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 Abstract: Background: Phthalates are widely used in the plastics industry. Di-2-Ethylhexyl Phthalate 
(DEHP) is one of the most important phthalate metabolites that disrupt the function of endocrine 
glands. Exposure to DEHP causes numerous effects on animals, humans, and the environment. Low 
doses of DEHP increase neurotoxicity in the nervous system that has arisen deep concerns due to the 
widespread nature of DEHP exposure and its high absorption during brain development. 

Objective: In this review article, we evaluated the impacts of DEHP exposure from birth to adult-
hood on neurobehavioral damages. Then, the possible mechanisms of DEHP-induced neurobehav-
ioral impairment were discussed.  

Methodology: Peer-reviewed articles were extracted through Embase, PubMed, and Google Scholar 
till the year 2021.  

Results: The results showed that exposure to DEHP during pregnancy and infancy leads to memory 
loss and irreversible nervous system damage. 

Conclusion: Overall, it seems that increased levels of oxidative stress and inflammatory mediators 
possess a pivotal role in DEHP-induced neurobehavioral impairment. 
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1. INTRODUCTION 

Phthalates are one of the most important plasticizers that 
increase the durability of plastic polymers [1]. Diisononyl 
phthalates (DINPs), dibutyl phthalates (DBP), diisodecyl 
phthalates (DIDPs), Di(2-ethylhexyl)phthalate (DEHP) and 
Benzyl Butyl Phthalates (BBP) are the most commonly used 
phthalates in the plastics industry [2]. 

DEHP (also named diethyl phthalate (DOP) or bis (2-
Ethylhexyl) phthalate) is the most pivotal member of 
phthalates. It is a colorless, lipophilic, and viscous liquid that 
is almost insoluble in water [3]. DEHP is available in various 
products including plastic containers, toys, cosmetics, and 
medical equipment [4, 5]. People may be exposed to differ-
ent concentrations of phthalates via inhalation, oral, and 
dermal exposure [6]. Over 2 million tons of DEHP are pro-
duced annually in the world [7]. DEHP can strongly attach to 
dust particles in the air and soil and is dissolved in the  
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groundwater. Therefore, DEHP is one of the broadest water 
pollutants [8, 9]. There are increasing worries about the con-
tinued exposure of human beings to the increasing environ-
mental DEHP levels. The permissible amount of human con-
tact per day is between 4-30 μg of DEHP. However, some 
people are at a greater risk of this substance due to high con-
tact with medical equipment containing plastic materials 
[10].  

After entering the body, DEHP is converted to various me-
tabolites. These major metabolites are D-n-butyl  phthalate 
(DnBP), di-n-octylphthalate (DnOP), diethyl  phthalate (DEP), 
and benzyl butyl phthalate (BBzP) [11]. Secondary oxidized 
DEHP metabolites are mono [2- (carboxymethyl) hexyl] 
phthalate (2cx-MMHP), mono (2-ethyl-5-oxohexyl) phthalate 
(5oxo-MEHP), mono (2-ethyl-5-hydroxyhexyl) phthalate 
(5OH-MEHP), and mono (2-ethyl-5-carbo) phthalate (5cx-
MEPP) [12]. DEHP is converted to monoethylhexyl phthalate 
(MEHP) by lipase. MEHP is more toxic than DEHP and ab-
sorbed by tissues due to its lower viscosity. 

DEHP induces toxicity in several targets including the 
endocrine system [13], renal system [14], liver [15], ovary 
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[16], testis [17], and heart [18]. Brain tissue is one of the 
most important targets threatened by phthalates [19, 20]. 
Since DEHP can pass the placenta, Blood-Brain Barrier 
(BBB), and breast milk, it affects the neural development of 
the fetal brain, mental ability and social behaviors [21, 22].  

Due to daily contact with phthalates and their high ab-
sorption, especially in sensitive periods of brain develop-
ment, this study aimed to investigate the possible impacts of 
DEHP on the function of the nervous system. Furthermore, 
the possible mechanisms of DEHP-induced neurobehavioral 
deficits were discussed. The neurobehavioral impacts of 
DEHP were also compared in males and females.  

