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Cancer mortality has improved due to earlier detection via screening, as well as due

to novel cancer therapies such as tyrosine kinase inhibitors and immune checkpoint

inhibitions. However, similarly to older cancer therapies such as anthracyclines,

these therapies have also been documented to cause cardiotoxic events including

cardiomyopathy, myocardial infarction, myocarditis, arrhythmia, hypertension, and

thrombosis. Imaging modalities such as echocardiography and magnetic resonance

imaging (MRI) are critical in monitoring and evaluating for cardiotoxicity from these

treatments, as well as in providing information for the assessment of function and

wall motion abnormalities. MRI also allows for additional tissue characterization using

T1, T2, extracellular volume (ECV), and delayed gadolinium enhancement (DGE)

assessment. Furthermore, emerging technologies may be able to assist with these

efforts. Nuclear imaging using targeted radiotracers, some of which are already clinically

used, may have more specificity and help provide information on the mechanisms

of cardiotoxicity, including in anthracycline mediated cardiomyopathy and checkpoint

inhibitor myocarditis. Hyperpolarized MRI may be used to evaluate the effects of

oncologic therapy on cardiac metabolism. Lastly, artificial intelligence and big data

of imaging modalities may help predict and detect early signs of cardiotoxicity and

response to cardioprotective medications as well as provide insights on the added

value of molecular imaging and correlations with cardiovascular outcomes. In this

review, the current imaging modalities used to assess for cardiotoxicity from cancer
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treatments are discussed, in addition to ongoing research on targeted molecular

radiotracers, hyperpolarized MRI, as well as the role of artificial intelligence (AI) and

big data in imaging that would help improve the detection and prognostication of

cancer-treatment cardiotoxicity.

Keywords: cardiotoxicity, cardiovascular imaging, big data, cancer therapy-associated cardiotoxicity, molecular

imaging

INTRODUCTION

Cancer incidence is expected to increase by 50% by 2050, but
over the past two decades, cancer mortality has improved in part
due to earlier detection via screening and the advent of novel
therapies such as tyrosine kinase inhibitors (TKI) for cancers
like chronic myelogenous leukemia (CML), liver, gastrointestinal
and lung cancers, as well as immunotherapy, such as checkpoint
inhibitors, for metastatic disease and an expanding list of
indications including triple negative breast cancer, lung cancer,
melanoma, bladder cancer, and renal cell cancer (1–6).

However, with the rise of newer oncologic therapies, there
have been a spectrum of adverse cardiovascular toxicities
including cardiomyopathy (CM), myocardial infarction,
myocarditis, arrhythmia, hypertension (HTN) and thrombosis
that have been associated with these agents. More traditional
cardiotoxic agents like anthracyclines (i.e., doxorubicin), one of
the most widely used class of chemotherapeutics due to improved
overall cancer and survival outcomes has been shown to alter
myocardial energetics, promote mitochondrial dysfunction,
increase reactive oxygen species levels leading to activation of
matrix metalloproteases, inhibit topoisomerase IIb and cause
DNA strand breaks, thereby promoting cardiomyopathy (7–9).

HER2 inhibitors like trastuzumab has also been shown to
increase risk of CM via antagonizing important pro survival
as well as other important signal transduction pathways for
metabolism in the heart (10). Platinum agents like cisplatin have
been shown to increase oxidative stress and increased apoptosis
and has been associated with cardiomyopathy in rare instances
(11). Alkylating agents like cyclophosphamide, which can cause
oxidative damage and direct endothelial cell damage have been
linked to myocarditis and cardiomyopathy (12). Antimetabolites
like 5 fluorouracil (5FU), which is commonly used in head and
neck cancers as well as gastrointestinal cancers has been shown
to increase risk of coronary vasospasm andmyocardial infarction
(13, 14). Multiple myeloma therapies (bortezomib, lenalidomide)
and vascular endothelial growth factor (VEGF) inhibitors
like bevacizumab have been associated with thrombosis and
hypertension by promoting endothelial cell dysfunction (15–18).
TKIs like ibrutinib has been associated with atrial fibrillation,

Abbreviations: AI, artificial intelligence; CM, cardiomyopathy; CML, chronic
myelogenous leukemia; DGE, delayed gadolinium enhancement; DNA,
Deoxyribonucleic acid; ECV, extracellular volume; GLS, global longitudinal
strain; ICI, checkpoint inhibitors; HER2, human epidermal growth factor receptor
2; HF, heart failure; HTN, hypertension; MI, myocardial infarction; MUGA,
multigated acquisition; ROS, reactive oxygen species; TdP, torsades de pointe;
TKI, tyrosine kinase inhibitor; VTE, venous thromboembolism.

while other TKIs such as ponatinib, sorafenib, sunitinib have been
associated with CM and myocardial infarction (MI) (19–21).

Of the close to 2 million patients diagnosed with cancer in
2019, it is estimated that 38.5% are eligible for ICI therapy
(22, 23). In addition to increased risk of myocarditis, pericarditis
and vasculitis, immune checkpoint inhibitors (ICI) have been
associated with increased risk of plaque rupture/acceleration
of atherosclerosis and thrombosis (24). ICI myocarditis is
characterized by lymphocytic infiltration with CD4 and CD8 cells
and mortality is high if not identified and if left untreated (25).

