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Abstract

Background—Girls who are overweight/obese (OB) develop breast tissue but do not undergo 

menarche (the first menstrual period) significantly earlier than girls of normal weight (NW). It has 

been proposed that estrogen synthesized by adipose tissue may be contributory, yet OB do not 

have higher serum estrogen levels than NW matched on breast stage. We hypothesized that 

estrogen synthesized locally, in mammary fat, may contribute to breast development. This 

hypothesis would predict that breast development would be more advanced than other estrogen-

sensitive tissues as a function of obesity and body fat.

Methods—80 pre-menarchal girls (26 OB, 54 NW), aged 8.2–14.7 yrs, underwent dual-energy x-

ray absorptiometry to calculate percent body fat (%BF), Tanner staging of the breast, breast 

ultrasound for morphological staging, trans-abdominal pelvic ultrasound, hand x-ray (bone age), a 

blood test for reproductive hormones, and urine collection to determine the vaginal maturation 

index (VMI), an index of estrogen exposure in urogenital epithelial cells.

Results—When controlling for breast morphological stage determined by ultrasound, %BF was 

not associated with serum estrogen or gonadotropin (LH and FSH) levels or on indices of systemic 

estrogen action (uterine volume, endometrial thickness, bone age advancement, and VMI). Tanner 

breast stage did not correlate with breast morphological stage and led to misclassification of chest 

fatty tissue as breast tissue in some OB.
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Conclusions—These studies do not support the hypothesis that estrogen derived from total body 

fat or local (mammary) fat contributes to breast development in overweight/obese girls.

INTRODUCTION

The past two centuries have witnessed a dramatic change in the timing of puberty in girls. 

The average age at menarche fell by nearly 5 years from the early 19th century to the 

mid-20th century, most likely reflecting improvements in socioeconomic and health 

conditions, but by the 1960’s, the average age at menarche had stabilized at 12 to 12.5 years 

(1, 2). More recent studies, however, point to an emerging secular trend of earlier breast 

development (thelarche) in girls. The rapid pace of this change precludes a genetic 

explanation; instead, the contemporaneous obesity epidemic suggests that obesity may be 

the primary driver of earlier thelarche (3). Indeed, a number of longitudinal studies (4–7) 

have now demonstrated earlier thelarche in girls who are overweight/obese (OB) compared 

with girls of normal weight (NW).

It has long been proposed that in peri-pubertal girls with obesity, estrogen may be derived 

not from the ovary, but from peripheral adipose tissue which may convert adrenal androgens 

to estrone (E1) and, to a lesser extent, estradiol (E2), via the aromatase enzyme. The 

asynchrony of pubertal milestones observed in contemporary girls (earlier thelarche, 

relatively stable age at menarche) would be consistent with a peripheral trigger. Studies in 

pubertal pre-menarchal girls, however, have not identified a correlation between body fat 

mass, quantified by skinfold measurements (8) or dual-energy x-ray absorptiometry (DXA) 

(9), and serum E1 or E2 nor a decrease in E2 after significant weight loss (10).

We hypothesized that in OB, adipose tissue overlying the breast bud may be a ready source 

of estrogen that is sufficient to initiate thelarche. The primitive breast bud is intimately 

associated with the mammary fat pad during development (11, 12). Estrogen derived from 

mammary fat could act locally to induce thelarche but would not be detected in the 

circulation and therefore would not act systemically to induce uterine maturation and 

menses. To address this hypothesis, we measured reproductive hormones and imaged the 

breast, uterus, and ovaries in 80 pubertal, pre-menarchal girls. We used total body fat as 

determined by DXA as a proxy for mammary fat, taking advantage of the positive 

correlation between these two measures in studies in women and girls (13–15). We predicted 

that if estrogen derived from mammary fat contributes to breast maturation, then girls with 

more body fat (and thus more mammary fat) would demonstrate immaturity of other 

estrogen-sensitive tissues (e.g. uterus and endometrial lining, vaginal epithelium) compared 

with girls of the same breast morphological stage with less body fat.

MATERIALS AND METHODS

Subjects

Subjects (n=80) were 8.2–14.7-year-old healthy pre-menarchal girls with some breast 

development (per parental report) recruited from the Triangle region of North Carolina. 

