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Abstract

Gene regulation by steroid hormones has been at the forefront in elucidating the 
intricacies of transcriptional regulation in eukaryotes ever since the discovery by Karlson 
and Clever that the insect steroid hormone ecdysone induces chromatin puffs in giant 
chromosomes. After the successful cloning of the hormone receptors toward the end 
of the past century, detailed mechanistic insight emerged in some model systems, 
in particular the MMTV provirus. With the arrival of next generation DNA sequencing 
and the omics techniques, we have gained even further insight into the global cellular 
response to steroid hormones that in the past decades also extended to the function 
of the 3D genome topology. More recently, advances in high resolution microcopy, 
single cell genomics and the new vision of liquid-liquid phase transitions in the context 
of nuclear space bring us closer than ever to unravelling the logic of gene regulation 
and its complex integration of global cellular signaling networks. Using the function of 
progesterone and its cellular receptor in breast cancer cells, we will briefly summarize 
the history and describe the present extent of our knowledge on how regulatory proteins 
deal with the chromatin structure to gain access to DNA sequences and interpret the 
genomic instructions that enable cells to respond selectively to external signals by 
reshaping their gene regulatory networks.

Introduction

The steroid hormone progesterone was initially 
considered to be involved mainly in menstrual cycle, 
pregnancy, and mammary gland function. Meanwhile, it 
was also implicated in multiple other functions outside 
the sexual organs. In this review we will concentrate 
on the role of progestins (Pg) on the regulation of gene 
expression via their specific progesterone receptor (PR), 
focusing on breast cancer cells. All the steroid hormone 

receptors share a similar organization of domains – a 
central short DNA-binding domain composed of two zinc 
fingers coordinated each by four cysteines; a C-terminal 
domain that is responsible for hormone binding and 
interaction with co-regulators; and a N-terminal domain 
of variable length, which is mainly unstructured and 
includes multiple residues that can be post-translationally 
modified and fine tune the receptors’ functional activity 
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(see (Gronemeyer 1992; Huang et  al. 2010), for review 
on steroid hormone receptor structure). In the case of 
PR, alternative initiation of the same gene leads to the 
generation of two PR isoforms, the complete isoform 
named PRB and the PRA isoform, which lacks the first 
164 amino acids (Kastner et al. 1990). The difference in 
the properties of these two isoforms has been a matter 
of debate as the results observed depended on the nature 
of the assays used, which mainly were in vitro assays or 
transient transfection experiments (Jacobsen and Horwitz 
2012; Khan et al. 2012). However, the importance of the 
N-terminal region of PR for hormone action and some 
recent experiments point to a significant functional 
difference between the two isoforms that will be addressed 
in the last section of this review.

This review will mainly focus on the mechanisms 
that enable the PR to access DNA sequences on chromatin 
and to modulate the transcriptional rate of subsets of 
hormone responsive genes. Before going into the more 
recent results obtained with genome-wide approaches, we 
will summarize as a historical introduction the concepts 
elaborated at the turn of the last century based on the 
findings related to PR regulation of the MMTV expression.

PR before omics: the MMTV promoter as a 
model system.

The role of progestins in breast cancer cells has been 
mostly neglected in favor of the more obvious effect of 
estrogens as drivers of cell proliferation (Carroll et  al. 
2017). This is particularly the case when we consider 
the most popular cell-culture model of luminal breast 
cancer, namely the MCF-7 cell line, which exhibits higher 
levels of estrogen receptor alpha (ERα) compared to PR. 
However, more recently, the interplay between estrogens 
and progestins has received considerable attention, 
predominantly based not only on results from cell-culture 
models but also on whole animal studies (Mohammed 
et  al. 2015; Need et  al. 2015; Singhal et  al. 2016). Most 
studies on progestin action in cell culture have used the 
T47D cell line that, in contrast to MCF7 cells, expresses 
much higher constitutive levels of PR compared to ERα.

Prior to the establishment of whole genome 
approaches, most of the studies on PR action were based 
on the MMTV provirus model, which was initially used 
to study regulation by the glucocorticoid receptor (GR) 
(Ringold et al. 1975). Later, MMTV expression was shown 
to be regulated by Pg via the PR (Ahe et al. 1985). Both 
GR and PR were shown to bind cooperatively to DNA 
sequences of the MMTV LTR, upstream of the TATA box of 

the main MMTV promoter (Payvar et al. 1983; Scheidereit 
et  al. 1983) (Fig. 1A). Similar sequences were found in 
many other Pg-regulated genes, although at different 
locations relative to the gene promoter. Comparison of 
these sequences led to the identification of the 15-mer 
palindromic hormone response element (HRE) with the 
consensus GGTACAnnnTGTTCT, which is recognized by 
a homodimer of PR in a head-to-head orientation (Beato 
1989). The same 15-mer was also bound by GR, androgen 
receptor (AR) and the mineralocorticoid receptor. In the 
region bound by PR on the long terminal repeat (LTR) 
of the MMTV provirus, one canonical palindromic HRE 
and four incomplete HREs containing only one half of 
the palindromic sequence were identified. Downstream of 
the cluster of receptor-binding sequences is a palindromic 
binding site for the transcription factor nuclear factor 1  
(NF1), which is important for efficient hormonal 
regulation. Intriguingly, PR and NF1 synergize in cell 
assays (Truss et  al. 1995) but compete for binding to 
free DNA (Bruggemeier et al. 1990), suggesting that free 
DNA is not a sufficient template to completely explain 
the mechanism of hormonal gene regulation. This 
observation on free DNA led us to investigate the manner 
in which the MMTV promoter is organized in the context 
of chromatin.