Newer immunotherapies may also increase risk of
myocarditis, such as cellular therapies like CART and molecular
inhibitors such as CCR4 antagonist, mogamulizumab, which is
used to treat T cell lymphomas (26–28). However, evaluation of
the earliest signs of immune cell infiltration in the myocarditis
process is limited (Table 1; Figure 1). Imaging modalities like
echocardiography (echo) and magnetic resonance imaging
(MRI) are routinely used to monitor and evaluate for the
aforementioned oncologic therapy related cardiotoxicity,
with both allowing for assessment of function and wall
motion abnormalities and MRI allowing for additional tissue
characterization using T1, T2, extracellular volume (ECV) and
delayed gadolinium enhancement (DGE) assessment. While
nuclear studies like multi-gated acquisition (MUGA) scans
have fallen out of favor for the evaluation of cardiomyopathy
mediated by oncologic therapy due to the higher sensitivity, and
availability of echo and MRI, emerging nuclear imaging using
molecularly targeted radiotracers may confer more specificity
and help elucidate the mechanisms of cardiotoxicity, many of
which are already in clinical use for oncology purposes and thus
can be adapted to evaluate their signal/role in cardiotoxicity
(Table 1). In addition to molecular targets, hyperpolarized MRI
has emerged as a potential imaging modality to evaluate effects
of oncologic therapy on cardiac metabolism and has reached
human studies. Finally, artificial intelligence and big data of
imaging modalities including electrocardiograms may be able
to help predict and detect early signs of cardiotoxicity and
response to cardioprotective medications once cardiomyopathy
develops but also help provide insights on diagnostic and
prognostic value of molecular based imaging. We review current
imaging modalities used to assess for cardiovascular toxicities
associated with oncologic therapies and highlight ongoing
research in the areas of molecular imaging, targeted molecular
radiotracers and hyperpolarized MRI as well as the role of
artificial intelligence (AI) and big data in imaging that would
help improve detection, prognostication of oncologic therapy
related cardiotoxicity.
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TABLE 1 | Cancer therapy, associated CV toxicity and imaging assessment.

Cancer therapy Associated CV toxicity Imaging modality/method for

evaluating cardiotoxicity

Novel molecular imaging

approaches

Stage preclinical

vs. clinical

Anthracyclines:

Doxorubicin, daunorubicin

Cardiomyopathy (29)

Early stages of toxicity

MRI, echo, nuclear Molecular nuclear imaging for

cardiotoxicity:

SPECT radiotracers:

123 I-meta-iodobenzylguanidine

(MIBG) (30)

Clinical

99mTc-RP805 (31) Preclinical

111 In-antimyosin (30) Clinical (32)

99mTc-annexin (33) Clinical (34)

PET radiotracers:

18F-DHMT (35) Preclinical

68Ga-Galmydar (36) Preclinical

Changes in metabolism:

Hyperpolarized magnetic resonance

(37)

Clinical

13C pyruvate (38, 39)

Other: Topoisomerase I/II

inhibitors, taxols,

cyclophosphamide,

paclitaxel

Hyperpolarized magnetic resonance

(37)

Clinical

Platinum agents: cisplatin,

oxaliplatin, carboplatin

Checkpoint inhibitors

Pembrolizumab Myocarditis (40), vasculitis,

pericarditis (41, 42),

atherosclerosis (43)

Echo for function/strain, MRI for

function, tissue characterization

i.e.,

Molecular imaging for myocarditis:

Ipilimumab MRI: 89Zr-DFO-CD4 and 89Zr-DFO-CD8a

(44)

Clinical

Nivolumab Edema/scar imaging 68Ga-FAPI (45) Clinical

Atezolizumab PET:

Avelumab 18FDG to evaluate for vasculitis. Fibrosis imaging:

Cemiplimab 82Rb to evaluate for ischemic

disease

68Ga-collagelin (46) Preclinical

SPECT:

99mTc-tetrofosmin or
99mTc-sestamibi to evaluate for

ischemic disease

TKIs

Imatinib HF (47) MRI, echo, nuclear SPECT

Bosutinib Thrombosis (48) Thrombosis imaging

Evaluation of fibrin

64CU-FBP8 (49) Clinical trials (50)

Evaluation of glycoprotein IIb/IIIa

receptor

Dasatinib Thrombosis (51), HTN, QT

prolongation (52)

18F-GP1 (53) Clinical trial (53)

Ponatinib Thrombosis (54), HF (55),

HTN, ischemia

MRI, echo

Nilotinib Thrombosis, QTC

prolongation (52)

Ibrutinib A Fib (19)

Sunitinib HF (56), HTN, QTC

prolongation (57)

MRI, echo

(Continued)

Frontiers in Cardiovascular Medicine | www.frontiersin.org 3 March 2022 | Volume 9 | Article 829553

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Kwan et al. Cardiovascular/Molecular Imaging, Big Data, Cardiotoxicity

TABLE 1 | Continued

Cancer therapy Associated CV toxicity Imaging modality/method for

evaluating cardiotoxicity

Novel molecular imaging

approaches

Stage preclinical

vs. clinical

Sorafenib MI, HF, HTN, QTC

prolongation

CT coronary, PET/SPECT for

ischemic evaluation

Hyperpolarized magnetic resonance Clinical

68Ga-DOTATATE (58) Clinical (59)

Vendetanib HF, HTN (60), QTC

prolongation, TdP (61)

Afatinib None so far (62)

Erlotinib MI (rare) (63)

Lapatinib HF, QT prolongation (64) MRI, echo

Gefitinib HF (65) MRI, echo

axitinib HF, HTN (66) MRI, echo

bevacizumab HTN, thrombosis Hyperpolarized magnetic resonance

to evaluate hypertensive stress (67)

Clinical

Trastuzumab Heart failure (68–70) MRI, ECHO, nuclear (MUGA)

Pertuzumab

Neratinib

Tucatinib

Anti metabolite

5 FU Coronary vasospasm

(14, 71)

