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Bacterial genomes can contain traces of a complex evolutionary history, including extensive homologous recombination,

gene loss, gene duplications, and horizontal gene transfer. To reconstruct the phylogenetic and population history of a

set of multiple bacteria, it is necessary to examine their pangenome, the composite of all the genes in the set. Here we in-

troduce PEPPAN, a novel pipeline that can reliably construct pangenomes from thousands of genetically diverse bacterial

genomes that represent the diversity of an entire genus. PEPPAN outperforms existing pangenome methods by providing

consistent gene and pseudogene annotations extended by similarity-based gene predictions, and identifying and excluding

paralogs by combining tree- and synteny-based approaches. The PEPPAN package additionally includes PEPPAN_parser,

which implements additional downstream analyses, including the calculation of trees based on accessory gene content or

allelic differences between core genes. To test the accuracy of PEPPAN, we implemented SimPan, a novel pipeline for sim-

ulating the evolution of bacterial pangenomes. We compared the accuracy and speed of PEPPAN with four state-of-the-art

pangenome pipelines using both empirical and simulated data sets. PEPPAN was more accurate and more specific than any

of the other pipelines and was almost as fast as any of them. As a case study, we used PEPPAN to construct a pangenome of

approximately 40,000 genes from 3052 representative genomes spanning at least 80 species of Streptococcus. The resulting

gene and allelic trees provide an unprecedented overview of the genomic diversity of the entire Streptococcus genus.

[Supplemental material is available for this article.]

Soon after the first bacterial genome was sequenced (Fleischmann
et al. 1995), it became clear that the genomic contents varied be-
tween individual strains within a prokaryotic species. Variable ge-
nomic content is caused by the gain or loss of singleton ORFan
genes (Daubin and Ochman 2004), genomic islands, selfish DNA
(plasmids, bacteriophages, integrative conjugative elements),
and/or widespread horizontal gene transfer (HGT) (Abby et al.
2012; Szöllösi et al. 2012; Croucher et al. 2014). Thus, the designa-
tion “pangenome” was introduced to refer to the entire gene con-
tents of a bacterial species or set of strains (Tettelin et al. 2005).
Bacterial pangenomes can be divided into the core genome, which
consists of the subset of genes that are present in all genomes, and
the accessory genome, which consists of genes that are variably
present among individual genomes. The core genome often con-
tains phylogenetic signals reflecting the vertical accumulation of
mutations and can be used for assignments of bacterial strains to
populations.

An early genomic comparison of eight strains of Streptococcus
agalactiae indicated that for some bacterial species, the total size
of the pangenome may increase indefinitely with the number of
genomes sequenced, a concept dubbed an “open” pangenome
(Tettelin et al. 2005). The validity of this concept remains ques-
tionable because, until recently, few pangenome analyses have in-
cluded more than 100 genomes (Vernikos et al. 2015), in part
because only a limited number of bacterial genomes had been se-
quenced. Furthermore, initial pangenome construction algo-
rithms (OrthoMCL [Li et al. 2003]; Panseq [Laing et al. 2010];
PGAP [Zhao et al. 2012]) were incapable of handling larger num-
bers of genomes as they rely on an initial all-against-all sequence

comparison, which scales computationally with the squared num-
ber of gene sequences.

The insufficiency of data no longer exists, as bacterial genome
assemblies now number in the 100,000s for some genera (Sanaa
et al. 2019; Zhou et al. 2020). However, such large numbers of ge-
nomes exacerbate the scalability problem. Fortunately, at least
three recent pipelines (Roary [Page et al. 2015]; panX [Ding et al.
2018]; PIRATE [Bayliss et al. 2019]) exist for constructing pange-
nomes from large and representative data sets (Alikhan et al.
2018; Ding et al. 2018).

However, pangenome construction from large data sets is still
hampered by two problems. First, both genome annotations in
public repositories and those from automatic annotation pipelines
such as PROKKA (Seemann 2014) are incomplete and inconsistent
(Denton et al. 2014;Wozniak et al. 2014; Salzberg 2019). These in-
consistencies are propagated into genomic studies and can con-
found further analyses. Early pangenome analyses (Tettelin et al.
2005; Hogg et al. 2007) addressed these problems by running
TBLASTN gene-against-genome comparisons, but such inconsis-
tencies between genome annotations are not addressed by the lat-
est generation of pangenome pipelines, which do not include a
reannotation step. Namely, genes that have been fragmented by
assembly errors or pseudogenization may still be relevant to cell
function (Goodhead and Darby 2015) and should therefore be in-
cluded in pangenomes. The identification of such gene fragments
requires comparisons against intact analogs (Lerat and Ochman
2005), but automatic annotation pipelines instead annotate
them as multiple intact genes, reducing the size of the estimated
core genomeandoverestimating theoverall sizeof thepangenome.

The second problem in computing a pangenome is that of dif-
ferentiating orthologous genes, which have evolved by vertical
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descent, from paralogous genes derived from gene duplications or
HGT events. Paralogous genes can become fixed in populations,
butmany are gained or lostmultiple times. This generates complex
patterns of presence/absence along the phylogeny. Therefore, in-
cluding paralogous genes in a phylogenetic analysis may lead to
inaccurate interpretations. State-of-the-art pangenome pipelines
implement either graph- or tree-based algorithms for the identifi-
cation of paralogous genes (Altenhoff et al. 2019). However, tree-
based algorithms (used by panX) that reconcile gene trees with a
species tree do not scale well to large data sets. Graph-based algo-
rithms (used by Roary and PIRATE) run faster because they ignore
phylogenetic relationships between genomes but perform poorly
on benchmark data sets (Ding et al. 2018).

Herewepresent PEPPAN, a novel pipeline for calculating pan-
genomes that specifically dealswith the problems described above.
We describe the algorithms implemented within PEPPAN and
show that it outperforms other pangenome methods on both em-
pirical and simulated data sets. As a demonstration of PEPPAN’s
capabilities, we present a pangenome calculated from 3052 repre-
sentatives of Streptococcus, a highly diverse genus.

Results

A brief overview of PEPPAN

PEPPAN’s workflow consists of the following five successive groups
of operations (Fig. 1A; Supplemental Fig. S1) with additional de-
tails in Supplemental Text 1.

1. Identifying representative gene sequences. The inputs for
PEPPAN consist of GFF3 formatted genome assemblies (https
://www.ensembl.org/info/website/upload/gff3.html). PEPPAN
also accepts inputs of additional nucleotide sequences, which
are used to refine gene predictions. To reduce the number of

genes used in downstream analyses, PEPPAN iteratively clusters
genes using Linclust (Steinegger and Söding 2017), resulting in
a single representative gene sequence per 90% nucleotide ho-
mology cluster.

