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Abstract. The present study aimed to evaluate the use 
of 18F‑fluorodeoxyglucose (18F‑FDG) positron emission 
tomography (PET) for detection of high‑fat and high‑salt 
diet‑induced inflammatory lesions of the arterial vessel walls 
in Wistar rats. A total of 20 healthy, 8‑week‑old, male Wistar 
rats were randomly assigned to the high‑fat diet group and the 
normal diet group. After 16 and 24 weeks of feeding, Wistar 
rats in the normal diet group and the high‑fat diet group (five 
rats in each group) were injected with 18F‑FDG through the 
tail vein at a dose of 1 mCi/kg after fasting for 12 h. After 
1 h, the rats were anesthetized with 2% isoflurane, followed 
by micro‑PET imaging with a 10‑min image capture duration 
and immunohistochemical staining. The standardized uptake 
values (SUVs) of 18F‑FDG were significantly higher in the 
iliac artery in the high‑fat diet group compared with those in 
the normal diet group at 16 weeks (1.53±0.08 vs. 1.04±0.03; 
P<0.05) and at 24 weeks (1.96±0.17 vs. 1.12±0.07; P<0.05). 
The SUVs of 18F‑FDG were also significantly greater in the 

abdominal aorta in the high‑fat diet group compared with those 
in the normal diet group at 16 weeks (1.35±0.08 vs. 1.02±0.02; 
P<0.05) and at 24 weeks (1.54±0.09 vs. 1.04±0.02; P<0.05). In 
addition, the SUVs of 18F‑FDG in the iliac artery and abdom‑
inal aorta were significantly higher at 24 weeks compared 
with those at 16 weeks in the high‑fat diet group (P<0.05). 
As determined by immunohistochemistry, the percentage 
of CD68‑positive cells in the total number of cells per unit 
area in each group was 3.20±1.80% in the 24‑week normal 
diet group, 4.70±2.02% in the 16‑week high‑fat diet group and 
6.94±2.02% in the 24‑week high‑fat diet group; the percentage 
of CD68‑positive cells in the high‑fat diet group at 24 weeks 
was significantly higher than that in the high‑fat diet group at 
16 weeks and in the normal diet group at 24 weeks (P<0.05). 
In conclusion, 18F‑FDG PET is a noninvasive imaging tool that 
can continuously monitor inflammatory lesions of the arterial 
vessel walls in Wistar rats. Further improvement of the Wistar 
rat atherosclerosis model may provide data to support the early 
assessment of and intervention in atherosclerosis.

Introduction

With population aging and lifestyle changes, the incidence of 
atherosclerotic cardiovascular disease continues to rise (1). It 
was estimated that the number of patients with cardiovascular 
diseases was 422.7 million globally in 2015 (2). In China, 
the number of patients with cardiovascular diseases was 
>290 million in 2015, and such diseases have become a major 
cause of death in Chinese populations (1).

The current available approaches, such as angiography 
and intravascular ultrasound, have shown diagnostic value for 
atherosclerosis; however, these tools are all invasive, and are 
not of diagnostic significance until the atherosclerotic plaques 
are large enough or the vascular stenosis is severe (3). A 
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search for novel, noninvasive approaches for diagnosis of early 
atherosclerosis is therefore of great importance for the assess‑
ment and management of atherosclerosis. Atherosclerosis 
is accepted as a chronic inflammatory disorder (4), and the 
monocyte‑macrophage system has been shown to have a 
critical role in its development and progression (5,6). Uptake 
of 18F‑fluorodeoxyglucose (18F‑FDG) has been reported to be 
strongly associated with macrophage density. Chen et al (7) 
suggested that the standardized uptake values (SUVs) of 
18F‑FDG may be closely associated with the number of 
macrophages, and indicated that 18F‑FDG positron emission 
tomography (18F‑FDG PET) imaging may be able to quantify 
the metabolic activity of macrophages in the rat arterial vessel 
walls under various physiological or pathological conditions. 
In addition, 18F‑FDG PET imaging may directly display local 
inflammation and the metabolic activity of macrophage accu‑
mulation in atherosclerosis, which may be used to assess early 
inflammation in atherosclerosis (8‑10). The utility of 18F‑FDG 
PET as a marker of inflammation has been extensively studied 
in mouse and rabbit models of atherosclerosis, as well as in 
humans (11). The purpose of the present study was to design 
a Wistar rat model of high‑fat and high‑salt diet‑induced 
inflammatory lesions of the arterial vessel walls, in order to 
evaluate the value of 18F‑FDG PET, as a noninvasive tool, 
in the assessment and management of early inflammation 
in atherosclerosis. These findings could be of great clinical 
significance for early diagnosis, assessment and treatment of 
early atherosclerotic diseases.

