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The term “abscopal” (ab-, a prefix meaning “position away 

from,” and scopus [Latin] meaning “mark or target for shooting 

at”) was first used by Mole in 1953 to describe the effects of ion-

izing radiation “at a distance from the irradiated volume but with-

in the same organism.”1 Radiotherapy (RT) induces immunogenic 

cell death, leading to the production and release of cytokines and 

chemokines in the tumor microenvironment, followed by infiltra-

tion of dendritic cells (DCs) into the tumor site. Activation of DCs, 

which act as antigen presenting cells, causes priming and expan-

sion of tumor-reactive T-cells within the irradiated tumor and in 

the draining lymph nodes. These activated, tumor-specific T-cells 

in-turn migrate and eliminate non-irradiated tumors, hence result-

ing in the abscopal effect.2

The mechanism of abscopal effect has long remained poorly 

understood. In 2004, Demaria et al.3 suggested that the abscopal 

effect may be immune-mediated. Preclinical models have estab-

lished that the abscopal effect is T-cell-dependent4 and results 

from radiation “priming” of the immune system.5 In recent years, 

the use of immune checkpoint inhibitors (ICIs), such as ipilimumab 

or pembrolizumab, has greatly increased the prevalence of absco-

pal effects among selected patients, including those with meta-

static melanoma.6,7

The mechanism underlying the increased abscopal effect fol-

lowing RT-ICI combination is unclear. In the current issue of Clini-
cal and Molecular Hepatology, Yoo et al.8 conducted a preclinical 

study to investigate this issue using a murine syngeneic hepato-

cellular carcinoma (HCC) model. After transplanting Hepa 1-6 

cells in both hind legs of immunocompetent C57BL/6 mice, they 

irradiated the tumors in primary sites and observed abscopal ef-

fects in the non-irradiated tumors, with or without anti-pro-

grammed cell death protein 1 (PD-1) antibodies. They reported 

significantly enhanced abscopal effect and increased infiltration 

of activated cytotoxic T-cells in both irradiated and non-irradiated 

tumors when combinatorial therapy with RT and anti-PD-1 anti-

bodies was employed. Previous studies on combinatorial therapy 
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with RT and immunotherapy dealt with orthotopic HCC models, 

thus allowing the observation of effect of the combinatorial treat-

ment on the primary tumor, though not necessarily the abscopal 

effect.9,10 In this context, Yoo et al.8 provides initial information on 

the impact of RT-immunotherapy combination on non-irradiated 

metastatic tumors using a murine HCC model. Many methods 

have been attempted to increase the prevalence of the abscopal 

effect, including the combination of RT with cytokines, stimula-

tion of DCs to activate tumor antigen-presentation, vaccination 

with autologous tumor cells, targeting Toll-like receptors, and 

combination of RT and ICIs.2 Cytotoxic T-lymphocyte-associated 

protein 4 (CTLA-4) and anti-PD-1 are cell surface molecules which 

prevent T-cell activation or reinvigoration following chronic anti-

gen exposure. Inhibiting these T-cell checkpoints leads to greater 

anti-tumor T-cell activity.