2. Identifying gene candidates. Each representative gene is aligned
to all genomes using both BLASTN (Altschul et al. 1990), which
accurately locates short inserts and deletions (indels), and DIA-
MOND (Buchfink et al. 2015), which generates amino acid
alignments andhas greater sensitivitywith divergent sequences
than BLASTN. Alignments are rescored, and all sequences with
homology ≥50% across ≥50% of the representative sequence
(Supplemental Text 1.2) are clustered in a neighbor-joining
tree using RapidNJ (Simonsen et al. 2011).

3. Identifying clusters of orthologous genes. PEPPAN identifies
putative orthologs by calculating a paralogous score for each
branch in a gene cluster tree (see Supplemental Text 1.3.2)
based on ratio of the pairwise genetic distances of candidate
genes within each cluster to the average genetic distances of
their host genomes (Fig. 1B). Using average genetic distances
avoids potential errors that can be introduced by using a “spe-
cies” tree to reconcile individual gene cluster trees (Altenhoff
et al. 2019). Branches with a paralogous score of greater than
one are iteratively pruned until none remain. The remaining
monophyletic subtrees are treated as putative orthologs.

The genomic locations of multiple putative orthologsmay
overlap in some genomes owing to either inconsistent genome
annotations or a failure to cluster divergent orthologous se-
quences in the first stage. These conflicts are resolved by retain-
ing the ortholog with the greatest information score (see
Supplemental Text 1.3.3) and eliminating all other gene candi-
dates for that region.

The remaining gene candidates from each genome are or-
dered according to their genomic coordinates, and the final set

A B

C

Figure 1. A brief overview of the workflow for PEPPAN. (A) Flow chart indicating the five cascading groups of operations (blue-gray) from top to bottom.
(B) Cartoon of similarity-based prediction of gene candidates (left) and phylogeny-based paralog splitting (middle and right). The tree was split at the red
branch (right) to separate gene candidates into two subclusters. The gene pairs in the same subcluster had low paralogous scores (blue-gray quadrilaterals
[left] and arrows [middle]), whereas gene pairs between the subclusters had high paralogous scores (yellow). (C) Flow chart of the pseudogene identifica-
tion. The detailed workflow of the algorithm implemented in PEPPAN can be found in Supplemental Fig. S1 and Supplemental Text 1.
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of orthologous genes is identified based on synteny (see
Supplemental Text 1.3.4).

4. Pangenome outputs. Each gene candidate in each genome is
categorized as either an intact coding sequence (CDS) or a pseu-
dogene, depending on the size of the aligned reading frame rel-
ative to its representative gene (Fig. 1C). It is also possible to
predict pseudogenes that are disrupted in all genomes by im-
porting their intact analog into PEPPANas an external represen-
tative gene. Finally, the evaluations of all genes, as well as their
genomic coordinates and orthologous group, are output in
GFF3 format, and the extents of the regions that match to their
representative genes are saved in FASTA format.

5. Pangenome analysis. A separate tool, PEPPAN_parser, generates
analyses of the estimated pangenome based on the GFF3 out-
puts from PEPPAN (details can be found at https://github.com/
zheminzhou/PEPPAN/blob/master/docs/source/usage/outputs
.rst). Similar to Roary (Page et al. 2015) and PIRATE (Bayliss
et al. 2019), these include rarefaction curves, gene presencema-
trices, and gene presence trees. In addition, PEPPAN_parser can
also calculate a core genome tree based on allelic differences of
genes that are conserved in most genomes. These core genome
trees can scale to 10,000s of genomes and provide the basis for
all core genome MLST schemes in EnteroBase (Supplemental
Text 3; Zhou et al. 2020).

Comparisons of PEPPAN with state-of-the-art

pangenome pipelines

We assessed the absolute performance of PEPPAN and compared it
with other, recently described pipelines for pangenome construc-
tion (Roary [Page et al. 2015]; panX [Ding et al. 2018]; PIRATE
[Bayliss et al. 2019]), as well as with a classical, small-scale pipeline
(OrthoMCL [Li et al. 2003]).

It is important to examine multiple aspects of genomic diver-
sity for these comparisons because the evolutionary history of bac-
terial pangenomes can be highly complex. However, we are not
aware of any prepackaged simulation tools that can encompass
the entire diversity of bacterial genomic changes, including gene
duplications and HGTs (leading to paralogs), homologous recom-
bination, and large-scale gene insertions and deletions. We there-
fore performed our first benchmarks by comparing a pangenome
calculated from 15 manually curated Salmonella enterica genome
annotations (Nuccio and Bäumler 2014) with pangenomes based
on automated annotations of the same genome assemblies.
Subsequently, we designed a new simulation tool, SimPan, which
uses SimBac (Brown et al. 2016), to simulate the dynamics of pan-
genome evolution via recombination, HGT, and gene gain and
loss, as well as the creation of paralogs (Supplemental Text 2).

Benchmarking pangenome pipelines on 15 curated genomes

Nuccio and Bäumler reannotated 15 complete genomes of S. enter-
ica (Nuccio and Bäumler 2014). They removed existing annota-
tions for unreliable short genes, performed new BLASTN and
TBLASTN alignments to identify previously not annotated genes,
corrected the start positions of falsely annotated genes, and pre-
dicted the existence of pseudogenes based on alignments with
orthologous intact CDSs. The result of these efforts is a unique
set of consistently annotated genomes froma single species, which
we equatedwith the “ground truth”withwhich to compare the re-
sults from the pangenome pipelines.

First, we compared the manual reannotation with three sets
of gene annotations for each of the 15 S. enterica genomes: (1)
the original annotation that had been submitted to NCBI Gen-
Bank (https://www.ncbi.nlm.nih.gov/genbank/) (“Submitter”),
(2) an automated reannotation from RefSeq (Haft et al. 2018)
that was generatedwith PGAP (Tatusova et al. 2016), and (3) a nov-
el annotation using PROKKA (Seemann 2014), another popular
bacterial annotation pipeline. Genes that had been eliminated
by Nuccio and Bäumler as being “unreliable” were removed from
all three annotations for consistency. We then examined the de-
gree of concordance between the pangenomepublished byNuccio
and Bäumler with the pangenomes calculated by each of the pipe-
lines. Concordance was estimated by calculating the adjusted
Rand index (ARI) (Rand 1971), which is a measure of similarity be-
tween clustering results. For Roary or PIRATE, we only report re-
sults from the run with the greatest ARI among three parallel
runs with varyingminimum identity (50%, 80%, or 95%), because
the optimal value of this parameter differs for various levels of
diversity (Ding et al. 2018; our own observations).