Subjects had no chronic medical conditions, were not taking any medications or 

supplements known to affect puberty and did not have a history of precocious puberty or 
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premature pubarche (defined as breast development or pubic and/or axillary hair before age 

8 years, respectively). The study was approved by the National Institute of Environmental 

Health Sciences (NIEHS) Institutional Review Board. Signed informed assent and consent 

was obtained from each subject and her parent, respectively.

Protocol

All study procedures were conducted at the Clinical Research Unit (CRU) of the National 

Institute of Environmental Health Sciences (NIEHS) or off-site at a private medical imaging 

facility.

Anthropometrics and Tanner staging—Height and weight were measured using a 

stadiometer (SECA AccuHite 216) and medical balance beam scale (Healthometer model 

402KL), respectively. Waist-to-hip ratio was measured according to the NHANES 

Anthropometry Procedures Manual (16). Breast Tanner stage was assigned by a pediatric 

endocrinologist (NDS) based on palpation and inspection of the breast (17). To avoid mis-

classification of overlying adipose tissue as fibroglandular tissue when assigning a Tanner 

breast stage, the physical examination also included contrasting chest and abdominal fatty 

tissues by palpation and determining whether there was a palpable depression beneath the 

nipple surrounded by firm tissue (the “doughnut sign”, an indicator of fatty tissue) (18). 

Areolar maturity, including pigmentation and stippling (19), were recorded.

Blood and urine sampling—A non-fasting blood sample was collected between 8 am 

and 4 pm to measure reproductive hormones. Blood samples were available in all but seven 

participants (3 NW, 4 OB). Gonadotropins were measured by direct immunoassay using the 

automated Abbott ARCHITECT system (Abbott Diagnostics, USA) which has a limit of 

quantification of 0.06 and 0.05 IU/L for luteinizing hormone (LH) and follicle-stimulating 

hormone (FSH), respectively (20). The coefficients of variation for LH and FSH are <7% for 

the range of values under study. Estradiol (E2), estrone (E1), total testosterone (TT), and 

androstenedione (AD) were measured by liquid chromatography–mass spectrometry (Triple 

Quad™ 6500 LC/MS/MS System, AB SCIEX, Framingham, MA) at the Division of 

Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control 

and Prevention (Atlanta, GA). The assay limits of detection (LOD) are: E2 1.72 pg/mL, E1 

0.13 ng/dL, TT 0.57 ng/dL, and AD 0.82 ng/dL. All hormone measurements were above the 

LOD except for E2 in 12 NW and 10 OB girls.

Urine was collected from 43 subjects (25 NW, 18 OB) to obtain vaginal cells for calculation 

of a modified vaginal maturation index (mVMI). Urine (10–50 cc) was spun at 2000 rpm for 

10 minutes, and the cell pellet was transferred to a 20-ml vial of ThinPrep PreservCyt 

preservative (Hologic, Marlborough, MA). Vials were stored at room temperature for no 

more than two weeks before analysis. Samples were processed according to standard clinical 

procedures at the National Cancer Institute (NCI) Cytopathology Section, Laboratory of 

Pathology (Bethesda, MD). Cells were processed into a monolayer preparation, stained with 

Papanicolaou stain, and at least 100 cells were counted by a cytotechnologist and reviewed 

by a pathologist. In contrast to a sample obtained by swabbing the vaginal mucosa, when 

analyzing a urine sample, desquamated parabasal and intermediate cells of vaginal origin 
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cannot be reliably distinguished from transitional cells of bladder origin. Cells were 

therefore classified as either superficial (mature, indicative of estrogen exposure) or non-

superficial (other) and the percent of superficial squamous cells was calculated as a mVMI, 

as previously described (21). Repeat urine samples were obtained whenever inflammatory 

cells were present.

Breast Ultrasound—Breast morphological stage was determined by ultrasound using a 

linear transducer (Samsung H60, 6–4 Hz or Toshiba Nemio 30, 12 Hz) and classified, as 

stage A (no breast bud), stage B (bud < 1 cm and circular), stage C (bud > 1 cm and 

circular), stage D (bud with several branches extending into surrounding stromal matrix), or 

stage E (extensive branching) [Figure 1], as previously described (22). Breast ultrasounds 

were performed by a single investigator (NDS) and images were reviewed by a sonographer 

(JMA) blinded to the subject’s age and Tanner stage. Note that breast fat content cannot be 

reliably determined by breast ultrasound.