2. DEHP-INDUCED NEUROBEHAVIORAL TOXICI-
TY 

Phthalates play an important role in the incidence of nu-
merous neuropsychiatric disorders in humans such as Atten-
tion Deficit Hyperactivity Disorder (ADHD) [23], autism 
[24], and learning disabilities. Surprisingly, the prevalence of 
these impairments is higher in males [25]. 

In rodents, several studies have shown that DEHP may 
impair brain growth [3] and cause neurodegeneration [26]. 
DEHP exposure decreases neuronal growth and increases ax-
onal degeneration, sphingomyelin, and phosphatidylcholine 
levels in rat hippocampus [27]. It also diminishes cognitive 
functions and impairs neural function by increasing inflamma-
tory factors and reducing testosterone levels [28]. Additional-
ly, DEHP reduces social interactions and augments anxiety-
like behaviors and neurological impairments in first-
generation puppies. Many studies have reported that the ad-
verse effects of DEHP on behavioral parameters persist for 
several generations [29]. In a previous study, mothers were 
subjected to DEHP for 10 days during pregnancy. The ob-
tained results using the Morris Water Maze test showed that 
DEHP significantly reduces the spatial learning and memory 
of male rat pups in adulthood [3]. A recent study also showed 
that administration of DEHP at doses of 50 and 200 mg/kg 
during pregnancy and lactation significantly decreases the 
spatial learning and memory in mice puppies [30]. The effects 
of prenatal exposure to DEHP on anxiety-like behavior were 
also investigated using a plus-maze test in male and female 
mice at different stages of sexual development. The results 
indicated that exposure to DEHP significantly reduces the 
percentage of open arm entry and promotes closed-arm entry 
[31]. Another study examined the effects of DEHP at high 
(750 mg/kg) and low (200 μg/kg) doses on the behavioral pa-
rameters of mice puppies born between the age of 16 and 22 
months. The levels of anxiety and behavioral deficits were 
measured using the Y-Maze Test and Novel Object Recogni-
tion Test. The results demonstrated that DEHP causes behav-
ioral impairments and reduces the spatial and short-term 
memories of male progeny [26]. In addition, exposure to 
DEHP at doses 10 to 200 mg/kg during pregnancy and lacta-
tion increased the anxiety and incidence of severe depressive 
behavior in male and female progenies [32].  

3. EFFECTS OF DEHP EXPOSURE ON NERVOUS 
SYSTEM FUNCTION OF ANIMALS  

Hippocampus is very vulnerable to environmental toxi-
cants including phthalate in the early development of the 

brain. In rodents, days 16 to 21 of pregnancy are considered 
critical periods for hippocampus development and hippo-
campal-based cognitive functions are emerged at this period 
[30]. Similar to DEHP, the primary metabolite of DEHP, 
mono-(2-Ethylhexyl) phthalate, can also be transferred 
through the placenta to the fetus and breast milk to the in-
fants. Neurotoxicity and brain growth abnormalities can be 
initiated in the pregnancy and lactation periods [19, 33]. Ex-
posure to DEHP (1500 mg/kg) from Gestational Day (GD) 0 
to GD 19 disrupts the lipid metabolism of mice brains. Fats, 
particularly Essential Fatty Acids (EFAs), have an important 
role in fetal growth and being in contact with plasticizes they 
may change the lipid transport to the fetus [21]. The alterna-
tion in the above-mentioned lipids reduces the cell mem-
brane stability, hippocampal neuronal growth, and the abun-
dance of some lipid species, including sphingomyelin and 
phosphatidylcholine which can alter neural development 
[27]. DEHP exposure (200 μg, 500 mg, or 750 mg/kg/day) 
from GD 11 until birth caused neurodegeneration in the 
nervous system of mice [26]. It has been indicated that 
DEHP drastically reduces the brain weight of rodent new-
borns [33]. A recent study illustrated that DEHP causes irre-
versible brain damage in the fetus by raising the malondial-
dehyde (MDA) levels or peroxisomal changes in supplying 
the essential fatty acids. In the developing fetus, unsaturated 
fatty acids are primarily produced and transported through 
carrier proteins all over the placenta [22, 34]. The amount of 
arachidonic acid and docosahexaenoic acid exerts a signifi-
cant influence on neurodevelopment, regulation of sex hor-
mones, and the normal growth of the fetal brain. Diethylhex-
yl phthalate, as an anti-androgenic compound, can affect 
fetal brain development [35, 36]. Additionally, infant expo-
sure to phthalates causes a severe decline in the number of 
neurons, movement impairment, and hyperactivity via in-
creasing oxidative stress in the brain tissue [33, 37]. 