When assembled in chromatin in vitro and in cells, 
the MMTV promoter positions precisely one nucleosome 
that includes the five HREs and the NF1 binding site 
(Richard-Foy and Hager 1987; Piña et  al. 1990). The 
orientation of the DNA major groove in the surface of the 
histone octamer enables binding of PR to the palindromic 
HRE-I and to the half palindromic HRE-IV. This is possible 
because PR only contacts a narrow sector of the DNA 
double helix (Fig. 1B and C). In contrast, NF1 cannot bind 
its target sequence when assembled in nucleosomes as it 
contacts the whole circumference of the DNA helix (Fig. 
1B and D) (Scheidereit and Beato 1984). However, in cells 
carrying an integrated copy of the MMTV promoter (Truss 
et al. 1995) or when assembled on the surface of MMTV 
minichromosomes (Di Croce et  al. 1999), PR and NF1 
synergize in an ATP-dependent process upon exposure to 
hormone. Thus, efficient MMTV induction depends on 
the proper nucleosome organization of its promoter, as 
demonstrated by the lack of synergism in histone-depleted 
yeast (Chávez and Beato 1997). This seems paradoxical, 
as the DNA binder with the weaker DNA affinity (PR) 
recognizes its target sequence on nucleosomes and upon 
ATP-dependent remodeling enables the occupancy of the 
stronger DNA binding factor (NF1) (Bruggemeier et  al. 
1990). However, something similar also occurs with the 

https://doi.org/10.1530/JME-19-0266
https://jme.bioscientifica.com © 2020 The authors

Published by Bioscientifica Ltd.
Printed in Great Britain

This work is licensed under a Creative Commons 
Attribution 4.0 International License.

https://doi.org/10.1530/JME-19-0266
https://jme.bioscientifica.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


T6765 1:M Beato et al. Progesterone action in breast 
cancer

Journal of Molecular 
Endocrinology

classical pioneer factors, such as FOXA1, which exhibit 
an even weaker affinity for DNA, compared to PR, but are 
capable of enabling binding of other transcription factors 
even in the absence of ATP (Zaret and Carroll 2011; Zaret 
et al. 2016).

With MMTV minichromosomes assembled in 
Drosophila embryo extracts, the synergism between PR 
and NF1 is improved in the presence of histone H1, 
which represses transcription by each of the factors 
added separately (Koop et al. 2003). The reason being that 
the presence of histone H1 increases the proportion of 
chromatin templates that adopt the correct nucleosome 
organization. During the transcription process, H1 
becomes phosphorylated in a PR-dependent manner and 
is partially displaced from the chromatin template by the 
NURF complex (Koop et al. 2003). Thus, histone H1 fulfills a 
complex and dynamic role in the regulation of the MMTV 
promoter, keeping the promoter silent in the absence of 
hormone and enabling efficient induction in response to 
hormone. Later we found that MSK1 phosphorylation 
at S10 of histone H3 and the displacement of H2A/H2B 

dimers from the MMTV promoter nucleosome by the 
SWI/SNF complex are part of the chromatin remodeling 
required for MMTV activation (Vicent et al. 2004; Vicent 
et  al. 2006). Thus, PR-induced transcription of the 
MMTV promoter is initiated on the surface of H3/H4  
tetramer that is more sensitive to DNAse I at its dyad 
(Vicent et al. 2010).

The PR cistrome in breast cancer cells

The arrival of whole genome approaches using next 
generation DNA sequencing made it possible for the first 
time to explore the global landscape of PR occupancy 
over the entire genome and to correlate this with the 
changes in the transcriptome upon hormone exposure. 
In T47D cells only a few hundred weak PR-binding sites 
were detected by chromatin immunoprecipitation and 
sequencing (ChIP-seq) with a PR-specific antibody prior 
to hormone exposure. In contrast, upon 30–60 min of 
exposure to 10 nM promegestone (R5020, abbreviated 
as Pg), we identified around 25,000 PR-binding sites and 

Figure 1
The hormone responsive region of the MMTV promoter. (A) Of the five hormone response elements (HREs) in the MMTV promoter, only HRE-I is a perfect 
palindromic sequence. The other four HREs are half palindromic, although in in vitro DNA binding experiments homodimers of the PR bind cooperatively 
to each HREs. The nucleotides upstream of the transcription start sites and the position of the TATA box are indicated (Scheidereit et al. 1983; Chávez & 
Beato 1997). PR and NF1 compete for binding to the MMTV promoter DNA in vitro. The presence of an excess of PR or preincubation with PR precludes 
NF1 binding (top). In contrast, the presence of an excess of NF1 or preincubation with NF1 diminishes PR binding (bottom). This is due to the proximity of 
the HRE-IV and the NF1 binding sequence and to the cooperative binding of PR to all HREs (Bruggemeier et al. 1990). PR can bind its target sequence in 
nucleosomes while NF1 cannot. Panel (B) shows the contacts of PR with the HRE IV and of NF1 with its target sequence in a side view and panels (C) and 
(D) in a view along the DNA helix axis taking PR and NF1 as view points, respectively. Contacts with guanines (G), phosphates (P) and thymines (T) are 
highlighted. The non-accessible contacts are those facing the core histone (Scheidereit & Beato 1984)
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observed significant changes in expression of around 
2000 genes using RNA-seq (Ballare et al. 2013). Sequence 
analysis revealed that most of these PR binding sites 
do not exhibit a complete palindromic HRE, but just 
one or several half HREs. As measured by MNase-seq, 
the large majority of PR binding sites were located over 
regions of chromatin enriched in nucleosomes prior to 
hormone exposure (Ballare et al. 2013) (Fig. 2, left panel, 
− hormone). However, after 30–60 min of hormone 
exposure, we found a significant decrease in the number 
of MNase reads over the PR binding sites, suggesting 
that the nucleosomes have been remodeled and become 
sensitive to MNase digestion (Ballare et  al. 2013) (Fig. 
2, left panel, + hormone). It is worth noting that other 
ligands binding to PR induced different binding dynamics 
and gene regulation. While Pg-occupied PR binds rapidly 
and exchanges rapidly as well, PR occupied by the partial 
agonist RU486 binds and exchanges more slowly, while 
PR occupied by the full antagonist ZK98299 does not bind 
to the MMTV promoter (Rayasam et al. 2005).