Materials and methods

Modeling inflammatory lesions of the arterial vessel walls in 
rats. A total of 20 healthy 8‑week‑old male rats (230‑250 g) 
of the Wistar strain were purchased from the Comparative 
Medicine Center of Yangzhou University (Yangzhou, China). 
After adaptive feeding for a week in the laboratory, rats were 
randomly grouped, with 10 animals in each group. Rats in 
the normal diet group (n=10) were given conventional rodent 
feed (10% fat, 22% protein, 68% carbohydrate and 0.5% salt; 
Shanghai SLAC Laboratory Animal Co., Ltd.), whereas 
rats in the high‑fat diet group (n=10) consumed high‑fat and 
high‑salt feed (49% fat, 21% protein, 30% carbohydrate and 
2% salt; Shanghai SLAC Laboratory Animal Co., Ltd.) for 
16‑24 weeks. All rats were caged and given free access to 
food and water. All animals were housed in a facility at room 
temperature (18‑26˚C) and ~50% humidity under a 12/12‑h 
light/dark cycle. Rats were fed in the morning and evening each 
day, and the water was changed every other day. Body weight, 
body length and abdominal circumference were measured 
once every 4 weeks, and blood pressure, heart rate, blood lipid, 
blood glucose and insulin (INS) levels were measured once 
every 8 weeks.

Measurement of blood pressure. Rat blood pressure was 
measured using a rat‑tail artery blood pressure test system 
(BP‑98A meter; Softron Beijing Biotechnology Co., Ltd; 
http://www.softron.cn/). All rats were kept in an incubator at 
37˚C for 5 min before the measurement. During the measure‑
ment, all animals were kept awake, with limited activity. 
Each rat was measured twice, and the mean blood pressure 

was calculated. Meanwhile, the rat heart rates were monitored 
during the blood pressure measurement.

Measurement of body weight, body length and abdominal 
circumference. The rat body weight was measured via the 
conventional method, using an electronic balance with an 
accuracy of 0.1 g to measure the weight of each rat. When 
the data became stable, the readout was recorded. Abdominal 
circumference (cm) was assessed on the largest zone of the 
rat abdomen using a plastic non‑extensible measuring tape, 
and body length was defined as the length between the 
nose and anus. Lee's index was calculated as follows: Lee's 
index = [body weight (g)]x1/3x[103/body length (cm)].

Measurement of blood lipids, blood glucose and INS levels. 
After fasting for 12 h, blood samples (0.5‑1.0 ml) were 
collected by cutting the rat tail. The blood glucose level was 
measured using a ONETOUCH® UltraVue™ glucose meter 
(LifeScan, LLP), and the triglyceride (TG), total choles‑
terol (TC), high‑density lipoprotein cholesterol (HDL‑C) and 
low‑density lipoprotein cholesterol (LDL‑C) levels were tested 
with commercial reagents (Wako Pure Chemical Industries, 
Ltd.) on a Hitachi 7600 fully automatic biochemical analyzer 
(Hitachi, Ltd.). Blood INS concentration was measured with 
commercial reagents (Beckman Coulter, Inc.) on a DxI 800 
Access Immunoassay system (Beckman Coulter, Inc.). All 
measurements were performed according to the manufacturers' 
instructions. Rats were anesthetized with 400 mg/kg chloral 
hydrate (Sinopac Chemical Reagent Co., Ltd.). Before use, a 
4% chloral hydrate solution was prepared using 0.9% sodium 
chloride and subsequently it was intraperitoneally injected to 
the rats. If rats lost >15% of their body weight or could not 
eat for >3 days, rats were euthanized by cervical dislocation. 
However, none of the rats reached the humane endpoints early 
in the study.