DEHP exposure in lactation and pregnancy had influ-
ences on the activity of aromatase in the hypothalamus. The 
action of aromatase in male rats (postnatal days (PND) 1) 
was hampered in low concentrations of DEHP (less than 
0.405 mg/kg/day) and raised in high concentrations (more 
than 15 mg/kg/day) [38]. In our recent study, DEHP expo-
sure at low doses during pregnancy and lactation (GD 0- 
PND 21) caused memory impairment in the adult offspring 
rats [39]. Actually, DEHP changes the hippocampal lipid 
profile and results in higher levels of sphingomyelin and 
phosphatidylcholine in the female compared to the male 
mice. Therefore, since lipids play a vital role in neuroprotec-
tion, the resistance of females to destructive impacts of 
DEHP may be associated with cerebral lipid metabolism [27, 
40, 41]. Table 1 [42-50] summarizes some evidence of 
DEHP-induced neurobehavioral impairment in animals. 

4. IMPACTS OF DEHP EXPOSURE DURING CHILD- 
HOOD AND ADULTHOOD PERIODS ON NERVOUS 

SYSTEM FUNCTION OF HUMAN 

Many studies have demonstrated that maternal exposure 
to DEHP in the gestation time may impair neural develop-
ment and behavior. In addition, DEHP decreases learning, 
memory, and intelligence and enhances depression, anxious 
behaviors, cognitive impairment, and risk of autism in off-
spring [24, 51-53]. DEHP increases the learning disabilities, 
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Table 1.  DEHP-induced neurobehavioral impairment in animals. 

Animal Time 
Exposure of 

DEHP 

Dose or  

Concentration 
Outcome References 

Rat 
GD 12 - GD 

21 
Gavage 10, 750 mg/kg/day 

Inhibition of important genes for the prolif-

eration (Ccnd1 and Cdc2) 
[3] 

Mouse 
GD 7 - PND 

21 
Oral 

10, 50, 200 

mg/kg/day 

Down-regulation of estrogen receptor β in 

females, androgen receptor in males, and 

inhibited phosphorylation of extracellular 

signal-regulated protein kinases 1 and 2 

(ERK1/2) 

[32] 

Rat 
GD 2 - GD 

21 
Gavage 1.25 mg/kg/day Enhancement of Tau phosphorylation   [42] 

Rat 
PND 16 - 

PND 22 
Intraperitoneal 10 mg/kg/day Down-regulation of BDNF expression  [43] 

Caenorhabditis 
elegans 

24 h - 2, 20 ppm 

Inhibition of important genes for the differ-

entiation of neurons (TTX-1, TAX-2, TAX-

4, and CEH-14) 

 [44] 

Mouse 24 h - 0-20 μM 

Increased levels of apoptosis-related pro-

teins such as cleaved Caspase-3 and Bax, as 

well as decreased Bcl-2 protein level 

 [45] 

Rat 
GD 14 - GD 

18 
Gavage 500 mg/kg/day 

Intervention in steroidogenic enzyme ex-

pression and reduction of testosterone pro-

duction  

 [46] 

Mouse 24 h - 1 nM -100 μM 
Dysregulated AhR/Cyp1a and disruption of 

the defense processes of neocortical cells  
 [47] 