All pipelines successfully calculated a pangenome from each
of the four annotations, except that “Submitter” annotations nev-
er ran to completionwith panX. The PEPPAN pangenomes consis-
tently yielded ARIs of ∼0.98 relative to the manual pangenome
(Fig. 2A, histograms). This is not surprising because PEPPAN recal-
culates gene annotations in a fashion that resembles that of the
manual curation. All the other pipelines yielded lower ARI values
that varied between the annotation methods. The PROKKA anno-
tations yielded ARIs of 0.97 with Roary, panX, and OrthoMCL and
0.96 with PIRATE. The ARIs were 0.95–0.96 for the PGAP annota-
tions from RefSeq and 0.93–0.94 for the “Submitter” annotations.
We also performedhierarchical clustering using the neighbor-join-
ing algorithm on pairwise comparisons of the ARI scores across all
14 pangenomes (Fig. 2B). The three pangenomes predicted by
PEPPAN formed a tight cluster with high pairwise ARI (0.99),
which clustered tightly with the curated pangenome (ARI =
0.98). In contrast, pangenomes generated by the other pipelines
clustered according to annotation source rather than pipeline
methodology. For each of the three annotation sources, the pange-
nome predicted by Roary was the most distinct, whereas pange-
nomes predicted by OrthoMCL, panX, and PIRATE clustered
more tightly. These results may reflect the fact that Roary differs
from the other pipelines by performing an additional splitting of
paralogs on the basis of synteny.

Pseudogene prediction

The core genome defined by Nuccio and Bäumler contained 2838
CDSs that were intact in all 15 genomes and 783 others that were
disrupted in at least one genome. PEPPAN predicted marginally
more intact CDSs, and slightly fewer pseudogenes, from all three
annotations than were present in the manual annotations (Fig.
2A, circles). The number of pseudogenes for each genome was
also very similar between the manual curations and PEPPAN’s au-
tomated predictions. We note that PEPPAN consistently predicts
fewer pseudogenes for extraintestinal strains than those for
those linked to gastrointestinal disease (Fig. 2C), This is an inter-
esting observation, as accumulation of pseudogenes has been
linked to host specialization in Salmonella (Parkhill et al. 2001;
Holt et al. 2008; Nuccio and Bäumler 2014; Zhou et al. 2014,
2018b).

Roary, OrthoMCL, and panX do not predict any disrupted
genes. PIRATE reports “gene diffusion,” a measure of the
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frequency with which CDSs that are intact in some genomes are
split into two or more fragments in others. However, it did not
detect any gene diffusion in the RefSeq and GenBank annota-
tions, as well as only one instance with the PROKKA annotations.
PIRATE also failed to predict fragmented genes. Similar to the ARI
comparisons described above, the total numbers of predicted core
CDSs varied according to annotation source for all pipelines other
than PEPPAN. The four pipelines reported 3301–3515 core CDSs
from PROKKA annotations (Fig. 2A, right). These numbers are
similar to the total number of intact core CDSs plus pseudogenes
within the curated pangenome, indicating that PROKKA predict-
ed many pseudogenes as intact CDSs. Roary, PIRATE, and
OrthoMCL only detected 2418–2484 core genes in the originally
submitted genomes, suggesting inconsistencies between individ-
ual genome annotations. In contrast, all four pipelines predicted
2901–2957 core CDSs from the RefSeq annotations, and these
numbers were similar to the numbers of intact core CDSs in the
curated pangenome (2838) or as predicted by PEPPAN (2918–
2961).

Inaccurate prediction of orthologs

Inconsistent ortholog calls relative to themanually curated pange-
nome (Nuccio and Bäumler 2014) also contributed to variation in
the numbers of core CDS predicted by the different pipelines. We
designated as “false splits” those cases in which a single ortholog
cluster in the curated pangenome was split into multiple ortholog
clusters by a pipeline. Similarly, “false merges” occurred when
multiple orthologous clusters in the curated pangenome were as-
signed to a single orthologous cluster. We identified 4695 “back-
bone genes” in the curated pangenome that were present in the
most recent common ancestor (MRCA) and 3364 “mobile” genes,
whichwere associated in one ormore genomes withmobile genet-
ic elements and which were absent from the MRCA. For backbone
genes, PEPPAN made the fewest false splits and false merges of all
five pipelines, followed by panX (Fig. 2D). False merges were made
four times as often by all pipelines for mobile genes than for back-
bone genes, and false splits were up to two times as frequent (Fig. 2,
cf. E and D). Roary generated the highest number of false calls,
whereas PEPPAN generated the lowest.

E

B

A

C

D

E

BA

C D

Figure 2. Comparison of pangenome predictions for 15 Salmonella genomes with a manually curated pangenome (Nuccio and Bäumler 2014). (A) The
adjusted Rand index versus the manual curation (ARI; histogram) and the sizes of core genomes (circles) in each of the pangenomes after annotation by
PROKKA (Seemann 2014), after reannotation in RefSeq with PGAP (Tatusova et al. 2016), and as originally submitted to NCBI (Submitter). An asterisk in-
dicates that panX failed to run on the “Submitter” annotations. (B) A neighbor-joining tree (left) of the pairwise ARI scores (heatmap at the right) between
the predicted pangenomes and the curated pangenome. The annotation source is indicated within gray shadows at the left except for PEPPAN, where it is
listed at the tips. Colors are as in A. (C) Histogram of the numbers of pseudogenes (y-axis) in each of the genomes (x-axis) in the curated pangenome (gray)
and pangenome predicted by PEPPAN (orange). A dashed line separates the two Salmonella pathovar groups described by Nuccio and Bäumler. (D,E)
Histograms of the average numbers of false splits (top) and merges (bottom) of ortholog groups by the individual pipelines (x-axis) in backbone (D) or mo-
bile (E) genes.
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Simulating pangenome data sets

The analyses above indicate that the backbone and mobile genes
might differ in their rates of gain and loss during evolution. To
test the abilities of pangenome pipelines to handle varying rates
of gene gain and loss, we created SimPan (https://github.com/
zheminzhou/SimPan) to simulate the evolution of real bacterial
pangenomes (Supplemental Fig. S2; Supplemental Table S1; for de-
tails, see Supplemental Text 2). In brief, SimPan uses SimBac
(Brown et al. 2016) to generate a clonal genomic phylogeny.
This clonal phylogeny is subjected to randomhomologous recom-
bination, resulting in different “local trees” that reflect the individ-
ual ancestries of backbone andmobile genes. Random indel events
leading to loss or gain of blocks of genes are simulated along the
branches of these local trees until the average number of genes

per genome and in the core genome attain user-specified parame-
ters “‐‐aveSize” and “‐‐nCore” (Supplemental Table S1). This re-
sults in a presence/absence matrix of all backbone and mobile
genes. Finally, sequences of both genes and intergenic regions
are subjected to short indels, converted into genes with
INDELible (Fletcher and Yang 2009), and concatenated intowhole
genomes.