CT coronary, PET or SPECT to

rule out obstructive disease

Hyperpolarized magnetic resonance Clinical

CURRENT IMAGING MODALITIES USED
TO INTERROGATE ONCOLOGIC THERAPY
CARDIOTOXICITY

Echo and MRI in Evaluation of
Cardiotoxicity
Cardiotoxicity due to anthracycline use (often dose dependent,
but can occur at any dose) are common, up to 5%with cumulative
doses <400 mg/kg, but up to 20% for those treated with 700
mg/kg or more (72). HER2 inhibitor mediated cardiomyopathy
can occur in 5–10% of patients and is increased when
given in conjunction with anthracyclines up to 27% (73, 74).
Oncologic therapy mediated cardiomyopathy can be evaluated
by traditional imaging modalities such as echo and MRI, which
are able to evaluate wall motion, left and right ventricular
function and even early signs of toxicity via changes in strain,
namely global longitudinal strain (75, 76). The European Society
for Medical Oncology (ESMO) and the American Society of
Echo (ASE) recommend 2D/3D echo or MRI for assessing
left ventricular function including strain for monitoring of
known cardiotoxic therapies such as anthracyclines or anti-Her2
therapies and the American Society of Clinical Oncology (ASCO)
recommends echo or MRI as first line imaging modalities with
MUGA as a second line if echo/MRI are not available or if not
technically feasible for MRI (77–81). Due to reduced variability
compared to 2D echo, 3D echo or MRI are recommended for
sequential follow up (82).

In addition to being the gold standard for volumetrics and
ejection fraction, MRI has additional evaluation capabilities
including tissue characterization for injured cells such as changes
in ECV and increased native T1 times, shown with anthracycline

use and increased T2 relaxation times with anthracycline toxicity
(83–86). The presence of DGE post trastuzumab, a HER2
inhibitor, was associated with cardiomyopathy (87).

Strain as a Predictor of Cardiomyopathy
Feature tracking global longitudinal strain (GLS) was first
used in echo to show that it could be predictive of future
cardiomyopathy in multiple studies of cancer patients
undergoing cardiotoxic chemotherapy with anthracycline
or trastuzumab. For example, an increase in GLS >12 or
15% was associated with a significant drop in LVEF >10% 6
months after in several studies (88, 89). MRI has subsequently
shown that use of tagging, feature tracking strain or fast strain
encoded (SENC) assessment are sensitive and highly accurate
in detecting subclinical cardiotoxicity as evidenced by an
increase in GLS for patients on cardiotoxic chemotherapy
such as anthracyclines, with SENC having a higher accuracy
that was less dependent on loading conditions (90–94).
However, strain assessment in MRI is largely used in a
research setting and is not routinely used in the clinical
practice yet.

MRI Evaluation of Adverse Immune
Related Cardiac Events
ICI myocarditis can occur in 1–2% of patients and has a
high mortality of up to 50% if untreated (25, 95). MRI has
become a work horse for evaluation of immunotherapy related
cardiotoxicities. In addition to T1, and ECV changes, T2
abnormalities allow for assessment of myocardial edema in
patients on checkpoint inhibitors with concern for myocarditis
or pericarditis and DGE, a marker of myocardial injury
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FIGURE 1 | Imaging modalities and evaluation of cardiotoxicities of oncologic therapies. For evaluation of peripheral artery disease (PAD) (top left), FDG, FAP and

SSTR2 imaging may be able to identify vulnerable plaque, while CT and MRI can help evaluate degree of stenosis. For evaluation of thrombosis (top right), nuclear

imaging may be able to identify early clot formation with radiotracers directed at fibrin or glycoprotine IIb/IIIa, and MRI can use a long inversion time to identify

thrombus, as with TI600. For evaluation of cardiomyopathy/myocarditis (middle), echo and MRI can evaluate ejection fraction as well as myocardial strain. For

myocarditis, MRI can evaluate tissue characteristics such as T1, T2 and DGE, which are now components of the Lake Louise criteria for myocarditis. Nuclear can

evaluate for T cell infiltration using tracers targeting CD4, CD8 cells. Tracers directed against FAP, such as 68Ga-FAPI has been shown to be increased in an animal

model of checkpoint inhibitor myocarditis. Evaluation of pericarditis (bottom left), a complication of checkpoint inhibitors can be assessed by echo for detection of

pericardial effusion, but with greater specificity MRI can identify edema and DGE. Atherosclerosis (bottom right) can be evaluated by traditional SPECT and PET

techniques to evaluate for perfusion with stress and rest. CT coronary is now first line for evaluation of those with intermediate risk chest pain to rule out obstructive

disease. Stress MRI or DGE can also be performed to evaluate for prior myocardial infarction as well as myocardial viability.

or scarring is another tissue characterization parameter
that can evaluate for immunotherapy toxicities. MRI is
recommended by specialty society guidelines as part of
the evaluation and monitoring of ICI myocarditis using
the Lake Louise criteria, updated in 2018 to require both
increased myocardial signal intensity ratio >2 or increased
myocardial relaxation times or visible myocardial edema in
T2-weighted images and increased myocardial relaxation
times or extracellular volume fraction or DGE in T1-weighted
images for the imaging diagnosis of myocarditis (80, 96–100).
However, DGE is non-specific and cannot distinguish from
cell damage vs. end stage fibrosis and current standard clinical
imaging modalities are lacking in assessment of potential
molecular correlates, such as collagen deposition and scar.
Thus, molecularly targeted imaging tracers may shed light on
both mechanism and help increase the specificity of cardiac
imaging findings.