Mouse 2 weeks Gavage 1-200 mg/kg/day 
Decreased activity of ERK1/2 and down-

regulation of dopamine receptor 2 and Erβ 
 [48] 

Rat 
GD 0 - PND 

21 
Gavage 

30, 300, 750 

mg/kg/day 

Dysregulation of phosphorylated and total 

MAP2c and stathmin mediated via JNK1 
 [49] 

Quail 45 Days Gavage 
250, 500, 1000 

mg/kg/day 

Activation of nuclear factor erythroid 2-

related factor 2 (Nrf2) 
[50] 

 
risks of attention deficit and intellectual development disor-
ders in childhood and adolescence [41, 54]. Children are 
more vulnerable to the negative effects of DEHP exposure. 
Critical growth processes including cell proliferation and 
migration, myelination, neural junction formation, and den-
dritic and axonal growth are occurring in this period of life. 
Thus, exposure to DEHP can delay these growth parameters 
and have severe negative impacts on cognitive function and 
mental health throughout life [43].  

In a previous report, the amount of DEHP metabolites in 
the urine of children (2 to 6 years old) was twice as much in 
the urine of their parents. This may indicate an increase in 
the oxidative metabolism of children [55]. A previous study 
displayed that higher phthalate intake than other metabolites 
can be detectable in children due to putting their toys in their 
mouths [56]. The presence of phthalate metabolites in the 
urine of children aged 6 to 15 years in the United States was 
associated with behavioral impairments and learning disa-
bilities [54]. Another study was performed to assess the lev-
els of phthalate metabolites in students ranging from 19 to 29 
years in both men and women between 2002 and 2008. This 

study indicated the epidemic exposure of people living in 
Germany via detecting the presence of urinary phthalate me-
tabolites [57]. In 2014, a study was conducted to estimate 
dietary intake of phthalates in foods and beverages of adults. 
This study showed that DEHP is remarkably present in all 
commonly consumed foods and beverages. Cereals and meat 
products were the most common causes of exposure to these 
chemicals in the adult population [58]. Exposure of mothers 
to DEHP during pregnancy triggers such neurobehavioral 
impairments as increased hyperactivity in their children [59]. 
Previous evidence also indicated a direct relationship be-
tween the urine phthalates in the 6 to 7 months pregnant 
mothers and cognitive impairments of children [60]. In addi-
tion, a reverse correlation between DEHP and intelligence 
was also found among school-age children [59]. Table 2  
[61-66] summarizes some evidence of DEHP-induced neuro-
toxicity in humans. 

5. MECHANISMS OF DEHP-INDUCED NEUROBE-
HAVIORAL IMPAIRMENTS 

Since phthalates are abundant in the environment and are 
absorbed during brain development, exposure to these 
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Table 2.  Neurotoxicity of DEHP in humans. 

DEHP Performance References 

Down-regulation of FGD1 and PAFAH1B that are essential for fetal brain development [61] 

Correlation between DEHP concentration in maternal urine and increased risk of ADHD in newborns 

and school-age children  

[59] 

[62] 

Over expression of PPARγ and increased levels of apoptosis in undifferentiated neurons  [63] 

An important role in the pathogenesis of autism spectrum disorders [64] 

Up-regulation of NF-kB/STAT3 in monocytes of autistic children  [65] 

DEHP increases internalizing behaviors and decreases child mental and motor development. [66] 