We simulated five genomic data sets each containing 15 ge-
nomes, using parameters derived from the curated S. enterica pan-
genome, with each genome containing a mean of 3621 core genes
and 879 accessory genes (simulations a–e). We arbitrarily assigned
5% of the backbone genes and 40% of the mobile genes to paralo-
gous clusters and varied theirmean percentage sequence identities
between each set of simulations (Fig. 3, inset). Simulation c

E

BA C

D

Figure 3. Comparison of the pangenome pipelines with simulated data generated by SimPan. (A) The adjusted Rand index (ARI; histogram) and the sizes
of core genomes (circles) in the pangenomes produced by SimPan simulations a, b, c, d, e (inset). (Left) Pangenome produced by the simulations. Other
histograms, pangenomes calculated by five pipelines. (B) Numbers of failed splits (top) and false merges (bottom) of ortholog groups by five pipelines with
backbone genes. (C ) Numbers of failed splits (top) and falsemerges (bottom) of ortholog groups by five pipelines withmobile genes. (D) The adjusted Rand
index (ARI; histogram) and the sizes of core genomes (circles) in the pangenomes produced by SimPan simulation c after random deletions of 0%, 0.1%,
1%, and 2% of the gene annotations. Other details as in A. (E) Runtime for each pipeline (y-axis) versus number of genomes in simulated data sets (x-axis).
Runs that exceed 600 min are not shown.
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represents the simplest pangenome construction scenario, with
high sequence identity (98%) between genes in an ortholog cluster
and low sequence identity (60%) between genes in a paralog clus-
ter. Simulations a and b have decreasing levels of identity between
orthologs to simulate more diverse species, whereas simulations d
and e have increasing levels of identity between paralogs in order
to simulate recent gene duplications.

Pipeline performance on simulated genomes

Pangenomes calculated from each simulated data set by PEPPAN,
Roary, PIRATE, panX, and OrthoMCL were compared with the
original pangenomes produced by SimPan (Fig. 3A). Once again,
PEPPAN pangenomes were highly concordant with the known
truth (ARI≥0.998 for all comparisons). Roary performed compara-
bly to PEPPAN on all simulated data sets (ARI≥0.995). PIRATE per-
formed almost as well on simulations c to e but yielded ARI scores
below 0.99 when run on simulations of more diverse genomes
(simulations a and b). In contrast, panX and OrthoMCL yielded
ARI scores ≥0.99 when run on simulations a and b but were less
concordant (ARI < 0.99) when run on simulations containing
more recent gene duplications (simulations d and e).

PEPPAN correctly predicted all core genes in simulations b, c,
and e, and only missed two to three core genes in the two remain-
ing data sets (Fig. 3A, circles). Roary correctly predicted all single-
copy core genes for simulation c but failed to identify any multi-
copy core genes for any data set, likely owing to its aggressive syn-
teny-based paralog identification step. PIRATE, panX, and
OrthoMCL significantly underestimated the number of core genes
when only single-copy core genes were counted, suggesting a high
frequency of false splitting of paralog clusters. Indeed, the frequen-
cy of false merges was particularly high for backbone genes with
these three pipelines, and the frequency of false splits was high
with Roary and OrthoMCL (Fig. 3B). All pipelines made multiple
false merges of mobile genes, possibly because of their predomi-
nance among paralog clusters, and Roary alsomade large numbers
of false splits (Fig. 3C). Overall, PEPPANmade the fewest false calls
for both backbone andmobile genes, which explains its higher ARI
scores.

The effects of missing gene annotations on the pangenome

As shown above, inconsistent or inaccurate gene annotations are
problematic for calculating reliable pangenomes. We simulated
this effect by randomly deleting 0.1%, 1%, or 2% of the gene an-
notations from simulation c (Fig. 3D). Because PEPPAN reassigns
individual genes to ortholog clusters, it was unaffected by these
manipulations. However, the missing annotations yielded drasti-
cally reduced ARI scores (Fig. 3D. histograms) and core genome siz-
es (Fig. 3D, circles) for the other pipelines, and ARI scores became
progressively worse with the proportion of missing annotations.

Computation time

We generated 10 additional simulations of 20–200 genomes with
the same parameters as simulation c and measured the running
wall times to calculate a pangenome for all five pipelines using
four processors on a server with 1 TB of memory and 40-CPU cores
(Fig. 3E). OrthoMCL was the slowest and needed >24 h for 60 or
more genomes. panX was at least eightfold slower than the other
three pipelines and needed 500 min for 200 genomes, despite us-
ing a divide-and-conquer algorithm on data sets with more than
50 genomes. Both Roary and PIRATE scaled very well, and each

completed the calculations on 200 genomes within 30 min.
PEPPAN is about twice as slow as either Roary or PIRATE and need-
ed 63min for 200 genomes. The good scalability of these pipelines
is likely related to the preclustering step, which reduces the num-
ber of genes used in downstream comparisons. However, this pre-
clustering step becomes less efficient with increasing genetic
diversity: In an independent simulation of 200 genomes with
only 90% sequence identity, the runtime for all three pipelines in-
creased by at least twofold relative to simulation c (PEPPAN: 144
min; Roary: 132; PIRATE: 60).

A pangenome for the genus Streptococcus

PEPPAN can construct a pangenome from thousands of genomes
with high genetic diversity, and earlier versions of this pipeline
were used to generate cgMLST schemes for the genera represented
in EnteroBase (Alikhan et al. 2018; Frentrup et al. 2020; Zhou et al.
2020), as well as for ancient DNA analyses (Zhou et al. 2018b;
Achtman and Zhou 2020). To show PEPPAN’s capability on genet-
ically diverse data sets, we chose the genus Streptococcus, which in-
cludes highly significant zoonotic and human pathogens (Gao
et al. 2014).