The extent of nucleosome remodeling was estimated 
by the ratio of MNase reads before and after hormone 
exposure, which we named Nucleosome Remodeling 
Index (NRI). Classifying the PR-binding sites according 
to their NRI (Fig. 2, left panel) showed that sites with 
the highest NRI corresponded to the strongest PR peaks 
that were associated with hormone responsive genes 
and were heavily remodeled upon hormone exposure  

(Fig. 2, right top panel). On the contrary, PR binding sites 
with the lowest NRI showed weaker peaks not associated 
with hormone responsive genes that were not remodeled 
upon hormone exposure (Fig. 2, right lower panel) 
(Ballare et al. 2013). Therefore, the genome-wide analysis 
of PR binding confirmed the original observation made 
with the MMTV model system years earlier, supporting 
that optimal PR binding, as observed in around 2500 
high NRI sites, requires the PREs to be organized in an 
accessible way on nucleosomes that are remodeled upon 
hormone exposure. These findings are in conflict with 
a very general assumption that for transcription factor 
access to their DNA target sequences requires the previous 
displacement of nucleosomes. This idea does hold true 
for factors like NF1 that interact with DNA embracing the 
double helix, but does not apply to PR that only contacts 
a narrow sector of the DNA helix, as the distance between 
the two halves of the palindrome is 10 bp, both halves are 
similarly exposed on the surface of a perfect HRE (Piña 
et al. 1990) (Fig. 1B).

In the case of estrogens and glucocorticoids, it was 
reported that binding of their ligand-activated receptors to 
DNA occurs mainly at chromatin regions that are already 
accessible prior to hormone exposure, judged by the 
hypersensitivity of these regions to nucleases (John et al. 
2011; Zaret and Carroll 2011). This is mainly attributed to 
the action of the pioneer factor FOXA1, which is postulated 
to prepare the chromatin for subsequent hormone 
receptor binding (Zaret and Carroll 2011). GATA3 could 
also act upstream of FOXA1 to enable ERα binding to its 
target sequences (Theodorou et al. 2013). Pioneer factors 
may remain attached to chromatin even during mitosis, 
enabling transcriptional memory (Palozola et  al. 2019). 
In line with this, we have also uncovered that a fraction 
of the PR binding sites are already highly occupied by 
FOXA1 prior to hormone exposure and that the amount 
of FOXA1 does not increase after adding hormone, while 
a larger proportion of sites is marked by FOXA1 and 
ligand-activated PR favors further recruitment of FOXA1 
(Nacht et al. 2019). However, we interpret the requirement 
of FOXA1 for PR binding as a consequence of FOXA1-
mediated displacement of histone H1 (Iwafuchi-Doi et al. 
2016) rather than to the removal of nucleosome core 
particles. In addition, we cannot exclude that these sites 
may reflect loops formed by distant interactions (Glont 
et al. 2019). Interestingly, we found a subset of PR binding 
sites that are assisted by C/EBPα binding prior to hormone 
exposure (Nacht et  al. 2019). These regions exhibit 
epigenetic marks of active enhancers and C/EBPα favors 
contact of these enhancers with their target promoters 

Figure 2
Classification of the genome PR-binding sites according to their 
Nucleosome Remodeling Index (NRI). Top panels: Around 25,000 
PR-binding sites detected upon 60 min of hormone exposure were 
classified according to their Nucleosome Remodeling Index (NRI) and are 
shown as a heat map of nucleosome reads before and after hormone 
exposure ordered from the highest NRI to the lowest NRI. Bottom panels: 
Right: Nucleosome occupancy plot around the 2500 PR-binding sites with 
the highest NRI, before hormone exposure (red) and after 60 min of 
hormone exposure (lilac). Left: A similar nucleosome occupancy plot with 
the 2500 PR-binding sites with the lowest NRI (Ballare et al. 2013).
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by facilitating binding of RAD21, YY1 and the mediator 
complex (Nacht et al. 2019). In these sites, C/EBPα acts as 
a modulator of progestin action, enabling only a single 
round of cell division and slowing down the growth of 
xenografted cells (Nacht et al. 2019). A similar facilitating 
role of C/EBPα had been described for GR recruitment to 
the genome (Grontved et al. 2013). In endometrial cancer 
cells, binding of PR occurs in regions that are pre-marked 
by PAX2 binding (La Greca et  al. 2019). These findings 
support the notion that gene regulation in differentiated 
cells depends on the combined action of various cell and 
sequence-specific transcription factors acting sequentially 
or simultaneously to fine-tune the gene expression 
program required.