 
substances is probably caused by permanent epigenetic 
changes in the human genome resulting in cognitive impair-
ment. Phthalates reduce the mRNA level of genes engaged in 
the differentiation and function of neurons [41, 67]. Expo-
sure to phthalates during pregnancy reduces learning and 
memory by affecting the profiles of two important genes for 
neuronal proliferation including Ccnd1 and Cdc2. This caus-
es cognitive dysfunction in adulthood. In addition, DEHP 
inhibits the expression level of crucial genes for the differen-
tiation of sensory neurons including TTX-1, TAX-2, TAX-4, 
and CEH-14(44). DEHP-induced neurotoxicity is also medi-
ated through oxidative stress and its effect on N-acetyl-L-
cysteine (NAC) and oxidative stress inhibitors. Reactive ox-
ygen species (ROS) such as superoxide (O2•−), hydroxyl 
radical (OH•), nitric oxide (NO•) and peroxides are products 
of mitochondrial respiration under physiological conditions 
[50, 68]. Antioxidant enzymes like glutathione peroxidase 
(GPX) and superoxide dismutase (SOD) maintain the intra-
cellular ROS content at low levels. DEHP causes oxidative 
stress by increasing the oxidative products and inhibiting the 
antioxidant enzymes. Besides this, some doses of DEHP 
activate the nuclear factor erythroid 2–related factor 2 (Nrf2) 
pathway. Oxidative stress maintains the accumulation of 
Nrf2 and blocks Nrf2-modulated defense responses. Nrf2 is a 
vital protein to modulate the protein expression that has a 
protective role against oxidative damage [45, 50]. Further-
more, DEHP affects the balance between oxidants and anti-
oxidants by increasing the content of MDA, excessive ROS 
generation, and inducing lipid peroxidation in the brain [22]. 
In addition, DEHP exposure in a species of nematode (Cae-
norhabditis elegans) has been caused by the  intracellular 
accumulation of ROS [44]. Oxidative stress is engaged with 
DEHP-induced apoptosis [45, 63, 68]. Increased level of 
oxidative stress in the brain causes DNA damage, which is 
considered as the main stimulus for brain aging and inducing 
Alzheimer’s disease (AD) [69, 70]. Overall, oxidation of 
DNA following DEHP exposure may have a role in neuro-
degeneration and neurobehavioral abnormalities [69]. Imbal-
ance of antioxidant parameters and alterations in the apopto-
sis-related protein expression (a decrement in B-cell lym-
phoma 2 (BCL-2) and increment of BCL2 associated X 
(BAX) protein and caspase-3) are other mechanisms of 
DEHP-induced neurotoxicity [63, 71]. DEHP may increase 
the expression of cyclooxygenase-2 (COX-2), a rate-
restricting enzyme to produce prostaglandin E2 as a pro-
inflammatory factor [72]. The expression of COX-2 in the 
nerve cells causes neuroinflammation and some neurological 

disorders such as AD [73]. Inhibitors of COX-2 mostly pre-
vent neural damages and protect neural cells from inflamma-
tion caused by nerve injury [74, 75]. Persistent inflammation 
increases the COX-2 expression and decreases the hippo-
campal neuronal number [76]. Furthermore, exposure to 
phthalate before and after childbirth leads to an impairment 
in brain development and long-lasting neuro-developmental 
damages [77]. DEHP can also destroy the nerve cells in-
volved in sex differentiation [46]. 

Endogenous androgens such as testosterone showed a crit-
ical role in controlling anxiety and memory function during 
maturity [32, 78]. DEHP reduces the testosterone levels by 
interfering with the expression of steroidogenic enzymes [46]. 
Aromatase enzyme has a neuroprotective role and DEHP ex-
posure reduces its activity in the hypothalamus. Indeed, aro-
matase activity is essential to convert androstenedione to es-
trogen and testosterone to estradiol, which accelerates the last, 
rate-restricting step in the conversion of the androgen to estro-
gen. Over activity of aromatase causes gynecomastia or preco-
cious puberty in men or gigantomastia in women. Thus, 
DEHP may alter the brain's sexual distinction and influence 
behavior and cognitive functions [28, 79]. There is a signifi-
cant correlation between the age-related decrease of testos-
terone and dysfunction in some androgen-responsive tissues 
such as the brain [80]. Experimental studies indicated that 
reduced testosterone level is associated with decreased levels 
of neuronal survival and synapse formation, and inducing neu-
rodegenerative diseases such as AD [81, 82]. 

