74 Taurine has been used 
in daily doses as high as 6 g without any evident adverse 
effects; 1.6 g daily was sufficient to elevate H2S in the trial 
in patients with prehypertension.79 86

In regard to NAC, it has been suggested that the 
elderly have an increased requirement for cysteine 
owing to the fact that the efficiency of glutathione 
synthesis and glutathione tissue levels decline with age.97 
This age-related deficit in glutathione can be corrected 
with supplemental NAC.98 This observation may help 
rationalise epidemiology which concludes that, whereas 
relatively low dietary protein intakes are associated 
with lower mortality risk in people under 65 (possibly 
by downregulating growth factor activities which drive 
the ageing process), low protein intakes (as a fraction 
of total calories) predict higher mortality in those over 
65.99 100 Supplementation with NAC in the elderly may 
provide health protection by boosting the production 
of both glutathione and H2S, each of which is crucial 
for optimal physiological function and health promo-
tion. NAC may be of particular merit for ‘rejuvenating’ 
immune function in the elderly, and alleviating the 
symptoms of influenza.101–103

In light of the mutually complementary interactions of 
NO and H2S in promotion of vascular health, supplemen-
tation with taurine and NAC might reasonably be used 
in conjunction with nutraceutical measures known to 
support coupled eNOS activity—such as citrulline, high-
dose folate and spirulina104–111 —to achieve an ample 
measure of CV protection.
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