We generated a data set of 3052 high-quality genomes
(Supplemental Table S2A) representing the entire taxonomic
diversity of Streptococcus (see Methods). PEPPAN took 5 d to con-
struct a pangenome from this data set. The resulting pangenome
contained 39,042 genes, twice as many as a previous pangenome
based on 138 Streptococcus genomes (Gao et al. 2014). In agreement
with the earlier conclusions by Gao et al., the rarefaction curve
showed no sign of plateauing, and the pangenome continued to
expand with each new genome added (Fig. 4A). Gao et al. estimat-
ed that the pangenomewould expand by 62 genes for eachnewge-
nome, whereas we estimate a lower rate of 39 genes per new
genome for a randomly sampled set of 138 genomes. However,
the growth rate dropped with the increased number of genomes,
and we estimate that the future expansion rate of the pangenome
is only 4.4 new genes for every newly added genome.

In contrast to earlier studies (Gao et al. 2014), which defined a
strict core genome of 278 orthologs, we found only 182 genes that
were shared across all Streptococcus genomes (Fig. 4B, inset). Each of
these was disrupted in at least one of the 14,115 Streptococcus ge-
nomes in RefSeq. This is a commonproblem for core genome anal-
yses, especially because the multiple contigs within draft genomes
can result in the absence of multiple genes from genome assem-
blies. Core genome schemes used for cgMLST are therefore usually
based on a relaxed core, consisting of single-copy genes present in
the large majority of representative isolates (Moura et al. 2017;
Alikhan et al. 2018; Zhou et al. 2020). Our analyses identified
754 genes that were present in at least 2900 (95%) of the represen-
tative streptococcal genomes (Supplemental Table S3, Fig. 4B).
However, most of the 754 genes were present in multiple copies
in some genomes, leaving a final relaxed core of 292 single-copy
genes that are suitable for identifying core genomic relationships
and evolutionary history (Table 1; Supplemental Table S3).

Taxonomic clusters within Streptococcus

Streptococcus taxonomy is a highly dynamic area of research
(Kikuchi et al. 1995; Jensen et al. 2016; Dekker and Lau 2016;
Velsko et al. 2018, 2019; Kilian and Tettelin 2019; Zhou et al.
2020). Many Streptococcus species are currently defined exclusively
by phenotypic markers, and multiple taxonomic assignments in
RefSeq are incorrect (Beaz-Hidalgo et al. 2015; Gomila et al.
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2015; Kilian and Tettelin 2019).We therefore initially ignored tax-
onomic designations and used the normal cut-off of ANI≥95%as a
proxy for species designations (Konstantinidis et al. 2017; Jain
et al. 2018). Single-linkage agglomerative clustering of pairwise
ANI values calculated from the 3052 representative genomes re-
vealed 223 clusters (Supplemental Table S2). For the 29 clusters
containing 10 or more genomes, we also identified a dominant

species designation fromNCBImetadata,
as shown in Supplemental Table S4.
Information on each cluster’s pange-
nome can be found in Supplemental
Text 4 and Supplemental Table S5.

We used PEPPAN_parser to generate
two trees of the 3052 representative ge-
nomes based on the presence or absence
profiles of 39,042 pan genes (Fig. 5A) and
on the allelic variation profiles of 292 re-
laxed core genes (Fig. 5B). The topology
of the first tree reflects similarities in pan-
genome content, and the topology of the
second tree reflects sequence similarities
within core genes. The details of these
two topologies differed somewhat. In
particular, the core gene tree contained
an unresolved, star-like radiation that
we attribute to distinct sequences in all
of the core genes fromhighly diverse spe-
cies. However, despite these differences
in deep branching topology, both trees
showed comparable tight clustering of
genomes corresponding to each of the
29 common taxonomic groupings. This
tight clustering indicates that the topolo-
gies of both trees are congruent at the
ANI95% level. Both trees also support
published taxonomic assignments of
subspecies. For example, MG_29 corre-
sponds to Streptococcus gallolyticus and in-
cludes its three subspecies gallolyticus,
macedonicus, and pasteurianus (Dekker
and Lau 2016). Similarly, MG_2 corre-
sponds to Streptococcus dysgalactiae and
includes its two subspecies dysgalactiae
and equisimilis (Jensen and Kilian 2012).

Both Streptococcus trees also clus-
tered high order branches according to the traditional taxonomi-
cal group names Mitis, Anginosus, Salivarius, Mutans, Bovis, and
Pyogenic (Gao et al. 2014). They clustered Streptococcus suis togeth-
er in a seventh phylogenetic branch, which we designate as Suis,
and also clustered Streptococcus acidominimus, Streptococcus minor,
Streptococcus hyovaginalis, Streptococcus ovis, and multiple other
taxa into a novel, unnamed neighboring branch. By using
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Figure 4. Rarefaction curves of pangenomic and core gene numbers in Streptococcus and its sevenma-
jor taxonomic subgroups. (A) Rarefaction curves created with PEPPAN_parser for the accumulations of
pan genes and core genes of 3052 Streptococcus representative genomes from 1000 random permuta-
tions. (B) The frequencies of pan genes (y-axis) by the numbers of genomes that carried that many genes
(x-axis). The inset shows the relaxed core genes present in ≥95% of the genomes. (C) Rarefaction curves
of genomes in the Mitis, Pyogenic, and Suis groups. (D) Rarefaction curves of genomes in the Mutans,
Anginosus, Salivarius, and Bovis groups. The dark lines in A, C, and D indicate median values and the
shadows indicate 95% confidence intervals.

Table 1. Summary statistics of the pangenome of Streptococcus genus and seven species groups

Genomes
Number per genome 95% of genomes All genomes

Traditional group Genes CDSs % pseudogenes All genes Single copy Strict core genes Strict core CDSs Pan genes

Streptococcus 3052 1918 1810 5.6 754 292 182 5 39,042
Anginosus 103 1821 1720 5.5 1144 648 1067 722 6981
Bovis 80 1877 1768 5.8 1184 559 1046 583 7729
Mitis 1485 1970 1849 6.1 1087 642 475 36 16,640
Mutans 117 1858 1747 6.0 1110 380 751 248 6535
Pyogenic 792 1791 1712 4.4 979 439 582 149 13,010
Salivarius 96 1865 1727 7.4 1217 595 1025 666 6040
Suis 342 2059 1948 5.4 1281 672 848 570 11,292

“Strict core genes” refers to the number of genes that were found by DIAMOND and BLASTN in all genomes. “Strict core CDSs” refers to the number
of genes that are not a pseudogene in any genome.

PEPPAN: accurate pangenome reconstruction

Genome Research 1673
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260828.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260828.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260828.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260828.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260828.120/-/DC1


PEPPAN_parser, we calculated a pangenome for each of the seven
named taxonomical groups. Similar to the Streptococcus pange-
nome, each group pangenome is open (Fig. 4C,D) and grows at
the rate of 3.5–30.1 new genes for each new representative ge-
nome. Unlike the entire genus, these seven named taxonomic
groups possess a sizable strict core genome, consisting of 475–
1067 core genes (Fig. 4C,D; Table 1). After excluding multicopy
genes, the sizes of the group-specific, 95% relaxed core genomes
ranged from 380 (Mutans) to 672 (Suis) genes (Fig. 4C,D; Table 1).