18F‑FDG micro‑PET imaging. A total of 16 and 24 weeks after 
feeding, Wistar rats in the normal diet group and the high‑fat 
diet group (n=5 rats/group) were injected with 18F‑FDG 
(supplied by the Department of Nuclear medicine, Affiliated 
Hospital of Jiangnan University, Wuxi, China; http://www.
wuxihospital.com/petct/index.html) through the tail vein at a 
dose of 1 mCi/kg after fasting for 12 h. After 1 h, 2% isoflu‑
rane (Minrad International, Inc.) was used to induce anesthesia 
in rats and anesthesia was maintained with 1.5% isoflu‑
rane (12,13) using a Midmark Matrx anesthesia machine 
(Midmark Corporation). Subsequently, micro‑PET imaging 
was performed using a Siemens Inveon micro‑PET scanner 
(Siemens Healthineers) with an LSO crystal; the conditions 
were as follows: Death time of 40 nsec, a 20x20 matrix, a 
1.4‑mm maximum resolution of the imaging field of view, a 
detection range of 10x10x12.7 cm, a slice thickness of 0.8 mm, 
and a 10‑min image capture duration. To ensure consistency 
between the micro‑PET scanning slices and the pathological 
sections, the blood vessels in the inferior segment of the 
abdominal aorta that were proximal to the bilateral iliac artery 
bifurcation were sampled for micro‑PET scanning.

Pathological examinations. After micro‑PET imaging, 
rats were intraperitoneally injected with chloral hydrate 
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(400 mg/kg) for anesthesia (14,15), and euthanized by cardiac 
perfusion with normal saline and 4% paraformaldehyde. 
Death was confirmed by cardiac and respiratory arrest. The 
abdominal aorta and the bilateral iliac artery were then 
dissected, and the blood vessels in the inferior segment of the 
abdominal aorta that were proximal to the bilateral iliac artery 
bifurcation were collected. Blood vessels were fixed in 4% 
paraformaldehyde (4˚C; 12 h), dehydrated in a gradient ethanol 
series and embedded in paraffin wax at 25˚C overnight. The 
duration of the experiment lasted for ~1 h. Subsequently, 
the vascular cross sections were sectioned into 4‑µm thick 
slices. For immunohistochemistry, vascular sections were 
incubated with a primary antibody against CD68 (1:1,000; 
cat. no. ab125212; Abcam) at 4˚C overnight, followed by 
incubation with an HRP‑conjugated secondary antibody 
(1:2,000; cat. no. 8114; Cell Signaling Technology, Inc.) for 1 h 
at room temperature, detected with 3,3'‑diaminobenzidine at 
25˚C for 20 min, and counterstained with hematoxylin. The 
slides were examined using Olympus microscope (BX41) and 
Olympus DP70 Digital Camera System at x200 magnification 
(Olympus Corporation). The brown‑stained area (CD68+ cells) 
was separately quantified using ImageJ version 1.52a (National 
Institutes of Health).

Ethical considerations. All animal studies were conducted in 
accordance with the recommendations in the Guidelines for 
the management and use of laboratory animals (16) The present 
study was approved by the Ethics Review Committee of Jiangsu 
Lake Taihu Sanatorium (permission no. SGLERC‑2011008; 
Wuxi, China) and Jiangsu Provincial People's Hospital Group 
(permission no. SRY20100820).