MOLECULAR TARGETED NUCLEAR
IMAGING MODALITIES TO EVALUATE
ONCOLOGIC THERAPY RELATED
ADVERSE CARDIOVASCULAR
PATHOLOGIES

Molecular Nuclear Imaging for Evaluation
of Anthracycline Cardiotoxicity
Anthracycline mediated cardiotoxicity has been associated
with an increase in reactive oxygen species (ROS) levels in the
heart. ROS levels have been shown to confer cardiotoxicity by
increased apoptosis, inflammation, mitochondrial dysfunction
and activation of matrix metalloproteases (31). Molecular
nuclear imaging studies have helped shed light on mechanisms of
anthracyclinemediated cardiotoxicity. Increased ROS levels in an
animal model of doxorubicin cardiotoxicity showed that a novel
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PET tracer, 18F-labeled radioanalog of dihydroethidium, [18F]-6-
(4-((1-(2-fluoroethyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-5-
methyl-5,6 dihydrophenanthridine-3, 8-diamine ([18F]·DHMT),
which targets superoxide, was able to reveal an elevation
in superoxide levels in the heart at least 2 weeks prior to
a drop in the left ventricular ejection fraction (35). ROS
activation of MMPs downstream can then promote adverse
cardiac remodeling (101). Renin-angiotensin-aldosterone
system (RAAS) activation has been shown to augment the
progression of anthracycline induced cardiotoxicity and
inhibition via RAAS inhibitors like angiotensin receptor blockers
or angiotensin converting enzyme inhibitors have been able
to prevent and treat anthracycline mediated cardiomyopathy
(102, 103). Use of a novel angiotensin receptor-neprilysin
Inhibitor, sacubitril/valsartan in a rodent model of anthracycline
cardiotoxicity was able to attenuate cardiotoxicity. MMP
imaging of activated MMPs using SPECT radiotracer 99mTc-
RP805 showed that sacubitril/valsartan in conjunction with
doxorubicin was able to significantly attenuate MMP activation
as well as prevent a decline in LVEF compared to doxorubicin
alone vs. doxorubicin and valsartan groups. Myocardial MMP
activity as assessed by 99mTc-RP805 uptake was inversely
related to left ventricular ejection fraction (31). In addition to
MMP activation and adverse remodeling, ROS can also injure
endothelial cells. Anthracycline use has been associated with
capillary loss in the heart in some rodent models and protection
of endothelial cells with vascular endothelial growth factor-B
(VEGF-B) treatment led to preservation of capillary mass (104).

ROS has also been shown to confer mitochondrial
dysfunction. Disruption of mitochondrial membrane potential
in mitochondrial dysfunction mediated by anthracycline can
be evaluated by 68Ga-Galmydar. In a rodent model, uptake
of 68Ga-Galmydar was reduced by 2-fold with anthracycline
treatment compared to control and in H9c2 rat cardiomyoblasts,
this was associated with activation of the apoptosis cascade (36).

Early markers of anthracycline cardiotoxicity include an
increased uptake of indium-111-labeled antimyosin in the
heart, which occurs due to myocyte damage and subsequent
association of antimyosin with myosin, which is normally
intracellular. Increased uptake of 111In-antimyosin in patients on
anthracycline was associated with LV dysfunction (30). Detection
of the earliest stages of apoptosis can also signal early toxicity.
Annexin V has a high affinity for phosphatidylserine, which gets
exposed on the cell surface during apoptosis. Use of annexin V
imaging has allowed for detection of cells undergoing apoptosis.
In a rodent model of doxorubicin cardiotoxicity, radiolabeled
annexin V, 99mTc-annexin was used to visualize apoptosis
that corresponded to histological evidence of apoptosis on
TUNEL staining (33). Finally, sympathetic nervous innervation
of the myocardium has also been shown to be disrupted with
anthracycline toxicity. An assessment of myocardial sympathetic
innervation impairment was done by evaluating a radiotracer
that is an analog of norepinephrine, iodine-123-labeled meta-
iodobenzylguanidine (123I-MIBG). A decrease in 123I-MIBG
uptake with increasing cumulative doses of anthracyclines in
human patients was associated with LV dysfunction. However,
it takes higher cumulative doses of anthracycline to see a drop in

123I-MIBG uptake, thus this agent would be less useful if earlier
detection of toxicity is desired. However, 123I-MIBG is clinically
available and routinely used to evaluate for adrenaline secreting
tumors (30) (Figure 2).

CD4, CD8 Imaging in ICI Myocarditis
Molecularly targeted radiotracers in nuclear medicine are
emerging to evaluate processes such as fibrosis, inflammation and
thrombosis, extending beyond nuclear cardiology’s traditional
use to evaluate perfusion deficits in ischemic heart disease
via single photon emission computed tomography (SPECT)
and positron emission tomography (PET), tissue viability
or inflammation with PET fluorodeoxyglucose (FDG), which
evaluates for glucose uptake predominantly by inflammatory
cells, such as myeloid and T cells (106). These processes are
common adverse effects of oncologic and immunotherapies.

Detection of the earliest signs of myocardial inflammation in
ICI myocarditis, which occurs in 1-2% of patients on these agents
remains a clinical challenge (95, 107). The ability to detect the
initial infiltration of inflammatory cells such as CD4 or CD8
cells before injury has occurred could help reduce morbidity
and high mortality associated with this condition (25). Emerging
molecularly targeted probes against CD4, 89Zr-DFO-CD4 and
CD8 cells, 89Zr-DFO-CD8a may be a potential avenue to detect
inflammation at these earliest of stages, which can prompt more
frequent follow ups, biomarker checking and earlier therapy (44).
Determining specificity of these findings will also be important
as to avoid withholding cancer fighting immunotherapy or
treatment with steroids, which may potentially lower the efficacy
of the immunotherapy agent (108–110). Checkpoint inhibitors
have been shown to accelerate atherosclerosis and increase risk
of plaque rupture in addition to the risk for myocarditis and
pericarditis by driving increased inflammatory cells, including
CD8T cell infiltration into plaques in animal models and patients
on checkpoint inhibitors (43, 111, 112). Thus, evaluation of
atherosclerotic lesions with CD8 radiotracers, may be able to
identify those at risk for myocardial infarction in patients on
checkpoint inhibitor therapy.