Pelvic Ultrasound—A trans-abdominal pelvic ultrasound was performed using the full-

bladder technique and a curved, 6–4 Hz transducer (Siemens S-2000, Mountain View, CA). 

Maximum follicle diameter, ovarian and uterine dimensions, and endometrial thickness were 

recorded. Uterine and ovarian volumes were calculated using the formula for an ellipsoid (L 

x H x W x 0.523). Both ovaries were visualized in 67 subjects, one ovary was visualized in 

11 subjects, and neither ovary was visualized in 2 subjects. All images were independently 

reviewed by trained research staff and a random sample of 20 scans was also reviewed by a 

blinded investigator.

Dual-Energy X-ray Absorptiometry (DXA)—Subjects underwent a DXA (GE Medical 

Systems Lunar, Madison, WI, USA; software version 13.60.033) to determine total percent 

body fat, percent gynoid fat (i.e., percent of hip and upper thigh tissue made up of fat), and 

percent android fat (i.e., percent of tissue between the ribs and pelvis made up of fat). A 

negative pregnancy test was documented before the exam.

Bone Age (BA)—An x-ray of the left hand was taken and skeletal age was determined by 

a single investigator (NDS) blinded to the subject’s age using the Greulich and Pyle atlas 

(23).

Data Analysis—Sample size calculations determined that 30 subjects per weight group 

were required to demonstrate a 30–40% difference in the misclassification rate of breast 

tissue by Tanner staging (vs ultrasound) between groups with 80% power. For this 

calculation, breast development was assumed to be overestimated in NW at a rate of 10–

15%, as shown previously (22).

Subject characteristics are presented according to age-adjusted BMI (body mass index) 

categories of normal weight [NW] (5th to < 85th percentile) or overweight/obese (≥85th) (24) 

to best illustrate the composition of the cohort in a clinical context. Age-adjusted percent 

body fat percentiles and Z-scores were assigned based on smoothed reference curves for US 

children from the CDC (25). Characteristics of NW and OB were compared by t-test or 

Fisher’s exact test. The false positive rate for Tanner staging (i.e., girls with breast 
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morphological stage A on ultrasound misclassified as Tanner stage II or greater on physical 

exam) was reported with Wilson score confidence intervals (26).

Multiple linear regression was used to determine the relationship between percent total body 

fat or percent gynoid fat and: 1) measures of systemic estrogen action (uterine volume, 

endometrial thickness, difference between BA and chronologic age, mVMI); 2) measures of 

FSH action (maximum ovarian volume and follicle size) (27, 28); 3) gonadotropin and sex 

steroid levels (LH, FSH, AD, TT, E1, E2); and 4) indices of aromatase action (E2/TT and 

E1/AD). All regression models were adjusted for breast morphological stage. 

Homoscedasticity of residuals across breast morphological stages was confirmed using 

Levene’s test. Uterine volume, endometrial thickness, and hormone measures were natural 

log-transformed before analysis due to non-Gaussian distributions. Regression models were 

also performed after adjusting uterine volume for age (29) and height (30); ovarian volume 

for age (31); and gonadotropins for the time of blood draw with no effect on the results. 

Tobit regression was used for analyses that included E2 because of left-censoring (i.e., E2 

values below the LOD) (32). Analyses were repeated using percent gynoid fat because 

aromatase expression is highest in the buttocks and thighs (33). Tests for a linear trend in the 

outcome variable in association with increasing breast morphologic stage were conducted 

for each regression model. Pearson (or Spearman, where appropriate) correlation 

coefficients were determined between BA or BA advancement (defined as BA minus 

chronological age) and clinical and biochemical parameters. All analyses were performed 

using Stata 15.1 (College Station, TX).