Chromatin remodeling and gene regulation in 
response to hormone

How does hormone binding to PR promote nucleosome 
remodeling? In that respect, it is important to note 
that hormone-induced chromatin remodeling and gene 
expression is also dependent on the activation of PR 
attached to the cell membrane. This small fraction of the 
PR is indeed attached to the cell membrane via cysteine 
palmitoylation (Pedram et al. 2007) and forms a complex 
with ERα and Src (Migliaccio et al. 1998). Upon binding 

of progestin, the membrane-attached PR activates Src, 
either directly (Boonyaratanakornkit et  al. 2001) or via 
ERα (Ballare et  al. 2003), leading to the activation of 
the SRC/ERK/MSK1 kinase pathway. Activated ERK1–2 
phosphorylates PR that translocates to the cell nucleus 
in the form of a ternary complex PR/extracellular signal-
regulated kinases 1 and 2 (ERK1–2)/Mitogen- and stress-
activated protein kinase-1 (MSK1), which once located at 
Pg target genes phosphorylates histone H3 at S10 (Vicent 
et al. 2006). This step is crucial for the regulation of gene 
expression. Later we discovered that many more enzymes 
and steps are involved in hormone-induced nucleosome 
remodeling and gene activation, a process that can be 
divided into two consecutive cycles (Vicent et  al. 2009; 
Vicent et al. 2011; Wright et al. 2012). The first cycle takes 
place within the first 1–5 min after hormone exposure, 
involves CDK2/CyclinA-mediated phosphorylation and 
activation of poly (ADP-ribose) polymerase 1 (PARP1), the 
MLL complex and the NURF complex. Ultimately these 
enzymes lead to the phosphorylation and PARylation 
of histone H1 (H1), resulting in its displacement from 
chromatin (Fig. 3, left panel). The second cycle takes 
place between 5 and 30 min after hormone exposure and 
requires MSK1, the histone acetyl transferase PCAF and 
the BAF ATP-dependent chromatin remodeling complex, 
leading to additional nucleosome remodeling and the 

Figure 3
The two consecutive cycles of chromatin 
remodeling in response to hormone. The first 
cycle (Top panel) is rapid and leads to histone H1 
phosphorylation and PARylation, followed by its 
displacement from chromatin. Middle panel: The 
second cycle is slower and leads to the 
displacement of histone H2A/H2B dimers. The 
enzymes involved in nucleosome remodeling and 
chromatin modifications are indicated. Bottom 
panel: functional consequences of chromatin 
remodeling (CDK2, Cyclin-Dependent Kinase 2; 
PARP1, Poly (ADP-ribose) polymerase 1; NURF, 
Nucleosome Remodeling Factor; ERK, Extracellular 
signal-Regulated Kinases; MSK1, Mitogen and 
Stress activated protein Kinase-1; PLK1, Polo-Like 
Kinase 1; PARG, Poly ADP-Ribose Glycohydrolase; 
PCAF, P300/CBP-Associated Factor; BAF, BRG1- or 
BRM-Associated Factors).
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displacement of histone H2A/H2B dimers (Fig. 3, right 
panel) (Vicent et  al. 2006; Yang et  al. 2007). Therefore, 
the actual activation of transcription takes place on a 
histone H3/H4 tetramer (Vicent et al. 2010), which can be 
cleaved by MNase, explaining the decrease in the density 
of nucleosome reads upon hormone exposure (Fig. 2). 
Later, we discovered that hormone-activated chromatin 
remodeling also requires nuclear synthesis of ATP from 
ADP-Ribose and PPi by NUDIX5 (Wright et al. 2016) (see 
subsequent section).

Most of what has been said previously was discovered 
by studying hormonal gene activation, but the addition of 
hormone to breast cancer cells also represses a substantial 
number of genes (Ballare et al. 2013). Curiously, around 
20% of the genes that will be activated by progestins 
are initially silenced by a repressive complex recruited 
by unliganded PR and contain heterochromatin protein 
1-γ (HP1γ), lysine-specific histone demethylase 1 (LSD1), 
histone deacetylase 1 and 2 (HDAC1/2), REST corepressor 1 
(CoRest), lysine demethylase 5B (KDM5B) and the steroid 
receptor RNA activator (SRA). Upon hormone exposure 
and as a result of H3S10 phosphorylation by MSK1, the 
HP1γ -LSD1 repressive complex is displaced, enabling 
the recruitment of additional co-regulators needed for 
full de-repression (Vicent et  al. 2013). In a subset of 
other genes, hormone exposure leads to the recruitment 
of HP1γ and Brahma-related gene-1 (BRG1) resulting in 
hormone-induced gene down-regulation (Vicent et  al. 
2013). In these genes, repression is mediated by BRG1-
dependent deposition of linker histone H1.2 (Nacht et al. 
2016). Likely, other mechanisms of hormone mediated 
gene repressions still remain to be discovered.