Hypoandrogenism may be the consequence of a perma-
nent epigenetics modification of the genes that have an im-
pact on the production of testosterone. Testosterone and es-
tradiol derivatives have an important neuroprotective role 
[83, 84]. There is a significant correlation between decreased 
levels of testosterone and neuronal loss. Hence, decrement in 
testosterone levels is a risk factor for nervous system disor-
ders such as AD [85, 86]. According to a study, testosterone 
promotes the survival of hippocampal neurons and is vital to 
maintain learning and memory [87]. Therefore, low levels of 
testosterone in mice subjected to DEHP may trigger anxious 
behavior, cognitive deficits, and degeneration of the nerve 
cells [88]. Prenatal DEHP exposure reduced testosterone 
circulation and decreased the expression of Aryl Hydrocar-
bon (AR) in the hypothalamus, prefrontal cortex, and cere-
bellum which results in anxious-like behaviors during puber-
ty. DEHP may have a lifelong effect on neurological behav-
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iors [47, 89]. Aryl hydrocarbon receptor (AhR) is a ligand-
dependent transcription factor involved in the regulation of 
dendritic cell function and maturation. DEHP disrupts the 
AhR signaling in nerve cells and can increase the mRNA 
level of cytochrome P450 (CYP1B1 and CYP1A1) and pro-
tein level of AhR. In addition, DEHP affects the expression 
of estrogen receptors (Er) b or AR in adult mice [90-92]. 
Disruption of gonadal hormones due to decreased ERbor AR 
in the hippocampus may lead to depression and anxiety-like 
behaviors [48]. The ERais essential for regulating reproduc-
tive functions in the brain, and ERb has non-reproductive 
functions such as learning, memory, anxiety, and depression. 
The ERb expression is high in the regions related to anxiety 
and depression, including the hypothalamus, hippocampus, 
and amygdala [93, 94]. DEHP can interfere with Brain-
Derived Neurotrophic Factor (BDNF) and cAMP-Response 
Element-Binding Protein (CREB) signaling pathways by 
affecting ER-β expression and impairing the flexibility of 
hippocampal function. Another study illustrated that DEHP 
leads to hippocampal atrophy by reducing BDNF synthesis 
in male rats. BDNF plays a crucial role in the survival of 
neurons and dendritic growth and triggers synaptic connec-
tions between neurons. The low dosage of DEHP (10 mg/kg) 
affects the BDNF expression in the hippocampus of male 
rats [95] and declines the branching and length of dendrites 
in the cornu ammonis1 (CA1) area of the hippocampus only 
in the male [10]. 

Microtubule-Associated Proteins (MAPs) play major 
roles in tubulin assemble, binding and fixation of microtu-
bules (MTs), shaping cross-connect structures among MTs, 
and regulating kinesin- and dynein-dependent transports 
along MTs. MAP2, as an important member of MAPs, is 
essential for dendritic extension both in vitro and in vivo [96, 
97]. Furthermore, the MAP2 phosphorylation involved in the 
polymerization of MTs, may control the expansion of den-
drites in the growth phase [98]. Hence, MAP2 has a critical 
role in stabilizing dendritic MTs and modulating the expan-
sion of dendrites through changing the phosphorylation in 
dendrites [99]. DEHP reduces the phospho-MAP2c and ex-
pression of total MAP2c in the male hippocampus. MAP2 
and stathmin are phosphorylated via c-Jun N-terminal kinase 
(JNK) [100, 101] and are pivotal for the development of 
dendrites. A reduced level of total MAP2c helps with the 
indirect decrease in phosphorylated MAP2c and can result in 
dendritic impairments. DEHP exposure disturbs the cyto-
skeleton proteins not only in their normal function, but also 
in the phosphorylated form. Therefore, maternal exposure to 
DEHP, the phospho-MAP2c, and down-regulation of total 
MAP2c may lead to impairments of neuronal dendrites in the 
CA1 area. DEHP disrupts the dendritic growth of pyramidal 
nerve cells and reduces the regulation of some basic proteins 
in the brain such as MAP2c and stathmin [49, 102] .It seems 
that the lack of these key proteins leads to dendritic degener-
ation and CNS-related disorders [99]. Another mechanism of 
DEHP-induced neurotoxicity is impairment in the homeosta-
sis of thyroid hormone. DEHP reduces the activity of Peroxi-
some Proliferator-Activated Receptors (PPARs), which al-
ters the transcriptional activity of the sodium/iodide sym-
porter and consequently worsens the iodine uptake into the 
thyroid gland. Maternal hypothyroxinemia is associated with 
delayed cognitive function and decreased Intelligence Quo-