RESULTS

Subject Characteristics: Anthropometrics and Body Composition

Eighty subjects (68% NW, 32% OB) were studied (Table 1). OB were younger than NW and 

were more likely to be non-Hispanic Black or Hispanic (p=0.03). Percent body fat, 

determined by total body DXA, ranged from 13.1–53.5% which corresponds to the 3rd-97th 

percentiles (or Z-scores of −2.1 to 2.5) on age-adjusted, smoothed reference curves for US 

girls (25). OB had a greater waist circumference, waist-to-hip ratio, total percent body fat 

(41.10 1; 0.94 vs. 26.80 ± 0.88%, p<0.0001), percent gynoid fat (45.20 ± 1.12 vs. 35.00 

± 0.84%, p<0.0001), and percent android fat (44.60 ± 1.30 vs. 22.80 ± 1.20%, p<0.001) than 

NW. Bone age was advanced by one year, on average, in OB. Bone age was positively 

correlated with age, Tanner breast and pubic hair stages, breast morphological stage, 

maximum ovarian volume, maximum follicle size, uterine volume, endometrial thickness, 

mVMI, as well as AD, TT, and E2 levels (Supplementary Table 1), whereas BA 

advancement correlated with waist-hip ratio (r=0.27, p=0.01) and BMI Z-score (r=0.36, 

p=0.001).

The correlation between BMI and adiposity varies by age, weight, and race/ethnicity (34–

36), and indeed, we found that only 77.0% of girls classified as overweight/obese according 

to BMI had high adiposity (defined as a body fat percentile ≥ 80th based on a higher risk of 

metabolic syndrome; modified from Weber et al. who used the fat mass index 80th percentile 

as a cut point (37)), whereas 3.8% of girls classified as normal weight had high adiposity. 
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Thus, total percent body fat was utilized in all analyses to best address the specific effect of 

body fat on pubertal development.

Pubertal Development

The distribution of Tanner breast and pubic hair stages was similar in NW and OB (Table 1). 

Although parents reported that their daughter had breast development at the time of 

enrollment, a small number of subjects (3 NW and 4 OB) were found to have Tanner I 

breasts on physical exam.

Relationship of Breast Morphology, Other Indices of Estrogen Activity, and Percent Body 
Fat

Breast morphological stage was assigned according to an ultrasound-based grading system 

established by Bruni et al. (22) where stage A represents the pre-pubertal breast and stage E 

a fully mature breast. The full spectrum of breast development (A-E) was observed among 

subjects with stages D and E being the most common stages (59%) overall (Figure 1, Table 

1). Consistent with previous studies (22), there was not a 1:1 relationship between Tanner 

breast stage and breast morphological stage: Tanner III breasts corresponded to breast 

ultrasound stages B-E, Tanner IV to stages D-E, and Tanner V to stages C-E, indicating the 

relative imprecision of physical examination in the determination of breast maturity. 

Ultrasound confirmed the pre-pubertal status of six of seven girls classified as Tanner I; the 

remaining girl, who was NW, was found to have a small (< 1 cm) breast bud on ultrasound 

(stage B). In four OB girls, adipose tissue in the chest area was mistaken for true breast 

tissue by inspection and palpation (Tanner II/III on exam, breast stage A on ultrasound), 

representing a false positive rate of 40% (95% CI 16–69%). Characteristics of these four OB 

are presented in Table 2. NW tended to have more advanced breast morphology than OB, but 

this difference was attenuated after accounting for the older age in NW (p=0.1) (Table 1).

Overall, the cohort demonstrated the expected estrogen-induced changes in the uterus and 

endometrium with increasing maturity of breast morphological stage, with a linear increase 

in uterine length, uterine volume, and endometrial thickness (p<0.001 for all) (Figure 2). 

Uterine length and volume were also positively correlated with height (ß =0.05, p=0.001 and 

ß=0.03, p=0.004, respectively) but were not related to subject age (p=0.3 and p=0.8, 

respectively). Maximum ovarian volume (p=0.02) and maximum follicle diameter (p<0.001) 

increased with advancing breast maturity, and ovarian volume also appeared related to age 

(ß=0.45, p=0.06). The mVMI tended to increase with advancing breast maturity (p=0.08), 

and bone age advancement did not correlate with breast maturity (p=0.8). Neither percent 

body fat nor percent gynoid fat influenced uterine dimensions or endometrial thickness 

[Table 3] when adjusted for breast morphological stage. Body fat also had no effect on BA 

advancement in girls matched on breast morphological stage.