In accord with prior observations (Kilian et al. 2008; Kilian
and Tettelin 2019), numerous discrepancies differentiate the
ANI95% groups and the taxonomic designations in RefSeq.
Some discrepancies reflect inaccurate metadata, but others reflect
true discrepancies between ANI95% clusters and taxonomic desig-
nationsmade by expert microbiologists. For example, Streptococcus
mitis spans 44 distinct ANI95% clusters (Fig. 5; Supplemental Table
S4). Similarly, Streptococcus oralis straddles multiple, distinct
ANI95% clusters, as did each of the three S. oralis subspecies oralis,
tigurinus, and dentisani defined by Jensen et al. (2016). Further in-

vestigations will be needed to elucidate how many biological spe-
cies are truly present within the genus Streptococcus.We anticipate
that the trees in Figure 5 might be useful for such analyses.

Discussion

Comparison of PEPPAN with other pangenome pipelines

Pangenome pipelines must be efficient in order to handle the
computational demands of modern, large-scale comparative ge-
nomics. Roary (Page et al. 2015) and PIRATE (Bayliss et al.
2019) were the fastest of all the pipelines tested, likely reflecting
their choice of time efficient approaches in every stage of their al-
gorithms. However, this speed comes with trade-offs in terms of
accuracy (Figs. 2, 3). The workflow implemented in PEPPAN re-
quires many more calculations than other pipelines owing to
its implementation of tree-based splitting of paralogs and similar-
ity-based internal gene prediction but is only marginally slower

BA

Figure 5. Phylogenies of 3052 Streptococcus genomes based on accessory gene content (A) and allelic variation in relaxed core genes (B). (A) A FastTree
(Price et al. 2010) phylogeny based on binary information of the presence and absence of accessory genes. (B) A RapidNJ (Simonsen et al. 2011) phylogeny
based on numbers of identical sequences (alleles) of 292 single copy, relaxed, core genes that are present in ≥95% of Streptococcus genomes. These trees
are represented in GrapeTree (Zhou et al. 2018a). The sizes of the circles in A and B are proportional to the numbers of genomes they encompass and are
color-coded by 29 common ANI95% clusters as shown in the inset. Many Streptococcus species have been assigned to one of six traditional taxonomic
groups whose names are shown outside colored arcs. These trees define from the Suis group which contains Streptococcus suis. A black arrow in B shows
the root of the tree, where multiple branches radiate directly outward owing to lack of resolution of cgMLST for such distant taxa. All ANI95% cluster in-
formation can be found in Supplemental Table S4. Interactive versions of the trees can be found at (A) https://achtman-lab.github.io/GrapeTree/
MSTree_holder.html?tree=https://raw.githubusercontent.com/zheminzhou/PEPPA_data/master/Strep.content.json and (B) https://achtman-lab.github
.io/GrapeTree/MSTree_holder.html?tree=https://raw.githubusercontent.com/zheminzhou/PEPPAN_data/master/Strep.CGAV.json.
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because of the care that was taken to implement time efficient
algorithms.

Roary, PIRATE, and PEPPAN all use a preclustering step to re-
duce the numbers of genes that are analyzed in subsequent,
very time-consuming, all-against-all comparisons. PEPPAN accel-
erates this step by using Linclust (Steinegger and Söding 2018).
Linclust scales linearly with the number of genes and is faster
than CD-HIT, the clustering package used by Roary and PIRATE.

Roary and Pirate both use MCL, a graph-based clustering ap-
proach (Enright et al. 2002) to split paralogous clusters. MCL iden-
tifies a strict optimal threshold that separates orthologous genes
from paralogous genes, and scales well with the numbers of genes.
This approach is accurate for closely related genomes but is error-
prone when data sets contain both closely related and distantly re-
lated genomes, because a single optimal clustering threshold does
not exist for both extremes. PIRATE thus failed to split many paral-
ogous clusters from real (Figs. 2D,E) and simulated (Fig. 3B,C) ge-
nomes, especially for more diverse data sets (Fig. 3A). Roary
implements an additional synteny-based approach to identify
and split unresolved paralog clusters, but this approach also failed
to correctly split orthologs intomultiple clusters (Figs. 2D,E, 3B,C).
In contrast, PEPPAN identifies an optimal threshold for each gene
and uses that threshold to split paralogous branches in the gene
trees. This allows accurate estimates of pangenomes even in data
sets of highly divergent genomes.

panX uses a “divide and conquer” strategy for the gene com-
parisons, which is computationally demanding. In addition,
panX constructs a gene tree for every potential gene cluster,
which, similar to other tree-based approaches, involves the align-
ment of gene sequences using MAFFT (Katoh and Standley 2013)
followed by a tree construction using FastTree (Price et al. 2010).
As a result, panX is substantially slower than PEPPAN, PIRATE, or
Roary (Fig. 3E). However, panX was not substantially more accu-
rate than those programs (Figs. 2A, 3A), which might be attribut-
ed to its use of raw pairwise genetic distances of genes for paralog
splitting. In contrast, inspired by the methods used by large-scale
genomics studies (Chewapreecha et al. 2014; Banaszkiewicz et al.
2019), PEPPAN uses a reference-based approach to generate an
alignment for each gene group, which is then used to reconstruct
a neighbor-joining gene tree using RapidNJ. These methods are
less accurate but much faster than those in panX and scale to
thousands of sequences. As a result, although the run time of
PEPPAN was approximately twice as long as the run time of
Roary or PIRATE, it still scaled linearly with the number of ge-
nomes (Fig. 3E).

Effects of internal annotations by PEPPAN

Our benchmarking analyses on real and simulated genomes re-
vealed the strong impact of inconsistent annotations on the pan-
genome predictions (Fig. 2A). Indeed, differences in annotation
influenced the quality of the pangenomemore than pipeline algo-
rithms (Fig. 2B) and decreased the number of core genes by up to
one-third for somepipelines (Fig. 2A). PEPPAN avoids this problem
by implementing a similarity-based gene prediction step.
Accordingly, pangenomes predicted by PEPPAN varied only slight-
ly with different annotations (Fig. 2A,B). Draft genome assemblies
based on 454 or IonTorrent sequencing include elevated numbers
of single-base insertions and deletions owing to inaccurate se-
quencing (Shao et al. 2013; Zhang et al. 2015). Including such ge-
nomes in an analysis reduces the quality of the pangenome for all
state-of-the-art pipelines. However, PEPPAN simply scores genes

disrupted by artificial indels as frameshifts, making such inaccu-
rate genomes easier to identify.