tient (IQ). DEHP may cause the over expression of PPAR-γ 
in undifferentiated neurons [63, 103, 104]. DEHP probably 
causes impairment of spatial memory, mental and motor 
activity by reducing N-methyl-d-aspartic receptors (NMDA) 
levels and inhibiting NR2B and NR1 subunits (30). Fig. (1) 
summarizes the possible mechanisms of DEHP-induced neu-
rotoxicity.  

DEHP reduces the mRNA level of genes involved in the 
differentiation and function of neurons. DEHP-induced neu-
rotoxicity is also mediated through oxidative stress and its 
effect on N-acetyl-L-cysteine (NAC). DEHP causes oxida-
tive stress by increasing the oxidative products and inhibiting 
the antioxidant enzymes. Alterations in the apoptosis-related 
protein expression and increased level of COX-2 are also 
other mechanisms of DEHP-induced neurotoxicity. DEHP 
reduces the activity of Peroxisome Proliferator-Activated 
Receptors (PPARs) which alters the transcriptional activity 
of the sodium/iodide symporter and Intelligence Quotient 
(IQ). Furthermore, DEHP diminishes testosterone levels and 
phosphorylated MAP2c. In addition, it can interfere with 
BDNF and CREB signaling pathways by affecting ER-β 
expression. DEHP causes memory impairment by declining 
NMDA levels and inhibiting NR2B and NR1 subunits. 

6. COMPARISON OF NEUROTOXIC EFFECTS OF 
DEHP BETWEEN MALES AND FEMALES 

According to studies conducted in recent years, DEHP 
has more destructive effects on males and less on females. A 
study demonstrated that exposure to DEHP in male rats 
causes hippocampal atrophy [43]. Another study also 
demonstrated that DEHP has anti-androgenic function. Anx-
iety-like behaviors were observed only in males. However, 
no change in anxiety-like behavior was found in DEHP-
receiving female mice at puberty [31]. A study in 2018 
showed that DEHP significantly reduces the number of hip-
pocampal pyramidal neurons in adult male mice born from 
mothers exposed to DEHP [26]. Acute postpartum DEHP 
exposure also reduces the number of CA3 neurons in male 
mice. However, no significant effect was observed in fe-
males [40]. DEHP exerts an influence on the expression of 
steroid enzymes involved in androgen biosynthesis and de-
clines the levels of testosterone [46]. Testosterone plays an 
crucial role in neural repair and promotes the survival of 
neural cells [105]. DEHP affects the expression of Estrogen 
Receptor (ER) β in the female and Androgen Receptor (AR) 
as well as the phosphorylation of ERK1/2 in the hippocam-
pus of male mice [32]. DEHP interferes with testosterone 
function in nerve differentiation by reducing testosterone 
concentration and expression of androgen receptors in the 
brain [34]. Protective lipids such as hippocampal phosphati-
dylcholine and sphingomyelin are augmented in female rats 
following DEHP exposure, which explains the different im-
pacts of DEHP in males and females [27]. 

7. NON-MONOTONIC DOSE-RESPONSE RELATION- 
SHIPS OF DEHP 

According to previous studies, some high or low doses of 
DEHP have serious impacts. However, some intermediate 
doses of DEHP have fewer destructive effects, indicating a 
non-uniform dose-response curve (NMDR) that resembles a 
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Fig. (1). Schematic representation of the mechanisms of DEHP-induced neurotoxicity. (A higher resolution/colour version of this figure is 
available in the electronic copy of the article). 
 