Relationship of Breast Morphology, Reproductive Hormones, and Percent Body Fat

Sex steroids (E1, E2, AD, TT) and gonadotropins (LH, FSH) increased linearly with 

advancing breast morphological stage (Table 4) and were not affected by total or gynoid 

body fat (Table 3). Maximum ovarian volume and follicle size, which reflect FSH action, 

were also independent of total and gynoid fat (Table 3). Total body fat and gynoid fat 
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similarly had no effect on indices of aromatase activity (E1/AD and E2/TT) in analyses 

controlled for breast morphological stage (Table 3).

DISCUSSION

We performed detailed reproductive phenotyping in pubertal girls with either overweight/

obesity or normal weight to understand how excess body fat may contribute to earlier breast 

development in girls (Fig 3). While thelarche is typically the result of activation of the 

neuroendocrine components of the reproductive axis (LH and FSH) and estrogen production 

by the ovary, it has been proposed that adipose tissue, which expresses aromatase, may also 

be a relevant source of estrogen in OB. In the current studies, however, we found no 

differences in serum E1 and E2 levels or in indices of aromatase action (AD/E1, TT/E2) as a 

function of body fat in girls of the same pubertal stage. These findings are consistent with 

previous studies (8–10) in suggesting that peripheral adipose tissue may not explain earlier 

thelarche in OB. By using a novel, non-invasive approach, we showed further that local 

production of estrogen by breast adipose tissue is also unlikely to account for earlier breast 

development in OB.

Indeed, the breast is unique among estrogen-sensitive organs (e.g. uterus, bone) in that it has 

an adipose depot all its own - the mammary fat pad. The potential role of this particular fat 

pad in inducing breast development in OB has not been previously investigated. Studies in 

the rodent have shown that early in development, the mammary bud elongates and invades 

the mammary fat pad in response to a signaling cascade between these two structures (12, 

38). Studies of human infant breast tissue have also identified developing ducts in close 

proximity to or encased by fat (11). This early rudimentary ductal structure remains in place 

until puberty, when ovarian steroids drive ductal elongation, branching, and the formation of 

lobuloalveolar units. As mammary fat expresses aromatase and synthesizes estrogen de novo 
(39), we hypothesized that in OB girls, increased mammary fat could provide a source of 

local estrogen and induce isolated breast growth independent from the hypothalamic-

pituitary-ovarian (HPO) axis.

Mammary fat estrogen content cannot be measured in healthy pediatric research subjects. 

We therefore examined the relationship between breast morphological stage and other 

indices of estrogen action (uterine dimensions, endometrial thickness, BA, and mVMI) in 

girls over a range of body fat. We assumed that a higher total percent body fat, as determined 

by DXA, was associated with a higher breast fat content in girls based on previous studies 

demonstrating a positive correlation between BMI and breast fat in women and girls 

undergoing breast reduction mammoplasty (40–42). Studies in healthy women and girls 

have reported a similar relationship using non-invasive imaging techniques. Novotny et al., 

for example, used whole-body DXA and breast-specific DXA and a 2-compartment model 

of the breast (a fat compartment and fibroglandular compartment) to demonstrate that 

percent body fat was inversely correlated with breast fibroglandular density in girls (and 

therefore, positively correlated with breast fat) (13). MRI studies of the breast in girls and 

young women (43) and in adults (14, 15) have shown a positive association between body 

weight and total breast fat. In further support of a relationship between total body fat and 

breast fat, percent truncal fat (as determined by DXA) is correlated with breast adipocyte 
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size (44) and there is a proportionate decrease in breast, visceral, and subcutaneous fat mass 

after diet-induced weight loss (14). If estrogen derived from mammary fat influences breast 

development in girls, we expected to find that, in girls with the same breast morphological 

stage, those with more body fat would demonstrate immaturity of other estrogen-sensitive 

tissues compared with girls with less body fat. Instead, we observed that girls who differed 

in total body fat had comparable end-organ markers of systemic estrogen exposure. Thus, 

these findings do not support the hypothesis that excessive mammary fat in OB girls 

contributes to breast development.