Detection of Vulnerable Plaque
Both checkpoint inhibitor use and certain TKIs like ponatinib
and sorafenib have been associated with increased risk of
myocardial infarction (43, 113). ICIs have also been associated
with increased risk of stroke (114). Use of ICIs have been
associated with increased infiltration of CD3, CD8 and CD68
cells, markers for T cells and macrophages respectively into
atherosclerotic lesions (115). Increased somatostatin receptor 2
(SSTR2) on the cell surface of inflammatory macrophages is a
marker of macrophage activation. In a study of symptomatic
stroke patients, increased uptake of SSTR2 in culprit vessels
assessed by PET tracer 68Ga-DOTATATE was shown to predict
plaque rupture (58). Thus, evaluation of SSRT2 levels in patients
on ICI therapymay help identify vulnerable plaques and warrants
further investigation. The mechanisms for TKI mediated MI on
the other hand are attributed to endothelial cell dysfunction and
activation of apoptosis pathways, although direct evidence for
MI mechanisms are still lacking, thus further research would be
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FIGURE 2 | Molecular nuclear imaging elucidates anthracycline cardiotoxicity mechanisms. Anthracyclines can increase ROS levels (which can be assessed by

nuclear tracer 18F-DHMT), which can activate MMPs (which can be assessed by 99mTc-RP805) (bottom left), leading to adverse cardiac remodeling. ROS levels can

also promote mitochondrial dysfunction, which can disrupt the mitochondrial membrane potential and thereby reduce 68Ga-Galmydar uptake (middle bottom).

Mitochondrial damage can lead to apoptosis, which can be detected by Annexin V positivity (detected by 99mTc-Annexin (bottom right). Damage to cardiomyocytes

can lead to release of intracellular myosin, which can thereby be assessed by (105). In-myosin (right of ROS). In addition to ROS increase, anthracyclines can also

directly bind and inhibit Topoisomerase II, which can lead to double-stranded DNA breaks (right) and cause further mitochondrial dysfunction and prevent

mitochondrial regeneration. Finally, anthracyclines can lead to impaired sympathetic innervation over time for mechanisms that are unclear but is associated with

cardiac dysfunction and this can be assessed by 123 I-MIBG uptake (top left).

needed to see if macrophage activation is involved and whether
activated macrophage imaging would help risk stratify patients
on these TKIs (113).

FAP Imaging in ICI Myocarditis
Another potential marker of early stages of ICI myocarditis
is fibroblast activating protein (FAP), which is a protein that
gets significantly upregulated in cancer tissue, atherosclerosis,
arthritis and fibrosis. It is emerging as an imaging marker for
fibroblast activation and fibrosis (116, 117). A PET radiotracer
tracer targeting FAP is 68Ga-FAPI. In a recent study, 68Ga-FAPI
was shown to be a potential early marker of ICI myocarditis
with median standardized uptake values (SUV) 1.79 (IQR 1.62,
1.85) in myocarditis patients vs. 1.15 (IQR 0.955, 1.52) in non-
myocarditis patients (45). FAP has also been used to evaluate post
myocardial infarction fibrosis, but its level in the blood vessels
and myocardium of patients on checkpoint inhibitors is unclear
(118, 119).

PD1 Imaging as a Potential Risk Factor for
ICI Myocarditis
Another challenge with checkpoint inhibitor myocarditis is
trying to figure out who is at increased risk. Programmed cell

death protein 1 (PD1), a target of checkpoint inhibitors like
pembrolizumab and its expression on cardiomyocytes warrants
additional research as a potential risk factor. PET radiotracer,
64Cu-DOTA-pembrolizumab can detect PD1 in rodent hearts as
well as on the surface of human blood cells and may be used in
such an investigation (120).

MRI DGE Limitations in Fibrosis
Assessment and Collagen Imaging
A higher burden of DGE and presumed scarring in hypertrophic
cardiomyopathy is associated with worse cardiovascular and
death outcomes (121, 122). In a retrospective study of ICI
myocarditis patients who underwent cMRI, DGE evaluation
did not correlate with cardiovascular outcomes, nor fibrosis,
with only 35% of pathology proven fibrosis cases showing
DGE on MRI (96, 121, 123, 124). Further, of the 56 patients
with histopathology available either through biopsy or autopsy,
98% had lymphocytic infiltration but only 38% had DGE and
26% with T2 positivity (96). Thus in addition to evaluation of
lymphocytic infiltration with targeted radiotracers for CD4 and
CD8 cells to identify early stages of myocarditis and increase
sensitivity of diagnosis, late stages of myocardial injury that can
result in scar and thus collagen deposition can be evaluated
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by radiotracers targeting collagen. The PET radiotracer 68Ga-
collagelin targets collagen, which can help quantify the burden
of scarring or end stage fibrosis, which was shown to be able
to detect pulmonary fibrosis in a mouse model of bleomycin
induced pulmonary fibrosis and correlated with fibrosis on
pathology (46) (Figure 3). MRI with DGE is able to evaluate
for possible scarring, but it is not able to distinguish between
early vs. late stage fibrosis, with the former having potential
reversibility and may partially explain the differential outcomes
we see between HCM and ICI myocarditis patients when it
comes to the differences in the fibrosis processes between the
two conditions and correlation of scar burden as quantified by
DGE and outcomes (125). There is also a MRI collagen type I
targeted probe EP-3533 that is conjugated to gadolinium, which
was shown to be able to visualize pulmonary, liver and bowel
fibrosis in rodent models, but these have not yet advanced to use
in humans (126–128).

Thrombosis Imaging
Pathologic thromboses like pulmonary embolism (PE), deep vein
thrombosis (DVT) carries high morbidity and mortality (129).
Cancer patients are at increased risk of thrombosis and some of
their oncologic therapies can increase that risk further (130, 131).
ICI, VEGF inhibitors and lenalidomide have been associated
with increased thrombosis risk. Increasing the sensitivity of
diagnosing blood clots so treatment can be timely instigated
may help avoid complications and help improve outcomes (132–
134). Radiotracers that can target fibrin, a molecular precursor
of blood clotting can be useful in detection of blood clots. PET
radiotracer 64CU-FBP8 can target fibrin and has been used to
identify thrombi in animal models, particularly earlier stages of
clots (49). Another PET radiotracer, 18F-GP1 that targets the
glycoprotein IIb/IIIa receptors on activated platelets and has
been demonstrated to detect venous thrombosis and arterial
thromboses (53, 135). A phase 1, first-in-human study of 18F-
GP1 positron emission tomography for imaging acute arterial
thrombosis is underway (53). These PET thrombosis imaging
agents may be of utility for detection of DVTs and PEs in cancer
patients, especially for those who may have contraindications to
contrast, such as those with chronic kidney disease or those who
have an allergy to contrast.