J-shaped curve. The effect of DEHP on aromatase activity 
was varied at different doses of DEHP [38]. The biphasic 
response can be characterized by values less than control at 
low doses followed by an increase at high doses (U-shaped 
or J-shaped curves) or vice versa (inverted U-shaped curve) 
[106]. Another study in 2012 also illustrated on-uniform 
dose-response curves of DEHP [17] which are not common 
in pharmacology and physiology [107]. Thus, various doses 
of DEHP result in diverse effects, including differences in 
ligand affinity and signal transduction, saturation of biologi-
cal transmission pathways or protein binding sites, and com-
pensatory responses in the body [106, 108]. 

CONCLUSION 

Endocrine-disrupting chemicals such as DEHP are wide-
ly used in our daily lives. They are very toxic and dangerous 
for public health. Previous data showed that exposure to 
DEHP even at low concentrations, especially during preg-
nancy and infancy, causes memory loss and irreversible 
nerve damage. High levels of estrogen and protective lipids 
in females likely have more protective effects than males 
against the destructive impacts of DEHP. Finally, it is diffi-
cult to quantify the effects of DEHP on the nervous system 
functions because we are constantly exposed to numerous 
environmental toxicants. Further studies are required in the 
future to elucidate the exact mechanisms of DEHP-induced 
neurobehavioral impairment. 

LIST OF ABBREVIATIONS 

DINPs = Diisononyl phthalates 

DBP = Dibutyl phthalates 

DIDPs = Diisodecyl phthalates 

DEHP = Di-2-ethylhexyl phthalate 

BBP = Benzyl butyl phthalates 

DOP = Diethyl phthalate 

DnBP = D-n-butyl  phthalate 

DnOP = Di-n-octyl phthalate 

DEP = Diethyl  phthalate 

2cx-MMHP = Mono [2- (carboxymethyl) hexyl] phthalate 

5oxo-MEHP = Mono (2-ethyl-5-oxoxyl) phthalate 

5OH-MEHP = Mono (2-ethyl-5-hydroxyhexyl) phthalate 

5cx-MEPP = Mono (2-ethyl-5-carbo) Phthalate  

MEHP = Monoethylhexyl phthalate 

BBB = Blood-Brain Barrier 

ADHD = Attention Deficit Hyperactivity Disorder 

GD = Gestational Day 

EFAs = Essential Fatty Acids 

MDA = Malondialdehyde 

PND = Postnatal Day 

U.S = United States 

mRNA = Messenger RNA 

Ccnd1 = Cyclin D1 

Cdc2 = Cell Division Control Protein 2 
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NAC = N-acetyl-L-cysteine 

ROS = Reactive Oxygen Species 

O2•− = Superoxide 

OH• = Hydroxyl Radical 

NO• = Nitric Oxide 

GPX = Glutathione Peroxidase 

SOD = Superoxide Dismutase 

Nrf2 = Nuclear Factor Erythroid 2–related Factor 
2 

AD = Alzheimer’s Disease 

BCL-2 = B-cell Lymphoma 2 

BAX = BCL2 Associated X  

COX-2 = Cyclooxygenase-2 

AhR = Aryl Hydrocarbon Receptor 

CYP = Cytochrome P450 

ERs = Estrogen Receptors 

AR = Androgen Receptor 

BDNF = Brain-derived Neurotrophic Factor 

CREB = cAMP-response Element Binding Protein  

CA1 = Cornu Ammonis1  

MAPs = Microtubule-associated Proteins 

MTs = Microtubules 

JNKs = c-Jun N-terminal Kinases 

PPARs = Peroxisome Proliferator-activated Recep-
tors 

T4 = Thyroxine 

IQ = Intelligence Quotient 

NMDA = N-methyl-d-aspartic Receptor 

CA3 = Cornu Ammonis3 

ERKs = Extracellular Signal-regulated Kinases 

NMDR = Non-monotonic Dose-response 
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