Aberrant central regulation of the HPO axis may also be responsible for the observation of 

earlier thelarche without significantly earlier menarche in OB. That is, the reproductive axis 

is activated earlier but takes longer to reach mature function (45). In support of this 

hypothesis, secondary analysis of LH levels in a small group of pre-pubertal girls (46) 

demonstrated that the OB were more likely to demonstrate increased LH secretion during 

sleep than their NW peers (45), suggesting earlier central activation in OB. A study using 

NHANES III data also found that pre-adolescent weight gain predicts earlier central 

activation, but only in OB born small for gestational age (47). In contrast, studies in early/

mid-pubertal girls have consistently demonstrated a blunted nocturnal rise in LH in OB 

compared with NW of the same Tanner breast stage (46, 48), suggesting an attenuation of 

neuroendocrine activity in OB by mid-puberty. An alternative explanation for lower 

nocturnal LH levels in OB, however, is that pre-pubertal OB may have been misclassified as 

early pubertal using Tanner staging, as discussed below. We found no association between 

percent body fat and daytime LH or FSH levels or two indices of FSH action (ovarian 

volume and follicle size) in girls in whom pubertal stage was precisely determined by 

ultrasound-based breast morphological staging. With data from a single point in time, 

however, we cannot comment on the potential influence of body fat on the pace of puberty 

as girls with more body fat may have spent a longer time at a given breast morphological 

stage than those with less body fat.

The current studies suggest that misclassification of adipose tissue as breast tissue may in 

part explain reports of earlier breast development among OB. The difficultly in 

distinguishing glandular from adipose chest tissue on physical exam was recognized well 

before the current obesity epidemic and led to a recommendation to use additional physical 

exam findings such as the palpable depression beneath the nipple that is present in chest 

adipose but not glandular tissue (18) and the Garn and Falkner areolar staging system (19, 

49), which takes into account areolar diameter, pigmentation, and shape. In the current 

studies, none of the OB girls who were misjudged to be pubertal (categorized as Tanner 

breast stage II/III but had breast morphological stage A) had areolar stippling, which is 

typically associated with Tanner III breasts (50). However, as noted by others, areolar 

diameter shows too much inter-individual variability to be a useful criterion for thelarche in 

cross-sectional studies (51, 52) and is related not only to estrogen action but also to truncal 

subcutaneous fat thickness (53). The absence of areolar pigmentation scales appropriate for 

minorities also limits the utility of this measure. While a recent study comparing breast MRI 

(gold standard) and Tanner staging found that Tanner staging could reliably detect glandular 

breast tissue in girls, this study was limited by the inclusion of only nine OB out of 100 

participants studied (54). Consistent with our findings, another study focused on obese, 
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Tanner II/III girls found that Tanner staging overestimated breast maturation as determined 

by ultrasound in 35% of cases (55). Thus, misclassification bias in pubertal staging of OB is 

a potential confounder in studies of pubertal timing.

Obesity affects not only pubertal development, but also linear growth and growth plate 

maturation. Consistent with previous studies, we found that BA advancement was positively 

correlated with BMI Z-score (9, 56–59) and not with E2 (57, 59). We also found no 

relationship to E1, TT, and AD levels, but did not measure other proposed mediators of BA 

advancement such as dehydroepiandrosterone sulfate (DHEAS), insulin-like growth factor 1 

(IGF-1), insulin, leptin, or the rate of weight gain in participants (57, 59).

This study had several limitations. We could not measure breast adipose tissue or breast 

estrogen content directly in these healthy pediatric subjects. As such, we cannot completely 

rule-out the possibility of paracrine estrogen action in the adolescent breast. While breast 

ultrasound affords a more quantitative and objective assessment of breast maturation than 

Tanner staging, there have been no studies to specifically investigate the reproducibility of 

this technique, and in the current studies, both Tanner staging and breast ultrasounds were 

performed by a single, unblinded investigator.

In conclusion, comprehensive reproductive phenotyping of pubertal girls across a range of 

body weight and fat indicates a positive relationship between breast morphological stage and 

other markers of peripheral estrogen action but does not support the hypothesis that estrogen 

derived from mammary fat contributes to breast development in OB. We also find no 

evidence that estrogen derived from total body fat influences breast development as serum 

estrogen levels and indices of aromatase action were independent of percent body fat. It 

remains possible that obese girls may be more vulnerable to an environmental agent that 

preferentially activates estrogen receptors in breast tissue. Longitudinal follow-up of this 

cohort is now underway to investigate the potential effect of body fat on the maturational 

trajectory of the neuroendocrine components of the female reproductive axis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Bruni scale of breast morphological stages during female pubertal development with 

corresponding breast ultrasound images from representative subjects in the current study. 