MOLECULAR MRI AND MR
SPECTROSCOPY

Hyperpolarized MRI for Evaluation of
Cardiac Metabolism in vivo
As the human heart failures, it has been shown to shift its
metabolism from predominantly fatty acid oxidation to more
glucose utilization (136). Changes in oxidative phosphorylation
or substrate utilization may reflect early signs of cardiotoxicity,
yet in vivo real time detection of cardiac metabolism has
been limited to small studies with radioactive tracers using
PET. More recently, substrate utilization and metabolism have
been evaluated using magnetic resonance (MR) imaging and
spectroscopy. Hyperpolarized carbon-13 (13C) labeled pyruvate

imaging is different from standard clinical MRI using gadolinium
contrast, in that it provides information on how tissue uses
carbon-based nutrients (37). In rodent models of anthracycline
cardiotoxicity, carbon-13 MR spectroscopy (MRS) was used to
assess changes to oxidative phosphorylation and tricarboxylic
acid (TCA) cycle flux in vivo. These studies showed that
doxorubicin lead to reduced cardiac oxidative phosphorylation
in a rat model as evidenced by increased 13C lactate production
(38). First in humanMRSwas used to evaluate tumormetabolism
in prostate cancer and ongoing clinical trials are evaluating
hyperpolarized MR in tumor metabolism and correlations
with outcomes in prostate and pancreatic cancer (137–139).
First use of hyperpolarized 13C metabolic MRI in human
heart involved evaluation of pyruvate metabolism in healthy
individuals (39). Hyperpolarized MR imaging may allow for
visualization of changes in cardiac energetics, particularly from
fatty acid metabolism to more glucose utilization in an evolving
cardiomyopathy in response to cardiotoxic chemotherapy and to
evaluate response to cardioprotective medications such as beta
blockers and angiotensin converting enzyme inhibitors in real
time (140).

Apoptosis Evaluation by MRI
Various chemotherapy agents, most notably anthracyclines are
known to increase cardiomyocyte apoptosis. Molecular MRI
probes conjugated to superparamagnetic iron oxide (SPIO) and
human annexin was shown to be able to visualize apoptosis in real
time in a rodent model following ischemia and post doxorubicin
exposure, but these MRI molecular probes have not gone beyond
animal studies thus far but have the potential to detect early signs
of cell death in the myocardium (105, 141).

Inflammation Imaging by MRI
In addition to T1, ECV and T2 signal changes, use of ultrasmall
superparamagnetic particles of iron oxide (USPIOs) in MRI
may confer insights on inflammation via increased macrophage
activity. USPIOs have been shown to be taken up bymacrophages
and correlates with plaque inflammation in animal studies (142).
In a study of patients with severe carotid stenosis, uptake of
USPIOs corresponded to inflamed plaques on histology. Uptake
of USPIOs induced areas of signal loss on T∗

2-weighted magnetic
resonance imaging within the vessel wall. Whether this can help
predict plaque vulnerability in those on checkpoint inhibitors or
help identify ICI myocarditis is untested and warrants further
investigation (143). However, this has been used clinically and
may have potential to distinguish vulnerable plaque from less
vulnerable plaque.

Barriers to Advancing Molecular Imaging
For the molecular imaging tracers that are already clinically
used, barriers to use include radiation exposure, so deciding
who should get the test, when to get it and how often will have
to be established. For example, if FAP is associated with ICI
myocarditis as a potential early marker, then perhaps it should
be obtained when there is suspicion for myocarditis or when
troponin becomes positive. Timed with evaluation of this marker
for residual disease, it can also help with monitoring of resolution
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FIGURE 3 | Imaging modalities in the evaluation of immunotherapy related cardiotoxicities. Imaging modalities that can be used to monitor myocardial inflammation

due to immunotherapy include: MRI (top) using tissue characterization assessments such as T2, T1/ECV, delayed gadolinium enhancement (DGE) and cine to

evaluate wall motion and function; Nuclear Imaging (middle) approaches involving molecularly targeted probes conjugated to radiotracers facilitating evaluation of

CD4 cells with 89Zr-DFO-CD4, CD8 cells with 89Zr-DFO-CD8, early signs of fibrosis with fibroblast activation protein (FAP), expression of PD1 on cardiomyocytes,

which can be seen with 64Cu-DOTA-pembrolizumab and may reflect increased risk of checkpoint inhibitor myocarditis, FDG that allows for monitoring of inflammation,

and the final stages of inflammation with tissue damage and fibrosis and scar deposition assessed with collagen imaging with 68Ga collagelin; Echocardiography

(bottom) is able to evaluate regional and global strain to detect signs of chemotherapy related toxicity and myocarditis.

of myocarditis, potentially complementing cardiacMRI or taking
place of MRI for those who cannot tolerate MRI, which is
usually used for monitoring. Access is another challenge. Access
to molecular nuclear studies are often available through large
hospital systems and for agents with shorter radioisotope half-
lives like Gallium-68 (68Ga) with average half-life of 68min, an
onsite germanium-68/gallium-68 generator is needed along with
accompanying nuclear accreditation, thus, more rural hospitals
or private practices may have to refer out to larger centers in
order to obtain these tests at high volume imaging centers (144).
Finally, nuclear studies tend to be more expensive than echo and
either on par or more expensive thanMRI studies due to the costs
associated with radiolabeled probes, thus being able to get these
studies approved can also be a challenge for providers even if it
is clinically used and indicated. For the molecular tracers that
are in the preclinical stage, the usual barriers exist for clinical
translation, including establishing safety, a favorable target to
noise ratio in humans and correlation with outcomes to achieve
FDA approval and ultimately clinical use. For those radiotracers
that are already in clinical use for oncology indications, such

as FAP, CD4, CD8 and PD1, incidental detection in the heart
and correlation with outcomes is possible and can be further
explored for future dedicated cardiac imaging and may provide
unique clinical value. The power of machine learning, artificial
intelligence and big data in evaluation of imaging signals can
help unlock patterns that humans may not readily be able to see,
such as in a recent evaluation of cardiac fibrosis by T1 imaging
by MRI and be able to correlate these imaging findings with
outcomes (145).