Finally, it is worth noting that the current similarity-based in-
ternal annotation algorithm implemented in PEPPAN is optimized
for prokaryotes and does not work for eukaryotic genomes, where
multiple exons of a gene can be separated by introns of >10 kb.
Apart from this limitation, however, the other technological ad-
vantages in PEPPAN will also work on eukaryotic genomes.
PEPPAN could therefore be extended for use on eukaryotes with
collaboration from experts in eukaryotic genomics.

Relevance to MLST schemes

Alikhan et al. (2018) described a pangenome for all of Salmonella
based on 537 genomes that had been derived by a precursor of
PEPPAN in 2015. That pangenome was used to develop a
wgMLST scheme of 21,065 loci and a cgMLST scheme of 3002
genes. The same publication also described a reference set of 926
genomes that represented the diversity of almost 120,000
Salmonella genomes on the basis of rMLST. After completion of
this paper, we became aware of a new publication (Park and
Andam 2020) that used Roary to calculate a pangenome of
84,041 S. enterica genes and 2085 soft core genes from those 926
representative genomes after reannotationwith PROKKA. Such ap-
plications of Roary are strongly discouraged by its documentation,
which recommends against using Roary on diverse groups of or-
ganisms such as all Salmonella. We ran PEPPAN on the same 926
representative genomes. The resulting pangenome contained
30,000 fewer pan genes and 1200 more soft core genes than the
calculations by Park and Andam (Supplemental Table S6), con-
firming that Roary struggled with this task. The high resolution
and continued reliability that EnteroBase offers in downstream
analyses of phylogenetic relationships between genomes are in
part owing to the accurate, smaller pangenome and larger core ge-
nome that were calculated by PEPPAN. The analyses presented
here identified a reliable relaxed soft core genome consisting of
292 single-copy genes for Streptococcus, which is currently being
used to establish an EnteroBase database for this diverse genus.

Pangenomes depend on sample size

Early analyses of pangenomes were based on small numbers of ge-
nomic sequences (Tettelin et al. 2005), resulting in the conclusion
based on 12 genomes that the pangenome of Streptococcus pyogenes
was closed (Tettelin et al. 2008). The same publication concluded
that the pangenome of Streptococcus pneumoniae was open and
would continue to expand indefinitely. However, a subsequent
study of 44 genomes concluded that the pangenome of S. pneumo-
niaewas also closed (Donati et al. 2010). It is only very recently that
large numbers of bacterial genomes are available for analysis and
that pipelines exist that can handle such large numbers.

We calculated a pangenome from 3052 Streptococcus genomes
that represent the genomic diversity of 14,115 draft and complete
genomes. Our pangenome contains 39,042 genes, is open, andwill
continue to expand at a rate of 4.4 genes per novel genome. This
rate of expansion is 14-fold slower than the original calculations
of a pangenome from 138 genomes (Gao et al. 2014). We also cal-
culated pangenomes and their expected growth rates for the 29
most common ANI95% clusters within Streptococcus (Supplemen-
tal Text 4). All pangenomes were open, with the single exception
of MG_41 (Streptococcus sobrinus). These inconsistencies with prior
analyses suggest that pangenome status may be strongly depen-
dent on the number of genomes investigated, sampling strategies
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used to identify representative genomes, and possibly on pange-
nome pipelines.

Taxonomic insights

It has been clear since 2004 that the strict core genome of all pro-
karyotes is extremely small. Only 14–30 geneswere present in all of
147 diverse genomes (Charlebois and Doolittle 2004), and almost
all of those genes encoded ribosomal proteins (Weiss et al. 2018).
However, it was still unexpected that the strict core genomewould
be this small for a large collection of Streptococcus genomes. We
only found 182 strict core genes in the representative set of 3052
genomes, and each of these was absent or incomplete in one or
more of the entire set of 14,115 genomes. We therefore recom-
mend using phylogenies based on sequence variation within a re-
laxed core complement of genes and/or presence/absence of
accessory genes for an overview of the phylogenetic relationships
of an entire genus instead of relying only on strict core genes.
PEPPAN_parser can calculate such phylogenies from the PEPPAN
outputs.

These observations may also be relevant in respect to the
concept of universal genes. FetchMG (Kultima et al. 2012) iden-
tifies the presence of genes by a very relaxed cutoff because it
uses the alignment score of CDSs according to an HMM model
of the corresponding protein domain. FetchMG searches for 40
supposedly universal core CDSs that are present across all pro-
karyotes (Mende et al. 2013). This raises the questions of why
some of the 3052 Streptococcus genomes only contained 38 of
these genes according to FetchMG (Supplemental Table S2B)
and why FetchMG only found 14 that were present in all those
genomes (Supplemental Table S2C). PEPPAN is stricter in its def-
inition of strict core CDSs, because it recognizes pseudogenes
and excludes them from the calls of CDSs. PEPPAN only found
five strict core CDSs in all 3052 genomes (Table 1), even fewer
than FetchMG. Each of these findings seem to be incompatible
with a minimum of 40 universal genes for any living organism.
However, previous analyses have already indicated that only
82% of genomes contain all 40 universal genes (Mende et al.
2013). Second, PEPPAN estimated the number of strict core
genes including pseudogenes as 182 over all 3052 genomes
(Table 1), and these included the same 14 as had been found
by FetchMG. The absence of the other 26 universal genes might
relate to random gaps that occur in draft genomes and that arti-
ficially resemble missing genes. Alternatively, they may not be
universal.

As previously noted by others (Kilian et al. 2008; Jensen and
Kilian 2012; Jensen et al. 2013, 2016; Kilian and Tettelin 2019), the
taxonomies of multiple Streptococcus genomes are misclassified in
RefSeq (Supplemental Fig. S3). Misclassification has been ongoing
for decades (Kikuchi et al. 1995) owing to the phenotypic hetero-
geneity of this species. The Mitis group is particularly heteroge-
neous (Kilian et al. 2008; Jensen et al. 2016) and difficult to
study (Kilian and Tettelin 2019; Velsko et al. 2019). Similar prob-
lems also apply to other bacterial genera such as Pseudomonas
(Gomila et al. 2015) and Aeromonas (Beaz-Hidalgo et al. 2015).
The results presented here defined 223 ANI95% clusters that are
consistent by independent phylogenetic approaches based on
both cgMLST and gene presence. It has been suggested that bacte-
rial diversity does not delineate species clusters owing to extensive
HGT (Doolittle and Papke 2006). Our results, instead, revealed
congruent clusters between the accessory genome and the core ge-
nome at the ANI95% level in Streptococcus. Similar congruent clus-

ters have been reported in the Streptomycetaceae (Wright and Baum
2018) and we suspect that they will also occur in other genera.
Thus, approaches such as those described here may provide a
framework for improving future taxonomic assignments. Finally,
the test case of Streptococcus illustrates the power of PEPPAN,which
can now be used for defining the pangenomes of other diverse
genera.