Yoo et al.8 also showed that 16 Gy in two fractions inhibited the 

growth of both irradiated and non-irradiated tumors more effec-

tively with higher infiltration of cytotoxic T-cells compared to a 

single 8 Gy fraction. The authors concluded that these results in-

dicated “the potential radiation dose-dependency of the abscopal 

effect.” In recent years, the utilization of stereotactic body radio-

therapy (SBRT) has increased, and there are suggestions that hy-

po-fractionated RT, which delivers higher doses of radiation per 

treatment or fraction, is associated with increased incidence of 

abscopal effects. While conventional RT is mainly directed at in-

ducing apoptosis due to DNA damage, SBRT induces necrotic tu-

mor cell death, which is a prerequisite for inducing an antitumor 

immune response. Yoo et al.8 explained that there is a window for 

the doses per fraction likely to induce abscopal effect, and thus 

their choice of the hypofractionated regimen. Using a similar ex-

perimental design, Dewan et al.11 tried to find the optimal RT dose 

and fractionation to induce the abscopal effect in combination 

with immunotherapy. They injected TSA mouse breast cancer cells 

into both hind legs of syngeneic mice, and irradiated the primary 

site with three distinct RT regimens (20 Gy ×1, 8 Gy ×3, or 6 Gy 

×5 fractions). As a result, they reported that fractionated RT, not 

single-fraction RT, induced immune-mediated abscopal effect 

when combined with CTLA-4 blockade.11 Later, they showed that 

the balance between cytosolic DNA and DNA exonuclease Trex1 

activation plays a crucial role in the dose effect of RT-immuno-

therapy combination. RT induces accumulation of double-strand 

DNA in the cytosol, and cytosolic DNA activates the DNA sensor 

cyclic GMP-AMP synthase (cGAS) and its downstream effector, 

i.e., stimulator of interferon genes (STING). Activation of the 

cGAS/STING pathway results in interferon-β secretion by cancer 

cells, leading to DC recruitment and activation, which are essen-

tial for CD8+ T-cell priming and antitumor immunity. Dewan et 

al.11 showed that RT-induced cytosolic DNA accumulation is di-

rectly proportional to the fractional dose; however, doses above 

12–18 Gy per fraction caused activation of DNA exonuclease 

Trex1 and degradation of cytosolic DNA, leading to attenuation of 

the RT-induced immunologic response. In this context, 8 Gy used 

by Yoo et al.8 falls in the range of optimal fractional doses for in-

vestigating the mechanism underlying the abscopal effect.12 Many 

questions remain to be answered regarding the optimization of 

RT-ICI combination, including the sequence of RT and ICIs (wheth-

er ICI can be administered before RT, after RT, or concurrently). 

There have been suggestions that anti-PD-L1 therapy is more ef-

fective with concurrent administration, while anti-CTLA-4 therapy 

is more effective when provided prior to RT; trials involving ad-

ministration of multiple ICIs with RT are currently underway.13

Yoo et al.8 showed that a higher-dose radiation also increased 

activated DC counts in the tumor-draining lymph nodes (TDLNs), 

which had a higher expression of PD-L1. While irradiation of the 

tumor site is capable of T-cell priming and activation, TDLNs with 

high tumor antigen load can provide a rich tumor drainage net-

work and are important sites for DC-mediated antitumor T-cell 

stimulation, a critical step in T-cell activation with anti-PD-L1 

therapy.14 Deng et al.15 demonstrated that the STING signaling 

axis activated in DCs promotes an anti-tumor CD8+ T-cell re-

sponse with an increased frequency of interferon-γ+ CD8+ T-cells 

in TDLNs; and this phenomenon was also observed by Yoo et al.8 

While these two studies did not involve the irradiation of TDLNs, 

Buchwald et al.14 injected modified B16F10 cells in bilateral flanks 

of C57BL/6 mice and irradiated either one flank tumor (10 Gy ×1) 

and TDLNs (3 Gy ×3) or one flank tumor alone. They found that 

tumor irradiation stimulated the proliferation of total CD8+ T-cells 

and stem-like CD8+ T-cells, a subset of CD8+ T-cells that rapidly 

proliferate following CD8+ T-cell exhaustion by anti-PD-L1 thera-

py, in the TDLNs. In contrast, the irradiation of tumor and TDLNs 

resulted in a reduction in the abscopal effect as well as the num-

ber of total tumor-specific CD8+ T-cells and stem-like CD8+ T-cells 

in both the irradiated and unirradiated tumors.14 The role of 

TDLNs in mediating the abscopal effects—as investigated by Yoo 

et al.8 and others—is clinically significant and warrants further in-

vestigation, as the effect of RT-ICI combination on the abscopal 

effects may be compromised when patients are subjected to re-

gional nodal irradiation or surgical removal of LNs.

Albeit rare, a number of cases of abscopal effects occurring in 

HCC patients have been reported in the literature. These cases in-
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clude palliative RT for bone metastasis resulting in the regression 

of primary HCC,16,17 irradiation of inferior vena cava (IVC) invasion 

resulting in the regression of multiple intrahepatic metastases,18 

irradiation of a metastatic mediastinal lymph node resulting in the 

regression of lung metastasis,19 and irradiation of primary HCC or 

IVC resulting in the regression of multiple lung or pleural metasta-

ses.20,21 Chino et al.5 reported an unusual case of SBRT for primary 

lung cancer resulting in complete remission of primary HCC. Al-

though these clinical observations suggest the potential role of 

combining RT and ICIs for metastatic HCCs, the RT-ICI combina-

tion should not be investigated for the sole purpose of inducing 

an abscopal effect, until we have more sufficient data to support 

the benefit of such a practice. Recent preclinical and retrospective 

studies have shown promising results for the combinatorial thera-

py with RT and ICIs for advanced HCC.9,22 In this context, the 

study by Yoo et al.8 provides valuable insight into the mechanisms 

underlying enhanced abscopal effect of treating HCC with a com-

bination of RT and ICIs.
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