Data analyses. The region of interest (ROI) of high 18F‑FDG 
uptake in the blood vessels was marked using the ASI Pro 
VM™ MicroPET Analysis software version 6.8.6.9 (Concorde 
Microsystems, Inc.) and the 18F‑FDG SUVs were calculated 
using the following formula: SUV mean (the average of uptake 
within the ROI) = (radioactivity concentration in ROI x rat body 
weight)/total administered dose of 18F‑FDG (decay corrected).

Independent samples t‑test was used to assess the differ‑
ences in physiological indexes and metabolic parameters 
between the groups. In addition, comparison of SUV values 
between the different groups over the same period was made 
using the independent samples t‑test. Considering the influence 
of time and sample size, the Mann‑Whitney U test was used to 
compare SUV values at weeks 16 and 24 in the high‑fat group. 
The differences in CD68 staining intensity among groups 
were analyzed by one‑way ANOVA followed by Tukey's 
post hoc test. The data are presented as the mean ± SEM and 
box‑and‑whisker diagrams in Figs. 1‑3. All statistical analyses 
were conducted using SPSS statistical software, version 15.0 
(SPSS, Inc.). P<0.05 was considered to indicate a statistically 
significant difference.

Results

Changes in physical and metabolic parameters. As shown 
in Table I, there were no significant differences between the 
normal diet group and the high‑fat diet group in terms of body 
weight, abdominal circumference, body length, Lee's index 

or blood pressure at baseline and after 8 weeks of feeding 
(P>0.05). Differences between groups were analyzed by 
independent samples t‑test. The body weight and abdominal 
circumference were higher in the high‑fat diet group compared 

Figure 1. Uptake of 18F‑FDG into the bilateral iliac arteries of rats on a 
normal diet and a high‑fat diet at 16 and 24 weeks. (Aa and Ab) Normal diet 
group at 16 weeks, (Ba and Bb) high‑fat diet group at 16 weeks. (Ca and Cb) 
Normal diet group at 24 weeks, (Da and Db) high‑fat diet group at 24 weeks. 
Arrows indicate the cross section (Aa, Ba, Ca and Da) and coronal plane 
(Ab, Bb, Cb and Db) of the vessels of the bilateral iliac artery. The magnifica‑
tion is 2. Comparison of the mean SUVs of bilateral iliac vascular uptake 
of 18F‑FDG at (Ea) 16 and (Eb) 24 weeks in the normal diet group and the 
high‑fat diet group. *P<0.05 vs. the control group. (Ec) Comparison of the 
mean SUVs of bilateral iliac vascular uptake of 18F‑FDG at 16 and 24 weeks 
in the high‑fat diet group.**P<0.01 vs. the 16‑week high‑fat diet group. 18F‑FD
G, 18F‑fluorodeoxyglucose; SUV, standardized uptake value.
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with those in the normal diet group at 8 weeks (P<0.05), and 
the systolic blood pressure (SBP) and diastolic blood pres‑
sure (DBP) were higher in the high‑fat diet group compared 
with those in the normal diet group at 12 weeks (P<0.05). 
There was no significant difference in heart rate between the 
two groups (P>0.05) (Table I).

There were no significant differences in the INS levels 
between the two groups at baseline, and at 8 and 16 weeks 
(P>0.05). However, higher INS levels were detected in the 
high‑fat diet group compared with those in the normal diet 
group at 24 weeks (P<0.05). Higher TC concentrations were 
detected in the high‑fat diet group compared with those in the 
normal diet group at 8 and 24 weeks (P<0.05), and a higher 
LDL‑C concentration was revealed in the high‑fat diet group 
compared with that in the normal diet group at 16 weeks 
(P<0.05). No significant differences were observed between 
the two groups in terms of fasting glucose concentration, TG 
or HDL‑C levels (P>0.05) (Table I).