ROLE OF ARTIFICIAL INTELLIGENCE (AI)
AND BIG DATA IN CARDIO-ONCOLOGY
AND IMAGING

Overview of Current AI Applications in
Cardio-Oncology
Artificial intelligence (AI), through the training of machine
and deep learning models, has shown remarkable potential in
the prevention and diagnosis of cancer therapeutics-related
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FIGURE 4 | Applications of artificial intelligence, big data in cardio-oncology. Artificial intelligence (AI) can improve our understanding of the early molecular and

phenotypic changes that occur prior to the development of clinical cancer therapeutics-related cardiac dysfunction. Machine learning approaches enable

high-throughput screening of novel therapeutics using preclinical models, such as induced pluripotent stem cells as well as in silico simulations using libraries of drugs

and molecular targets. In the clinical setting, AI can improve risk prediction of left ventricular dysfunction, arrhythmias as well as facilitate accurate and standardized

assessment of chamber size, function and coronary calcification, all hallmarks of cardiovascular disease that can be caused or exacerbated by cancer therapeutics.

Therefore, AI offers an opportunity for early diagnosis and deployment of strategies to prevent the progression to overt cardiovascular disease. Images have been

reproduced under a Creative Commons Attribution 3.0 Unported License from smart.servier.com. CAD, coronary artery disease; CT, computed tomography; ECG,

electrocardiography; hiPSC, human induced pluripotent stem cell; LV, left ventricular; MRI, magnetic resonance imaging; SPECT, single photon emission computed

tomography.

cardiac dysfunction (CTRCD). With applications across
all stages of the natural history of CTRCD, AI can assist
scientists and physicians in screening for molecular interactions
between novel therapeutic agents and the cardiovascular
system, as well as detecting subclinical cardiovascular
effects prior to the development of overt clinical disease
(Figure 4).

At the pre-clinical stage, AI techniques have been used for
high-throughput screening of cancer agents using a variety of
disease models. These range from human induced pluripotent
stem cell-derived cardiomyocytes (hiPSC-CMs) exposed to
antineoplastic agents, screening of drug libraries to detect agents
that interact with channel proteins resulting in QT prolongation,
all the way to exome sequencing to identify variants in cardiac
injury pathway genes that protect against anthracycline-induced
cardiotoxicity and dual transcriptomic and molecular machine

learning to predict different types of cardiotoxic response (146–
150). Such approaches can de-risk early-stage drug discovery
but also contribute to post-marketing surveillance to maximize
patient safety. On the same note, pharmacovigilance in cardio-
oncology can be assisted by machine learning-guided monitoring
of electronic health records that includes patient demographics,
echocardiography, laboratory values to detect signals suggestive
of increased cardiac risk with specific therapies or practices
(151, 152).

For therapies that form the mainstay of cancer therapy,
ranging from chemotherapy to immunotherapy and radiation
therapy, active surveillance protocols have been proposed
and implemented, particularly for therapies with known
cardiotoxic effects, such as anthracyclines and HER-2/neu
inhibitors. Here, non-invasive cardiac imaging (by means
of transthoracic echocardiography and/or magnetic resonance
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imaging (MRI)) and electrocardiography (ECG) represent the
modalities of choice in the screening of conditions, such as
anthracycline-induced cardiotoxicity and immune checkpoint-
induced myocarditis (78, 153). Whereas AI applications in
cardiovascular imaging have traditionally been developed in the
general population, shared phenotypes seen in both CTRCD and
non-cancer-related cardiac dysfunction, may extend the use of
these technologies to cardio-oncology.

An expanding body of research has in fact demonstrated
the ability of deep learning-enhanced interpretation of ECG in
screening for and improving the diagnosis of left ventricular
dysfunction, essentially functioning as a gatekeeper to the use
of more advanced imaging modalities (154). It is notable that
this tool was tested in a randomized controlled trial and
demonstrated effectiveness in increasing the early diagnosis of
decreased left ventricular ejection fraction (LVEF) without an
increase in the use of echocardiography (155). Similarly, AI-
guided ECG assessment can also predict the future incidence
of atrial fibrillation (156). In childhood cancer survivors,
machine learning algorithms of baseline and follow up ECGs
were able to predict future cardiomyopathy (157). However,
whether these results generalize to cardio-oncology, such as
in the monitoring of anthracycline or Herceptin mediated
cardiotoxicity, or ibrutinib-associated atrial fibrillation remains
unknown and should be explored in future studies (158, 159).

AI has contributed to a more efficient and standardized
interpretation of several non-invasive cardiovascular imaging
modalities. For instance, in the field of transthoracic
echocardiography, deep learning video-based models now
enables fast and automated calculation of LVEF, with variance
that is comparable to that or even lower of a human observer
(160, 161). Similarly, combined assessment of ECG- and
echocardiography-derived AI models has shown good
discrimination in detecting cardiac amyloidosis, a rare disorder
that is however more prevalent among patients with cancer
compared to the general population (162). Similar approaches
can be found in the field of computed tomography (CT) imaging,
where automated tools enable an accurate assessment of coronary
artery calcium burden, which can be generalized to both gated
and non-gated CT scans of the chest, with the latter often used
in the staging or monitoring of patients (163, 164). Therefore,
such tools may refine a patient’s baseline cardiovascular risk
and inform risk-benefit discussions about the deployment of
potentially cardiotoxic therapies. Finally, automated chamber
size quantification, tissue characterization parameters such as
T1, T2, extracellular volume and functional indices that can
be extracted from cardiac MRI images can have the ability to
confer insights into cardiotoxicity including the potential to
identify early to late cardiotoxicity mediated by chemotherapy
or immunotherapy agents via detection of changes in chamber
size, abnormal T1, T2 relaxation times and delayed gadolinium
enhancement patterns (86, 95, 96, 99, 145, 165–167). Deep
learning models have also shown promise in the standardized
interpretation of functional nuclear modalities, such as SPECT
(single photon emissions computed tomography) myocardial
perfusion imaging with good discrimination for the presence of
obstructive coronary artery disease (168). However, as these tools

become clinically available, prospective validation and possibly
recalibration specifically in patients with cancer will be required
to ensure their validity and generalizability.