Methods

S. enterica genomes

We downloaded the assembly_summary_genbank.txt table and
the assembly_summary_refseq.txt table from NCBI on May 30,
2019 (ftp://ftp.ncbi.nlm.nih.gov/genomes/ASSEMBLY_REPORTS/).
The first table summarizes all genomes uploaded into GenBank
by their original investigators, and the second summarizes all
the genomes in RefSeq. We used these tables as a source of the
FTP links for each of the accession codes listed by Nuccio and
Bäumler (2014) for genomic sequences of 15 S. enterica genomes.
These 15 genomes were also annotated ab initio with PROKKA
1.12 (Seemann 2014). Nuccio and Bäumler excluded some “unre-
liable” short genes from their manual recuration. To exclude these
genes in our analyses aswell, the genomic coordinates of each gene
in each of the three annotations (Submitter, RefSeq, PROKKA)
were compared with the coordinates of “reliable genes” in
Supplemental Table S1 of Nuccio and Bäumler. Only genes with
coordinates overlapping those of a reliable gene by ≥90% were
used here for further comparisons.

Preparation of simulated data sets

All simulateddata setswere generatedusing SimPan (Supplemental
Text 2) with the input parameters “‐‐genomeNum 15 ‐‐aveSize
4500 ‐‐pBackbone 4000 ‐‐nMobile 10000 ‐‐nCore 3621
‐‐pBackbone 0.05 ‐‐pMobile 0.40 ‐‐rec 0.1”. Data sets a through e
were generatedwith the additional parameters: (a) “‐‐idenOrtholog
0.9 ‐‐idenParalog 0.6”; (b) “‐‐idenOrtholog 0.95 ‐‐idenParalog 0.6”;
(c) “‐‐idenOrtholog 0.98 ‐‐idenParalog 0.6”; (d) “‐‐idenOrtholog
0.98 ‐‐idenParalog 0.8”; (e) “‐‐idenOrtholog 0.98 ‐‐idenParalog
0.9”. Ten other sets of simulated genomes that were used to evalu-
ate running timeswere generatedwith the same parameters as data
set c but with the additional parameter “‐‐genomeNum xxx”,
where xxx ranged from 20 to 200 by steps of 20.

Pangenome pipelines

The following versions of the individual pipelines and command
lines were used for all benchmark data sets.

1. PEPPANwith a Git HEAD of f721513 was run in the Python 3.6
environment as

python PEPPA.py -t 4 -p PEPPAN ‐‐pseudogene 0.9 ‐‐min_cds 45
∗.gff

2. Roary 3.6.0+dfsg-4 was installed as a Ubuntu APT package and
run as

roary -p 4 -o roary -f roary -i <identity>-s -v -y ∗.gff
Three runs of Roarywere performed for each data set with the ad-

ditional parameters “-i 50,” “-i 80,” or “-i 95.” The data report-
ed here are from the runs with the parameter “-i 80” because
that consistently yielded the best ARI values.

3. PIRATE with a Git HEAD of effc522 was downloaded from
GitHub (https://github.com/SionBayliss/PIRATE) and run as

PIRATE -i . -o PIRATE -s <steps> -t 4 -k “‐‐diamond”
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Three runs of PIRATE were performed for each data set with the
additional parameters “-s 50,60,70,80,90,95,98,” “-s
80,90,95,98,” or “-s 95,98.” We report the data generated
with “-s 80,90,95,98,” which had the greatest ARI value, ex-
cept for simulated data set e, inwhich “-s 95,98”had the great-
est ARI.

4. panX v1.6.0 was downloaded from GitHub (https://github
.com/neherlab/pan-genome-analysis/releases) and run in the
Python 2.7 environment as

panX.py ‐‐folder_name panX ‐‐species_name panX ‐‐threads 4 ‐‐

diamond_identity 80 ‐‐simple_tree ‐‐store_locus_tag

5. OrthoMCL v2.0.9 was downloaded from https://orthomcl.org/
and run in multiple steps as described at https://
currentprotocols.onlinelibrary.wiley.com/doi/full/10.1002/
0471250953.bi0612s35.

Generating ANI95% clusters of Streptococcus genomes

A summary table of all genomes deposited in RefSeq was down-
loaded on June 20, 2019 (see S. enterica genomes above); 14,115
bacterial records that contained “Streptococcus” in the “organ-
ism_name” field were extracted from the table (Supplemental
Table S7), and the files for each record were downloaded as de-
scribed above. MASH (Ondov et al. 2016) was used to measure
the pairwise distances between the genomes with parameters of
“-k 19 –s 10000.” The resulting matrix was used to cluster
Streptococcus genomes with the AgglomerativeClustering function
in the scikit-learn package (Pedregosa et al. 2011), with parameters
linkage= single and distance_threshold=0.002. The function gen-
erated 3170 clusters. The genomewith the greatestN50 valuewith-
in each cluster was chosen as its representative genome. Each
representative genomewas subjected to quality evaluation accord-
ing to three criteria: (1) carries at least 38 of the 40 single-copy es-
sential genes according to fetchMG (Kultima et al. 2012), (2) is
assigned to Streptococcus genus by the “Identify species” function
in rmlst.org (Jolley et al. 2012), and (3) has an N50 value ≥10 kb.
One hundred eighteen genomes failed these criteria and were dis-
carded (Supplemental Table S2B), leaving a data set of 3052 high-
quality genomes (Supplemental Table S2A) that represents the en-
tire taxonomic diversity of Streptococcus. Pairwise ANI values were
calculated from the 3052 representative genomes with FastANI
v1.2 (Jain et al. 2018), and these genomes were grouped into
ANI95% clusters using the AgglomerativeClustering function
with linkage= single and distance_threshold=0.05.

Software availability

Source code for PEPPAN is accessible at GitHub (https://github
.com/zheminzhou/PEPPAN) and as Supplemental Code S1.
Source code for SimPan is accessible at GitHub (https://github
.com/zheminzhou/SimPan) and as Supplemental Code S2.
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