The breast bud diameter is marked by calipers (+---+) in ultrasound images of stages B and 

C. Adapted and reprinted with permission from “Breast Development in Adolescent Girls” 

by Bruni et al., Adolescent and Pediatric Gynecology, 3, Fig 1, p.203, Copyright Elsevier 

1990 and from “Breast Disorders” by Mann et al. (eds.), Imaging of Gynecological 
Disorders in Infants and Children, Fig 5, p.229, Copyright Springer 2012.
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Figure 2. 
Uterine volume, endometrial thickness, maximum ovarian volume, and maximum follicle 

size increased linearly with breast morphological stage maturity. Data is presented as means 

with standard error bars.
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Figure 3. 
Potential sources of increased estradiol (E2) responsible for earlier breast development in 

obese/overweight girls compared with normal weight girls. The ovary, once activated by the 

hypothalamic-pituitary unit, is the primary source of E2 during normal pubertal 

development. Adipose tissue expresses aromatase (aro) and adipocytes (yellow spheres) in 

peripubertal girls that reside either in the periphery or near the developing mammary 

epithelium may also influence systemic or local E2 exposure, respectively. Evidence to date, 

however, does not support a contribution of estrogen derived from adipose tissue in breast 

development in overweight/obese and normal weight girls. AD, androstenedione.
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Table 1.

Baseline characteristics of the cohort.

Normal Weight (NW) Overweight/Obese (OB) P-value

n 54 26

Age (yrs; mean, SD) 11.3 (1.3) 10.1 (1.1) <0.001

Race (n, %) 0.05

 White, Non-Hispanic 36 (66.7) 11 (42.3)

 Black, Non-Hispanic 12 (22.2) 11 (42.3)

 Hispanic 3 (5.6) 4 (15.4)

 Other 3 (5.6) 0 (0)

Anthropometrics (mean, SD)

 BMI (kg/m2) 17.6 (1.7) 23.8 (3.1) #

 BMI Z-score −0.12 (0.7) 1.70 (0.4) #

 Waist Circumference (cm) 65.3 (5.1) 81.8 (7.4) <0.001

 Waist-to-Hip Ratio 0.8 (0.05) 0.9 (0.04) <0.001

Bone age (yrs; mean, SD) 11.7 (1.0) 11.1 (1.3) 0.02

Bone age - Chronologic age (yrs; mean, SD) 0.39 (1.0) 1.0 (1.1) 0.01

Breast Tanner Stage (n, %) 0.12

 I 3 (5.6) 4 (15.4)

 II 0 (0) 2 (7.7)

 III 38 (70.4) 13 (50.0)

 IV 7 (13.0) 4 (15.4)

 V 6 (11.1) 3 (11.5)

Pubic Hair Tanner Stage (n, %) 0.35

 I 7 (13.0) 8 (30.8)

 II 8 (14.8) 2 (7.7)

 III 20 (37.0) 7 (26.9)

 IV 15 (27.8) 6 (23.1)

 V 4 (7.4) 3 (11.5)

Breast morphological stage (n, %) 0.001

  A 2 (3.7) 8 (30.8)

  B 3 (5.6) 6 (23.1)

  C 11 (20.4) 3 (11.5)

  D 21 (38.9) 4 (15.4)

  E 17 (31.5) 5 (19.2)
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Table 3.

Results of multiple linear regression models testing the relationship between hormones or indices of estrogen 

action and either total percent body fat or percent gynoid fat controlled for breast morphological stage.