18F‑FDG micro‑PET imaging of rats. The cross‑sectional 
and coronal profiles of 18F‑FDG uptake by bilateral 
iliac arteries at weeks 16 and 24 in rats in the normal 
diet group (Fig. 1Aa, b, Ca and b) and high‑fat diet 
group (Fig. 1Ba, b, Da and b) are shown. Independent samples 
t‑test was used for analysis of the normal diet and high‑fat diet 
groups. At week 16, the mean SUV of 18F‑FDG in the iliac artery 
vessels in the high‑fat diet group was significantly higher than 
that in the normal diet group (1.53±0.08 vs. 1.04±0.03; P<0.05; 
Fig. 1Ea). At week 24, the mean SUV of 18F‑FDG in the iliac 
artery vessels in the high‑fat diet group was significantly higher 
than that in the normal diet group (1.96±0.17 vs. 1.11±0.07; 
P<0.05; Fig. 1Eb). For analysis of rats in the high‑fat diet group 
at weeks 16 and 24, a Mann‑Whitney U test was used. The 
average SUV intake of 18F‑FDG in the iliac artery at week 24 
was significantly higher than that at week 16 in the high‑fat 
diet group (1.96±0.17 vs. 1.53±0.08; P<0.01; Fig. 1Ec). These 
results indicated that the uptake of 18F‑FDG into the iliac 
artery wall was significantly increased in rats on a high‑fat 
diet with increased feeding time.

The sagittal plane of 18F‑FDG uptake by the abdom‑
inal aorta at weeks 16 and 24 in rats in the normal diet 
group (Fig. 2Aa and b) and high‑fat diet group (Fig. 2Ba and b) 
are shown. Independent samples t‑test was used for analysis 
of the normal diet and high‑fat diet groups. At weeks 16 
(1.35±0.08 vs. 1.02±0.02) and 24 (1.54±0.09 vs. 1.04±0.02), the 
mean SUV of 18F‑FDG in the abdominal aorta in the high‑fat 
diet group was significantly higher than that in the normal diet 
group (all P<0.05; Fig. 2Ca and b). For analysis of rats in the 
high‑fat diet group at weeks 16 and 24, a Mann‑Whitney U test 
was used. The uptake of 18F‑FDG in the abdominal aorta in the 
high‑fat diet group at week 24 was significantly higher than 
that at week 16 (1.54±0.09 vs. 1.35±0.08; P<0.05; Fig. 2Cc). 
These findings indicated that, with the increase in feeding 
time, the uptake of 18F‑FDG into the abdominal aortic wall of 
the rats on a high‑fat diet was significantly increased.

CD68‑positive cells. The expression of CD68‑positive 
macrophages was detected in the abdominal aortic wall of 
rats (Fig. 3). Immunohistochemical staining of CD68 in the 
abdominal aortic vascular wall was conducted on rats in the 
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normal diet group at 24 weeks, and on rats in the high‑fat diet 
group at 16 and 24 weeks (Fig. 3A‑C). Brown cells indicated 
macrophages with positive CD68 expression and revealed the 
aggregation of CD68‑positive macrophages in the high‑fat diet 
group (Fig. 3B and C). The staining intensity of CD68 was 
statistically analyzed by one‑way ANOVA and Tukey's post 
hoc test. The percentage of CD68‑positive cells in the total 
number of cells per unit area in each group was 3.20±1.80% 
in the normal diet group; 4.70±2.02% in the 16‑week high‑fat 
diet group; and 6.94±2.02% in the 24‑week high‑fat diet 
group. The percentage of CD68‑positive cells was significantly 
higher in the 24‑week high‑fat diet group compared with in the 
16‑week high‑fat diet group (P<0.05; Fig. 3D). In addition, the 
percentage of CD68‑positive cells was significantly higher in 
the 24‑week high‑fat diet group compared with in the normal 
diet group at week 24 (P<0.001; Fig. 3D). The percentage of 
CD68‑positive cells was higher in the 16‑week high‑fat diet 

group compared with that in the normal diet group at week 24; 
however, there was no significant difference (P>0.05; Fig. 3D). 
These findings demonstrated that, with the increase in feeding 
time, the percentage of CD68‑positive cells was increased in 
the aortic wall of rats on a high‑fat diet, thus suggesting that the 
density of macrophages in the vascular wall of the abdominal 
aorta was increased with the increase in feeding time.