Strengths and Weaknesses of Current
Methods and Barriers for Clinical
Translation
To better understand the strengths and weaknesses of AI
applications in cardio-oncology, one first needs to review key
definitions. AI refers to the ability of an automated system
to perform tasks that are typically characteristic of human
intelligence, such as image and pattern recognition, as well as
prediction and classification. Machine learning describes the
process by which a system gains the ability to perform such
tasks. This learning process can be further divided into supervised
and unsupervised learning. The former describes the analysis of
labeled datasets with the goal of predicting the label of a given
datapoint based on a set of independent predictors. The latter
refers to the analysis of unlabeled and unclassified datasets where
the algorithm attempts to discover patterns within the data on its
own. Algorithms may range from traditional regression models
to deep neural networks, consisting of multiple layers of neurons
and nodes which operate in a manner similar to the human
brain (169, 170). However, independent of the algorithm used,
machine learning systems rely on high-quality input to deliver
high-quality output. This is where “big data” become relevant,
describing the need for datasets that are large enough to ensure
adequate variance, remain representative of their original and
target populations, enable time-efficient analyses and have been
carefully rather opportunistically curated to address a specific
question (171).

With those key concepts in mind, some of the limitations
of machine learning applications in cardio-oncology become
apparent. First, cardiovascular disease is often listed as an
exclusion criterion in major cancer trials, thus resulting in under-
representation of patients with cardiovascular disease in pivotal
cancer trials (172). However, the inclusion of cardiovascular
outcomes in cancer trials will be able to help fill this data
gap if sufficient baseline and follow up data are acquired
(molecular biomarkers, baseline imaging prior to oncologic
therapy and follow up that can be used as input). Second,
while AI systems can learn patterns in the data, explaining
what drives those predictions or establishing causal inference is
not a straightforward task (173). Moreover, cancer is a highly
heterogeneous condition with multiple molecular, histological,
and clinical subtypes that often respond differently to the
same therapies (174). Therefore, ensuring generalizability of
models across different cancer subtypes, treatments and patient
populations may be an insurmountable task without access
to vast amounts of accurately labeled data. Third, there is
often significant delay in the timing between data collection,
model training and the final model deployment. As a result, AI
models are often outdated when deployed for clinical use, thus
highlighting the need for more efficient pathways that would
enable real-time updates. Finally, AI models are bias-prone often
reproducing biases that are inherently present in the datasets
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used for training. Ensuring representation of diverse patient
populations is of paramount importance to promote an equitable
impact of AI in healthcare delivery and outcomes (175).

Future Applications of AI in
Cardio-Oncology and Molecular Imaging
With careful consideration of these limitations, AI has the
potential to advance cardio-oncology in many different
directions. Radiomic applications, which extract several metrics
based on the shape, dimensions, signal density and spatial
interrelationship of voxel signals in a given tissue, have been
found to be superior to conventional readouts in reflecting
tissue composition, as well as metabolic or inflammatory activity
(176–178). In fact, some of the most exciting applications
of AI lie beyond structural imaging in molecular imaging.
In the recent past, deep learning and generative adversarial
networks have successfully reconstructed PET images directly
from raw sinogram data effectively maximizing image quality
(179, 180). In other applications, AI tools have generated
full-dose PET images from low-dose images, thus maximizing
signal-to-noise ratio at lower radiation levels (181, 182). In
another example, convolutional neural networks have enabled
the development of cMRI virtual native imaging technologies
which generate late gadolinium enhancement-like images in an
accurate and reproducible manner without the need for contrast
administration (183). Though originally developed in patients
with hypertrophic cardiomyopathy, this technology may be of
value in cardio-oncology and the monitoring of ICI-myocarditis.
Further, for molecular imaging targeting biomarkers like FAP
and PD1, these are already used clinically in oncology to monitor
for residual disease and assess response to immunotherapy
respectively, thus if the heart is captured in existing data sets,
AI/ML can help to predict whether the presence of these markers
are associated with adverse cardiovascular outcomes. Coupled
with improvements in the speed and accuracy of segmentation
algorithms, AI can accelerate the clinical deployment of
molecular imaging approaches in the timely detection of
cardiovascular toxicity (184).

CONCLUSIONS

Imaging advances, particularly molecularly targeted imaging
modalities may help detect cardiotoxicities at the earliest stages
with greater specificity, shed light on mechanism as well as
response to cardioprotective medications such as beta blockers,
angiotensin converting enzyme inhibitors, etc. Newer MRI
metabolic evaluation techniques such as hyperpolarized MRI
may allow for a non-invasive approach to evaluate cardiac
metabolism in real time. To complement imaging studies, use
of AI and big data on imaging parameters and forthcoming
molecular imaging datasets, in addition to patient demographics
may help predict or detect cardiovascular toxicities at their
earliest stages. Inclusion of diverse patient cohorts as well as
cardiovascular parameters/biomarkers and imaging in cancer
trials can enable AI/Ml to increase accurate categorization as
well prediction models in cardio-oncology patients. Additional
research in these areas and advancing animal studies toward
human studies may further help improve cardiovascular
outcomes in cancer patients.
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