Role of 3D genome structure

Beyond the first level of genome packaging in nucleosomes, 
higher levels of genome folding have entered the field 
of epigenetics due substantially to the development of 
chromosome conformation capture techniques (Dekker 
et  al. 2002); particularly, the genome-wide detection of 
chromatin proximity by ligation using Hi-C (Lieberman-
Aiden et  al. 2009). Hi-C and the techniques derived 
thereof continue to provide information about the 
different levels of genome folding, from chromosome 
territories to chromosome compartments, topologically 
associated domains (TADs), sub-TADs and loops (Bonev 
and Cavalli 2016). Formation of TADs is accepted to 
be generated by the mechanism of loop extrusion 
mediated by Cohesins and controlled by architectural 
proteins, such as the CCCTC-binding factor (CTCF)  

(Fudenberg et  al. 2016). The RNA-binding region of 
CTCF participates in self-association and loop formation 
(Hansen et al. 2019; Saldana-Meyer et al. 2019).

We have used Hi-C approaches to explore the role 
of genome topology in gene regulation by progestins. 
Curiously, we found that the division of the genome in 
TADs of around 1 Mb size is not affected by exposure 
of breast cancer cells to progestins, but that many of 
the hormone regulated genes are clustered in a subset 
of hormone responsive TADs. Moreover, all the coding 
and non-coding genes within a regulated TAD tend to 
respond in the same direction, suggesting that these TADs 
represent units of hormone response (Le Dily et al. 2014) 
(Fig. 4A). Hormone activated TADs expand in size and 
lose histones when exposed to hormone, while hormone 
repressed TADs become more compacted and enriched 
in histones (Le Dily et al. 2014). A more detailed analysis 
of a few interesting TADs revealed that all the gene 
promoters within a TAD interact with one single 20–90 
kb long hormone control region (HCR) encompassing 
several PR- and ERα-binding sites. An example is the TAD 
containing the ERS1 gene encoding ERα, where the genes 
are activated by estrogens and repressed by progestins (Le 
Dily et al. 2019) (Fig. 4A and B). In response to estrogens 
(+E2), the HCR interactions with the promoters within 
the TAD are enhanced, whereas in response to progestins 
(+Pg), the HCR-promoters interactions are destabilized 
(Fig. 4C). We identified around 200 HCRs in T47D breast 
cancer cells and found that, prior to hormone exposure, 
the HCRs interact with each other at long distances at 
higher frequency than expected in cells expressing ERα 
and PR but not in receptor negative cells of the same 
epithelial luminal origin (Le Dily et  al. 2019) (Fig. 4D). 
Thus, via the HCRs, the hormone receptors contribute to 
the higher order structure of the genome in a cell-type-
specific manner and preform the conditions for an optimal 
hormone response. Similar structure has been proposed 
using Tri-C as regulatory hubs for mouse globin loci in 
primary mouse erythroid cells (Oudelaar et al. 2018).

One question that has not been sufficiently explored 
is the role of the underlying DNA sequence information 
on the higher order folding of chromatin. Ultimately, if 
chromatin folding is subjected to evolution, one would 
expect that the DNA sequence carries at least part of the 
information. However, except for the significance of 
repeated elements, very little has been established on the 
role of DNA sequence. In the filamentous fungus Epichlöe 
Festucae, blocks of repeated elements act as boundaries 
that organize the 3D genome structure and separate gene-
rich genomic domains (Winter et al. 2018). In Drosophila, 
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SINE elements have been shown to maintain and reshape 
3D chromosome structure (Cournac et  al. 2016). In the 
human genome, MIR and L2 transposable elements share 
long-range interactions, acting as enhancers that shape 
gene regulatory networks (Cao et  al. 2019). Active Alu 
elements are very abundant in the human genome and 
have binding sequence for very relevant transcription 
factors (Bennett et  al. 2008). In breast cancer cells, we 
have identified a class of Alu elements bound by the CHAP 
complex that, in response to serum starvation, reshape the 
3D genome structure by binding of general transcription 
factor 3C (TFIIIC). TFIIIC acetylates H3 at K18 and forms 
loops that contact CTCF sites contained within cell cycle 
genes, maintaining them ready to respond to serum 
addition (Ferrari et al. 2019).

In addition to repeated elements, the biophysical 
properties of DNA not only influence the positioning 
of nucleosomes (Segal et al. 2006), but can also be used 
to identify special regulatory elements. Very recently, it 
has been shown that the increased DNA flexibility and 
accessibility of sequences with a high propeller twist 
are an optimal predictor of regulatory enhancer regions 
(Pataskar et  al. 2019). Many years ago, Giorgio Bernardi 
proposed that the structure of chromosomes is determined 
by compositional DNA structure that determines what he 
now calls the genomic code. He first discovered that calf 
thymus DNA exhibits a reversible decrease in viscosity 
at sub-melting temperatures that affects −35% of the 
GC-poor DNA molecules (Freund and Bernardi 1963). 
Using chromatography of human DNA on hydroxyapatite 