Discussion

Since the inflammatory hypothesis of atherosclerosis was 
proposed in 1999 (4), a growing number of studies have shown 
that monocytes, macrophages and vascular endothelial cells are 
involved in the inflammation of atherosclerosis, and macrophages 
have been reported to serve a critical role in the development 
and progression of atherosclerosis (17,18). Kubota et al (19) 
detected a higher uptake of 18F‑FDG in the cells around a 

Figure 2. Sagittal uptake of 18F‑FDG in the abdominal aorta of rats on a normal diet and a high‑fat diet at 16 and 24 weeks. Normal diet group at weeks 
(Aa) 16 and (Ab) 24. High‑fat diet group at weeks (Ba) 16 and (Bb) 24. The arrows indicate the sagittal plane of the abdominal aorta. Comparison of average 
SUVs of abdominal aortic uptake of 18F‑FDG at weeks (Ca) 16 and (Cb) 24 in the normal diet group and the high‑fat diet group. *P<0.05 vs. the control group. 
(Cc) Comparison of mean SUVs of abdominal aortic uptake of 18F‑FDG at 16 and 24 weeks in the high‑fat diet group. *P<0.05 vs. the 16‑week high‑fat diet 
group. 18F‑FDG, 18F‑fluorodeoxyglucose; SUV, standardized uptake value.
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tumor compared with in viable tumor cells with high metabolic 
activity. A retrospective review of the records of 85 patients 
with cancer undergoing 18F‑FDG PET/CT demonstrated that 
18F‑FDG uptake in the thoracic aortic wall may be correlated 
with the metabolic activity of atherosclerotic changes (20). In 
addition, 18F‑FDG accumulation has been shown to be caused 
by macrophage uptake, and it has been suggested that 18F‑FDG 
imaging may be used to provide a qualitative characterization of 
the inflammatory features of atherosclerosis and to quantify the 
degree of inflammation (10,21‑24).

The present study detected significantly higher SUVs 
of 18F‑FDG in the iliac artery and abdominal aorta in the 
high‑fat diet group compared with those in the normal diet 
group at 16 and 24 weeks, and a significantly greater SUV 
of 18F‑FDG in the arteries in the high‑fat diet group at 
24 weeks than at 16 weeks. These data indicated a signifi‑
cant increase in cellular metabolic activity in the vascular 

walls of the iliac artery and the abdominal aorta in the 
high‑fat diet group compared with those in the normal diet 
group. Immunohistochemical staining detected accumula‑
tion of CD68‑positive macrophages in the rat abdominal 
aortic wall in the high‑fat diet group at 16 and 24 weeks; 
the 24‑week high‑fat diet groups exhibited significantly 
higher percentages of CD68‑positive cells compared with 
in the normal diet group (P<0.001), and the percentage 
of CD68‑positive cells was significantly higher in the 
24‑week high‑fat diet group compared with that in the 
16‑week high‑fat diet group (P<0.05). These results are 
similar to those of previous studies, which reported that 
18F‑FDG uptake was strongly associated with macrophage 
density in atherosclerotic vessels (10,25‑27). However, 
rabbits or mice were used in previous studies, whereas 
Wistar rats were used as an animal model in the present 
study (10,25‑27).