Total Percent Body Fat Percent Gynoid Fat

Indices of Estrogen Action ß coefficient (95% CI)
b P-Value ß coefficient (95% CI)

b P-Value

 Uterine volume (cm3) 0.005 (−0.01, 0.02) 0.60 0.005 (−0.016, 0.025) 0.65

 Endometrial thickness (mm) −0.0005 (−0.18, 0.02) 0.95 0.0009 (−0.02, 0.021) 0.93

 Bone age - Chronological age (yrs) 0.02 (−0.01, 0.05) 0.20 0.024 (−0.015, 0.06) 0.22

 Maximum ovarian volume (cm3) 0.03 (−0.04, 0.10) 0.34 0.037 (−0.04, 0.12) 0.37

 Maximum follicle size (mm) 0.002 (−0.08, 0.08) 0.97 −0.006 (−0.11, 0.092) 0.90

 Modified VMI (% superficial cells) −0.13 (−0.69, 0.43) 0.64 −0.36 (−0.95, 0.23) 0.22

Hormones
a

 E1 0.008 (−0.013, 0.03) 0.44 0.007 (−0.018,.032) 0.57

 E2 0.01 (−0.03, 0.05) 0.52 0.017 (−0.031,0.065) 0.48

 AD 0.003 (−0.01, 0.02) 0.72 0.008 (−0.009, .024) 0.37

 TT 0.01 (−0.005, 0.02) 0.21 0.02 (−0.002, 0.03) 0.07

 LH 0.01 (−0.03, 0.05) 0.59 0.019 (−0.03, 0.06) 0.39

 FSH −0.002 (−0.02, 0.01) 0.82 −0.004 (−0.02, 0.01) 0.63

 E1/AD 0.004 (−0.007, 0.02) 0.46 0.003 (−0.01, 0.02) 0.70

 E2/TT 0.004 (−0.02, 0.03) 0.76 0.004 (−0.03, 0.04) 0.80

Percent gynoid fat (i.e., percent of hip and upper thigh tissue made up of fat) was tested separately because aromatase expression is highest in the 
buttocks and thighs.

a
All hormones were natural log(ln)-transformed before analysis.

b
Partial correlation coefficients (ß) indicate the unit change in the dependent variable for every 1 percentage point increase in the independent 

variable (percent body fat or gynoid fat). For natural log(ln)-transformed variables, ß × 100 represents the percent change in the independent 
variable for every 1 percentage point increase in percent body fat. VMI, vaginal maturation index; E1, estrone; E2, estradiol; AD, androstenedione; 
TT, total testosterone. To convert E2 to SI units (pmol/L), multiply by 3.67; for E1 (pmol/L), multiply by 3.69; for AD (nmol/L), multiply by 
0.0349; for TT (nmol/L), multiply by 0.0347.
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Table 4.

Gonadotropin and sex steroid levels according to breast morphological stage as determined by ultrasound.

Breast 
Morphological 

Stage

LH (IU/L) FSH (IU/L) E2 (pg/mL) E1 (ng/dL) TT (ng/dL) AD (ng/dL)

A 0.05 (0.04–
0.07)

1.14 (0.98–
1.77)

1.22 (1.22–
3.08)

0.46 (0.39–
0.59)

6.59 (3.09–8.53) 22.39 (13.47–
30.31)

B 0.10 (0.06–
1.42)

1.64 (0.94–
2.77)

2.21 (1.22–
5.01)

0.78 (0.52–
3.01)

8.76 (5.53–
11.21)

23.67 (18.12–
34.04)

C 0.27 (0.08–
1.52)

2.54 (1.87–
4.03)

5.96 (1.22–
11.38)

1.04 (0.63–
1.72)

9.19 (5.96–
11.58)

35.72 (26.73–
50.44)

D 1.81 (1.22–
3.37)

4.31 (3.48–
5.36)

15.85 (8.78–
33.65)

2.23 (1.70–
2.86)

16.60 (13.75–
22.99)

68.93 (51.56–
89.53)

E 1.95 (0.77–
3.04)

3.96 (2.86–
5.31)

20.46 (6.28–
29.58)

2.12 (1.54–
2.95)

11.79 (9.27–
20.07)

61.58 (46.84–
81.37)

Data is presented as median (IQR). All hormones increased linearly with breast maturation, p<0.001. To convert E2 to SI units (pmol/L), multiply 
by 3.67; for E1 (pmol/L), multiply by 3.69; for AD (nmol/L), multiply by 0.0349; for TT (nmol/L), multiply by 0.0347.
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