Figure 4
TADs are units of hormone response organized by hormone control regions (HCR) that interact with all genes in the TAD. (A) The TAD that includes the 
ESR1 gene contains five other genes, which are coordinately repressed by progestins (+Pg) but activated by estradiol (+E2). (B) The ESR1-containing-TAD is 
organized around an HCR (highlighted by the grey column) which corresponds to a cluster of binding sites of ERα and PR as detected by ChIP-Seq. The 
arcs on the top reflect the interactions established by this HCR with the promoters as detected by chromosome conformation capture methods. (C) The 
interactions HCR-promoters are enhanced upon binding of ERα after exposure to E2, whereas binding of PR after exposure to Pg weakens these 
interactions. (D) Analysis of long-range intra-chromosomal interactions between HCR containing TADs revealed that HCRs contact each other before 
hormone exposure in cells expressing ERα and PR (T47D), but not in similar cells negative for the receptors (MCF10A). The axis indicates the relative 
genomic distance expressed as function of the size of the HCR (X). The color scale from blue to red corresponds to the log2 ratio of observed frequencies 
of interaction between HCR over the contacts expected for random loci separated by the same genomic distances (Le Dily et al. 2019).
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columns and Cs2SO4/Ag+ density gradients, he established 
the concept of isochores, large DNA sequences, −0.9 Mb 
average size, that can be separated into five families of 
increasing GC content, decreasing size and increasing 
gene content, L1, L2, H1, H2, H3 (Macaya et  al. 1976; 
Thiery et al. 1976). The isochore H3 with the highest GC 
content accounts for only −3% of the human genome 
and is very gene rich, constituting the ‘genome core’ 
(Bernardi et  al. 1985). FISH experiments showed that 
the isochores with high-GC content are located in the 
center of the nucleus. Their size and location correspond 
to the TADs as defined in Hi-C experiments (Dixon et al. 
2012; Nora et al. 2012). In contrast, the low-GC content 
isochores represent gene deserts and are associated to the 
nuclear lamina, corresponding to the lamina associated 
domains (LADs) (Guelen et  al. 2008). The isochores 
behave as domains of DNA replication timing, with the 
short gene-rich isochores replicating early in S phase and 
the large gene-poor isochores replicating later (Costantini 
and Bernardi 2008). This bimodal distribution of the 
compositional genome structure is reminiscent of the two 
A and B chromosome compartments identified in Hi-C 
experiments (Lieberman-Aiden et  al. 2009). Moreover, 
in the mouse genome interspersed GC-poor LINEs and 
GC-rich SINEs repeats constrain the base composition 
of isochores. These results suggest that there is a DNA-
guided folding of chromatin, a kind of genome code, 
which could be the genetic basis for genome topology. For 
further reading on this interesting proposal, see Bernardi’s 
recent review (Bernardi 2019).

Role of nuclear ATP synthesis

As mentioned previously, one of the key steps involved 
in progestin signaling is the rapid activation of PARP1. 
PARP1 is activated in response to hormone via CDK2 
mediated phosphorylation within its NAD+ binding active 
site. Activation in this manner increases subsequent 
nuclear poly(ADP-ribose) (PAR) (Wright et  al. 2012). 
Blocking this step via inhibition of PARP1 prevents the 
regulation of 80% of the hormone-controlled genes 
and inhibits chromatin remodeling and histone H1 
displacement. Initially, we assumed that the increase in 
PAR synthesis and the PARylation of histones was only 
needed for chromatin decompaction that would facilitate 
access for transcription factors, other histone modifying 
enzymes and cofactors to ensure correct transcriptional 
regulation (Wright et  al. 2012). Unexpectedly, however, 
we found that the hydrolysis of PAR to its ADPR subunits 
by poly ADP-ribose glycohydrolase (PARG) was also 

required for hormonal gene regulation, a finding that 
led us to think about other possible functions of ADPR 
in hormone regulation (Wright et  al. 2016), a concept 
that was initially formulated in the context of DNA repair 
(Maruta et  al. 1997; Oei and Ziegler 2000; Maruta et  al. 
2007). Exploring the interactome of PAR in breast cancer 
cells we identified NUDIX5 (also known as NUDT5) as a 
hormone-induced interactor. This member of the large 
NUDIX family of enzymes is known to hydrolyze ADPR 
to AMP and ribose-5-P and, in principle, it could use 
pyrophosphate (PPi) instead of H2O to convert ADPR to 
ATP and ribose-5-P. Therefore, we tested whether NUDIX5 
was required for hormonal gene regulation. We found 
that depleting NUDIX5 by specific siRNAs resulted in a 
dramatic inhibition of hormonal gene regulation as well 
as of cell proliferation in response to either estrogens or 
progestins (Wright et  al. 2016). Moreover, recombinant 
NUDIX5 can generate ATP when incubated with ADPR 
and PPi. Finally, using FRET or bioluminescence sensors 
for ATP visualization in living cells, we could detect a 
transient increase in nuclear ATP around 30 min after 
hormone exposure that returned to basal levels after 60 
min (Wright et al. 2016) (Fig. 5A). Depleting NUDIX5 also 
resulted in an inhibition of hormone-induced chromatin 
remodeling and, therefore, we assumed that the nuclear 
ATP was required for the ATPases of the chromatin 
remodeling enzymes.

NUDIX5 is the only member of the NUDIX family 
that forms a homodimer (Zha et al. 2006). The NUDIX5 
homodimer has two active clefts formed at the interface of 
the antiparallel oriented monomers. In the inactive state 
prior to hormone exposure, the monomers are tightly 
connected by ionic interaction between phosphorylated 
Threonine45 (T45) of one monomer and Lysine27 (K27) 
of the other (Wright et  al. 2016). In this conformation, 
there is no space for PPi to enter the active cleft and 
the enzyme hydrolyzes ADPR (Fig. 5B, left panel). We 
wondered how NUDIX5 is activated upon hormone 
exposure and found that 1 min after adding hormone 
T45 is rapidly dephosphorylated (Wright et al. 2016) (Fig. 
5B, right panel). Dephosphorylation of T45 weakens the 
interaction between the two monomers, allowing them 
to flip and form a hexamer that exhibits more open 
substrate clefts able to accept PPi (Wright et  al. 2016). 
The phosphomimetic NUDIX5 mutant T45D cannot 
synthesize ATP and acts as dominant negative mutation 
on gene regulation (Wright et  al. 2016). Thus, we have 
identified a novel nuclear pathway in which nicotinamide 
nucleotide adenylyltransferase 1 (NMNAT1) uses ATP 
and nicotinamide mononucleotide (NMN) to synthesize 
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NAD+, that is used by PARP1 to attach PAR chains to 
itself and to chromatin proteins; PARG hydrolyses PAR to 
ADPR, which NUDIX5 can either hydrolyze to AMP or use 
ADPR along with PPi to synthesize ATP, depending on its 
phosphorylation state (Fig. 5C).