Figure 3. Expression of CD68‑positive macrophages in the rat abdominal aortic wall. Immunohistochemical analysis of rat abdominal aortic vascular speci‑
mens, which were stained with CD68; the mean intensity of CD68 staining was analyzed. Arrows indicate the CD68+ cells. (A) Normal diet group at 24 weeks; 
(B) high‑fat diet group at 16 weeks; (C) high‑fat diet group at 24 weeks. (D) Percentage of CD68‑positive cells in the total number of cells per unit area in 
each group were quantified: 3.20±1.72% for (A); 4.70±1.92% for (B); 6.93±1.93% for (C). Scale bars, 100 µm (left); 50 µm (right). Data are presented as the 
mean ± SEM. ***P<0.001 vs. the normal diet (control) group; #P<0.05 vs. the 16‑week group.
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Because rats have no gallbladder, feeding them with a 
high‑fat diet does not easily induce a rise in cholesterol and 
produce atherosclerotic lesions (28,29). Therefore, atheroscle‑
rosis has been predominantly modeled in rabbits and mice. 
However, in previous studies in rat models of atherosclerosis, 
it has been reported that vitamin D + high‑fat diet may induce 
atherosclerotic plaques (29‑32). In the present study, inflam‑
matory lesions of the arterial vessel walls were induced with 
a high‑fat and high‑salt diet in Wistar rats, and significantly 
higher body weight, abdominal circumference and Lee's index 
were detected in the high‑fat diet group compared with those 
in the normal diet group at 8 weeks. In addition, significantly 
greater SBP and DBP were detected in the high‑fat diet group 
than those in the normal diet group at 12 weeks, and signifi‑
cantly higher INS levels were revealed in the high‑fat diet group 
than those in the normal diet group at 24 weeks, Conversely, 
there was no significant difference in fasting blood glucose 
between the two groups. In addition, rat blood pressure and 
body weight exhibited a consistent tendency: Body weight 
was shown to increase earlier than blood pressure, which 
was similar to previous findings demonstrating that rats with 
obesity induced by diet alone presented an increase in blood 
pressure after 12 weeks of feeding, and that elevated blood pres‑
sure may be associated with high‑salt diet and obesity (33,34). 
Abdominal obesity has been accepted as the primary cause of 
INS resistance (27,32,35‑38). In addition, in the present study, 
significantly higher TC levels were measured at 8 and 24 weeks, 
and a significantly higher LDL‑C concentration was detected at 
16 weeks in the high‑fat diet group compared with in the normal 
diet group. Although pathological examinations did not detect 
typical atherosclerotic plaques, the aforementioned results indi‑
cated that 18F‑FDG uptake was increased in the rat iliac artery 
and abdominal aortic wall in the high‑fat diet group compared 
with in the normal diet group, and that the SUV of 18F‑FDG 
was significantly higher in the high‑fat diet group at 24 weeks 
than at 16 weeks. Taken together, these findings suggested that 
18F‑FDG uptake may be associated with local macrophage accu‑
mulation, and the results of immunohistochemistry revealed 
that the increase in macrophage density was associated with the 
increase in 18F‑FDG uptake in arteries. These data are similar 
to previous studies reporting an association between the number 
of macrophages and the SUV of 18F‑FDG in mice (27). These 
findings also confirmed the successful modeling of inflamma‑
tory lesions of the arterial vessel walls induced by a high‑fat and 
high‑salt diet in Wistar rats.

Currently, most available imaging techniques used for the 
detection of atherosclerosis are based on the description of 
morphological features of atherosclerotic plaques, and there 
remains a lack of approaches for early diagnosis of atheroscle‑
rosis. Notably, there is a lack of non‑invasive approaches that 
can be used for continuous monitoring of the range and degree 
of vascular wall inflammation. As a technique involving a 
combination of functional and structural imaging, PET/CT 
imaging has shown great potential in the assessment and diag‑
nosis of atherosclerosis. 18F‑FDG activity has been reported 
to correlate with macrophage content within aortic athero‑
sclerosis, and 18F‑FDG PET imaging may serve as a useful 
non‑invasive imaging technique for the detection of athero‑
sclerotic lesions (39). SUV is normally used to assess disease 
activity during PET imaging, which may provide quantitative 

information on the severity of vascular wall inflammation 
for metabolic and structural imaging approaches. In animal 
models of atherosclerosis (mice or rabbits) receiving 18F‑FDG 
PET imaging, the metabolic activity of 18F‑FDG was shown 
to increase in activated macrophages, and a marked increase 
was detected in 18F‑FDG uptake in regions with macrophage 
activity (11). In addition, nanoparticle PET‑CT imaging of 
macrophages in inflammatory atherosclerosis further revealed 
that the radionuclide activity of in vivo imaging was strongly 
correlated with macrophages in atherosclerotic plaques (11,40), 
and 18F‑FDG uptake has been reported to be proportional to 
the duration of cholesterol feeding, and to peak with plaque 
disruption and thrombosis (41).