In interpreting these results, we were faced with a 
problem since chromatin remodeling is virtually finished 
30 min after hormone exposure (Vicent et  al. 2009), 
the time when we start to see accumulation of ATP. We 
reasoned that this was an excess of ATP not used by the 
chromatin remodeling ATPases and were wondering 
about its possible function. At that time a paper from 
Tony Hyman’s laboratory appeared in Science showing 
that ATP at millimolar concentrations could act as an 
hydrotrope that would facilitate high concentrations 
of macromolecules as required for macromolecular 
condensates and phase transitions (Patel et al. 2017). This 
appeared as a very plausible role for the large amount 
of nuclear ATP that we detected and that could serve 
to transiently facilitate chromatin transcription and 
RNA processing (Wright et  al. 2019). Another possible 
function of mM ATP concentrations could be to bind free 
Mg2+ ions reducing their free concentration and thereby 
promoting chromatin decompaction (Maeshima et  al. 
2018). In fact, Mg2+ ions at mM concentrations neutralize 
the charge of the histone tails and have been used to 

precipitate chromatin in the past (Widom 1986). The 
energy expensive synthesis of NAD+ by MNAT1 in the 
nucleus using mitochondrial ATP and the conversion of 
NAD+ to PAR by PARP1 leads to the accumulation of large 
amount of chemical energy in ADPR. Part of this chemical 
energy is used for nuclear ATP synthesis by activated 
NUDIX5 to fulfill various consecutive nuclear functions, 
including ATP-dependent chromatin remodeling, likely 
also histone chaperones function, followed by chromatin 
decompaction as an hydrotrope and as a chelator of free 
Mg2+ ions (Wright et al. 2019) (Fig. 6). The availability of 
NUDIX5 specific inhibitors (Page et al. 2018) will help to 
clarify these processes in more sophisticated biological 
models, including 3D cell cultures and mouse intraductal 
xenografts (Sflomos et al. 2016). We have recently found 
that nuclear synthesis of ATP by NUDIX5 is essential for 
the formation of oncospheres by breast cancer cells grown 
in 3D cultures, due to the dependence of the cancer stem 
cells on nuclear ATP (Pickup et  al. 2019). As NUDIX5 
is overexpressed in breast tumors and correlates with 
poor prognosis (Wright et al. 2016), it represents a novel 
possible target for the pharmacological control of cancer 
growth. In addition, we know that nuclear ATP synthesis 
is needed for DNA damage repair (Wright et  al. 2016). 
As cancer cells are addicted to DNA repair mechanisms, 
blocking NUDIX5 alone or in combination with PARP 

Figure 5
Nuclear, mitochondrial and cytoplasmic ATP 
measurements using bioluminescence reporters. 
(A) Images of ATP levels of T47D cells exposed to 
Pg for the indicated time periods, from cells 
expressing the luciferase reporters target to the 
cell nucleus, the mitochondria or the cytosol 
(based on data from Wright et al. 2016). (B) 
Hormone exposure activates NUDIX5 via rapid 
dephosphorylation of T45; surface of the crystal 
structure of the NUDIX5 T45D mutant homodimer 
complexed with ADPR and MG2+ (base on the 
native structure PDB: 2DSC). The two symmetrical 
contacts between T45D (blue) of one monomer 
and K27 of the other are highlighted. (Wright et al. 
2016). (C) The nuclear ATP recovery nuclear 
pathway. The mitochondrial ATP used by NMNAT1 
to make NAD+ is converted by PARP1 to 
protein-attached PAR, which is degraded by PARG 
into ADPR. ADPR can be hydrolyzed by 
phosphorylated NUDIX5 to AMP and ribose-5-
phosphate, or by unphosphorylated NUDIX5 in 
the presence of PPi to ATP and ribose-5-
phosphate (NMN, Nicotinamide Mononucleotide; 
NMNAT, Nicotinamide Nucleotide 
Adenylyltransferase 1; NAD, Nicotinamide 
Adenine Dinucleotide; PARP1, Poly (ADP-ribose) 
polymerase 1; NAM, Nicotinamide; PAR, Poly 
ADP-ribose; PARG, Poly ADP-Ribose 
Glycohydrolase; NUDIX5, NUcleoside Diphosphate 
Linked Moiety X).

https://doi.org/10.1530/JME-19-0266
https://jme.bioscientifica.com © 2020 The authors

Published by Bioscientifica Ltd.
Printed in Great Britain

This work is licensed under a Creative Commons 
Attribution 4.0 International License.

https://doi.org/10.1530/JME-19-0266
https://jme.bioscientifica.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


T74M Beato et al. Progesterone action in breast 
cancer

65 1:Journal of Molecular 
Endocrinology

inhibitors could be another possible strategy for the 
pharmacological management of breast cancer.

The next frontier: liquid-liquid phase 
transitions of macromolecular condensates

One aspect that is becoming increasingly relevant for 
the complete understanding of nuclear function is the 
formation of macromolecular condensates and liquid-
liquid phase transitions (LLPT) (Peng and Weber 2019). 
Given that the cell nucleus has many different structures 
that are not separated by membranes, including the 
nucleolus, Cajal bodies, paraspeckles, transcription 
factories and the two phases of chromatin – euchromatin 
and heterochromatin – LLPT is a plausible mechanism 
for regulating the functions of these macromolecular 
condensates. In particular, chromatin as a long heavily 
charged polymer has intrinsic properties encoded mainly 
in the non-structured charged tails of linker and core 
histones. This will facilitate phase transitions in response 
to changes in ionic strength or to post-translational 
modifications of the histone tails, in particular acetylation 
of lysines (Gibson et  al. 2019), but also methylation 
of lysines and arginines, citrullination of arginines, 
phosphorylation of serines and threonines and ADP-
ribosylation of serines (Altmeyer et al. 2015; Larsen et al. 
2018), or in response to binding of regulatory proteins 
(for example: transcription factors, readers of epigenetic 
marks or members of the basic transcriptional machinery 
including the CTD of RNA polymerase II) (Gibson et al. 
2016). The discovery that the state of phosphorylation of 
the CTD can drive the transition from a transcriptional 
condensate to a splicing condensate (Guo et  al. 2019) 
is relevant in view of the fact that hormonal regulation 
influences the state of the CTD not only in terms of its 

phosphorylation state, but also via PADI2-mediated 
citrullination of arginine 1810 that favors promoter 
release and elongation by RNA polymerase II (Sharma 
et al. 2019).

In relation to the action of PR, it is important to 
note that the two isoforms A and B may differ in the 
type of transcription factor and kinases with which 
they interact (Bellance et  al. 2013; Kaya et  al. 2015) and 
that the PRA isoform lacks one transactivation function 
(Tung et al. 2006). Methylation of K464 in the activation 
function 1 (AF1) activates PR (Chung et al. 2014) and the 
triple mutant K464, K481 and R492 to QQQ makes PR 
hyperactive in the absence of ligand (Woo et  al. 2019), 
indicating relevant functional interactions of the AF1. 
This may be physiologically relevant since very recently 
it has been found that transgenic mice expressing only 
the PRB isoform develop ovarian neoplasms, while those 
expressing only PRA displayed a reduced frequency of 
tumor development (Wetendorf et al. 2019). We know that, 
as in the case of androgen receptor (De Mol et al. 2018), the 
N-terminal unstructured region of PR can form droplets in 
vitro. Therefore, it could be involved in cluster formation 
detected in cell nuclei in response to hormone that was 
different for the A and B isoforms of PR (Lim et al. 1999). 
We are now investigating how this physical behavior of 
PR may be combined with the modifications of the CTD 
of the RNA polymerase II and with changes in chromatin 
PARylation or other chromatin epigenetic marks, along 
with changes in nuclear ATP and Mg2+ ions, to facilitate 
the formation of macromolecular condensates that 
mediate hormonal gene regulation. In experiments with 
electron microscopy and immunogold, it was shown that 
PR binds preferentially to the condensed heterochromatin 
near the lamina and that, in response to hormone, there 
is disaggregation of the condensed chromatin to smaller 

Figure 6
Time course of the nuclear levels of NAD+, PAR, 
ATP and Mg2+, correlated with chromatin 
accessibility changes. Hypothetical graph 
representing the changes in the nuclear levels of 
NAD+, PAR, ATP and Mg2+, as a function of time 
after hormone addition. Initially, when NAD+ is 
converted to PAR, possibly, part of the initial pool 
of nuclear ATP is used for chromatin remodeling, 
but the large increase in nuclear ATP after 30 min 
is not related to chromatin remodeling but most 
likely is used for chromatin decompaction as an 
hydrotrope and as a chelator of free Mg2+ ions. 
Once the ATP levels return to basal levels, the 
chromatin compacts again reducing the risk for 
DNA damage (Wright et al. 2016, 2019).
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fragments and the immunogold particles accumulate 
in the border between this dispersed chromatin and the 
nucleoplasm (Perrot-Applanat et  al. 1986). The recent 
advances in high resolution microscopy and single 
molecule tracking will be key for exploring the dynamics 
of nuclear phase transitions in living cells. In particular, 
the transitions between the active and the inactive states of 
chromatin can be studied using soft X-ray tomography (Le 
Gros et al. 2016; Strom et al. 2017) and may be correlated 
with visualization of specific chromatin regions via oligo-
painting and oligoSTORM (Beliveau et  al. 2015; Beliveau 
et al. 2017) and localization of PR tagged with an appropriate 
fluorophore. Combined with single-cell advanced studies 
(Jin et  al. 2015), approaches like combinatorial cellular 
indexing (Cusanovich et al. 2015), RNA seqFISH (Eng et al. 
2019), single cell Hi-C (Nagano et al. 2017; Ramani et al. 
2017; Stevens et al. 2017), single cell MNase-seq (Lai et al. 
2018), itChIP-seq (Ai et al. 2019), Dip-C (Tan et al. 2019) 
or CHIA-DROP (Zheng et al. 2019) will permit insight into 
the mechanism that uses dynamic variability in structure 
(Finn and Misteli 2019) and the stochastic nature of gene 
transcription (Raser and O’Shea 2004) to permit adaptation 
of the cell to changes in the environment, such as the 
exposure to variable levels of steroid hormones.
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