In the current study, a Wistar rat model of vascular wall 
inflammation induced by a high‑fat and high‑salt diet was used. 
In this animal model, the arterial vessel walls were shown to 
display inflammatory lesions. This can also be said to be the 
early stage of atherosclerosis confirmed by the combination 
of 18F‑FDG PET and immunohistochemistry. The relation‑
ship between uptake of 18F‑FDG and inflammation has been 
demonstrated using histology linking 18F‑FDG uptake with 
the number of macrophages in arterial specimens (8,42,43). It 
may be hypothesized that although rats have no gallbladder and 
are resistant to atherosclerosis, their application prospects will 
improve if they can be developed and studied as an animal model 
of atherosclerosis. This is primarily because rats are low in cost, 
easily accessible, easy to feed and exhibit similar physiological 
anatomy to humans. In addition, compared with mice, rats are 
more suitable for the interventional study of drugs and instru‑
ments for endovascular angioplasty and stenting. Pahk et al (44) 
established a Sprague‑Dawley rat model using right carotid 
artery ligation plus atherosclerosis diet and vitamin D injection. 
After 1 month, 18F‑FDG PET/CT indicated increased uptake of 
FDG in carotid atherosclerosis arteries, and the uptake in the 
inner layer was higher compared with that in the outer layer.

However, there are limitations in the present study: i) The rat 
model of the early inflammatory stage of atherosclerosis lacks 
evidence of inflammatory markers, such as leukocytes, high 
sensitivity C‑reactive protein, myeloperoxidase, LI‑6, mono‑
cyte chemoattractant protein‑1, etc. ii) In addition, the results 
may be more meaningful if ultrasound was used to measure 
the thickness of the abdominal aorta and the feeding time 
was prolonged. Previous studies have revealed that 18F‑FDG 
PET/CT can specifically display inflammatory activity. For 
example, both human vascular tissue biopsy and animal studies 
have shown that 18F‑FDG intake is in direct proportion to the 
number of plaque macrophages (45), thus 18F‑FDG imaging 
can be used to identify unstable plaques. 18F‑FDG PET/CT 
can also detect atrial/auricular inflammation and is associated 
with stroke in patients with atrial fibrillation (46‑48). Notably, 
18F‑FDG PET/CT has unique and important value in the detec‑
tion of a variety of types of cardiovascular inflammation. The 
present study assessed the establishment of an early inflamma‑
tory model of atherosclerosis in Wistar rats. The results revealed 
that 18F‑FDG PET might directly display the metabolic activity 
of macrophage accumulation in local arterial vessel walls 
in Wistar rats. These data demonstrated that 18F‑FDG PET 
imaging may be considered a feasible method to detect inflam‑
matory lesions of the arterial vessel walls in Wistar rats. It was 
therefore hypothesized that stable modeling of atherosclerosis 



SHEN et al:  18F‑FDG PET AND ARTERIAL INFLAMMATION8

in Wistar rats by vitamin D treatment + intima injury and 
extension of the feeding duration of the high‑fat and high‑salt 
diet (29‑32,44), which may strengthen the characteristics of 
the Wistar rat atherosclerosis model (arterial intima thickness, 
vascular wall plaque formation and vascular lumen stenosis), 
followed by 18F‑FDG PET imaging, may provide imaging data 
support for the early identification, non‑invasive assessment 
and dynamic monitoring of atherosclerosis.
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