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Understanding how organisms adapt to environmental variation is a key challenge of biology. Central to this are bet-hedging

strategies that maximize geometric mean fitness across generations, either by being conservative or diversifying phenotypes.

Theoretical models have identified environmental variation across generations with multiplicative fitness effects as driving the

evolution of bet-hedging. However, behavioral ecology has revealed adaptive responses to additive fitness effects of environ-

mental variation within lifetimes, either through insurance or risk-sensitive strategies. Here, we explore whether the effects of

adaptive insurance interact with the evolution of bet-hedging by varying the position and skew of both arithmetic and geometric

mean fitness functions. We find that insurance causes the optimal phenotype to shift from the peak to down the less steeply

decreasing side of the fitness function, and that conservative bet-hedging produces an additional shift on top of this, which

decreases as adaptive phenotypic variation from diversifying bet-hedging increases. When diversifying bet-hedging is not an

option, environmental canalization to reduce phenotypic variation is almost always favored, except where the tails of the fitness

function are steeply convex and produce a novel risk-sensitive increase in phenotypic variance akin to diversifying bet-hedging.

Importantly, using skewed fitness functions, we provide the first model that explicitly addresses how conservative and diversifying

bet-hedging strategies might coexist.

KEY WORDS: Cliff-edge effect, environmental canalization, environmental stochasticity, fluctuating selection, geometric mean

fitness, variance-sensitivity.

How organisms adapt to unpredictable fluctuations in the

environment has been an intriguing and important problem for

many years in evolutionary biology, and especially recently

when predicting adaptive responses to environmental change.

Conditions may vary over different time scales, selecting for

adaptations that maximize fitness in the face of environmental

stochasticity in everything from labile behavioral traits within

a lifetime (e.g., variance-sensitive foraging, Stephens 1981) to

cross-generational effects of life-history traits (e.g., bet-hedging;

Simons 2011; Starrfelt and Kokko 2012). Thus, the phenotypes

we observe in organisms today have likely been shaped by

environmental variation experienced across longer timescales

during their evolutionary history, and trait values may not nec-

essarily appear optimal when considering just short-term current

environmental conditions (Nadeau et al. 2017). Environmental

variation itself is expected to be a strong selective agent, since

genotypic rather than individual fitness determines optimal

strategies that are produced over evolutionary time in stochastic

environments (Lewontin and Cohen 1969; McNamara 1998).

Asymmetric fitness functions pose an additional challenge

to evolutionary biologists seeking to understand genotypic adap-

tations in variable environments (Yoshimura and Shields 1987;
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Figure 1. Asymmetric fitness functions and uncertainty in fitness returns produces insurance. Both (A), environmental variation θ

(arrows) moving the fitness function around (darker to lighter colors indicate increasing fluctuations in location parameter θ), and/or (B)

phenotypic variation among individuals of a genotype (darker to lighter colored lines represent normal distributions of individuals with

increasing standard deviations), can cause variation in the fitness returns. Insurance therefore takes the form of an adjustment of the

mean phenotypic value μk away from the peak of the deterministic fitness function (0, indicated by black dotted line) toward the less

steeply decreasing side, to avoid accidentally falling off the cliff-edge (C). Colored lines in C depict arithmetic mean fitness of a genotype

experiencing environmental or phenotypic variation with standard deviation corresponding to the colored curves in A and B (from darker

to lighter, 0.5, 1, 1.5, and 2). Dotted lines indicate the peak of these curves, which moves farther away from 0 the more variation there

is. See Methods text for more details.

Urban et al. 2013). Skew in the function relating a single, con-

tinuous phenotypic trait to fitness is commonly seen in nature,

occurring whenever costs and benefits differ in how they relate

to increasing versus decreasing values of the phenotype, or when

the strength of selection acting on the two sides of the phenotypic

distribution differs. Common examples are thermal performance

curves (Angilletta 2009), optimal clutch or litter sizes (Mount-

ford 1968; Boyce and Perrins 1987; Gamelon et al. 2018), and

reproductive benefits versus viability costs of sexually selected

ornaments (Andersson and Iwasa 1996). In these types of scenar-

ios, uncertainty across instances in any component determining

individual fitness will cause the optimal trait value to differ from

the trait value at the peak of the fitness function (Yoshimura and

Shields 1987; Parker and Smith 1990). Such uncertainty in fitness

pay-offs across instances is also almost ubiquitous in biological

systems. Across lifetimes, phenotypic differences among individ-

uals (as instances) of the same genotype may arise due to de-

velopmental instability creating random (uncanalized) variation

in phenotypes and thus also in their fitness, and strong environ-

mental canalization to avoid such variation may itself incur costs

(DeWitt et al. 1998; Zhang and Hill 2005). Within lifetimes, un-

certainty may occur in individual energetic state on short (e.g.,

behavioral) timescales, due to stochastic variation in resource ac-

quisition, such as prey captures. In addition, the fitness effects of

the phenotype itself (i.e., the shape or position of the fitness func-

tion) may be uncertain, for example due to micro-environmental

variability, or variation occurring over short-time scales, such as

in social environments.

With a skewed fitness function, any stochastic environmen-

tally induced variation in fitness pay-offs will select for appar-

ently suboptimal phenotypes with trait values away from the peak

of the deterministic fitness function when selection maximizes

arithmetic mean fitness (Fig. 1). Finding the (arithmetic) mean

fitness in such cases involves multiplying the phenotype-specific

fitnesses with the frequencies of the different phenotypes (Mount-

ford 1968). This phenomenon is sometimes described as the cliff-

edge effect (Vercken et al. 2012; Mitteroecker et al. 2016), and

is commonly encountered as “insurance” strategies in fields such

as behavioral ecology (Dall 2010). A well-known example is the

small bird in winter (Brodin 2007). Facing a starvation-predation

trade-off, the small passerine bird benefits from being as light

as possible to nimbly avoid predators during the day, but needs

to store fat before nightfall, which it metabolizes to stay warm

during the night. Small birds in winter will therefore adaptively

store more fat as insurance when temperatures are more variable

(Bednekoff et al. 1994), and/or when food supply is more un-

certain (Krams et al. 2010; Ratikainen and Wright 2013). This

same logic of insurance maximizing arithmetic mean fitness over

repeated trials for a single individual, also applies among indi-

viduals sharing a genotype. If members of the same genotype

differ in their expected fitness payoffs due to different individu-

als inhabiting different microenvironments (Fig. 1A), and/or due
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to developmental instability creating individual environmentally

induced phenotypic variation (Fig. 1B), maximizing genotype

fitness requires insurance in the mean phenotype of its bearers

(Fig. 1C).

Across generations, however, the fitness of a lineage is deter-

mined by its geometric mean fitness rather than the arithmetic

mean, due to reproduction being an inherently multiplicative

process (Lewontin and Cohen 1969; Simons 2002). When en-

vironmental conditions are constant between generations (i.e.,

the function relating the trait in question to fitness is exactly the

same each generation), arithmetic and geometric mean fitness are

equal. However, once some aspect of the fitness function dif-

fers between generations, creating variation in realized fitness

between individuals of the same genotype, then the geometric

mean will be lower than arithmetic mean. Crucially, a change in

strategy that lowers variance in realized fitness at the genotype

level may increase geometric mean fitness, and thus be selec-

tively favored. If such a strategy that increases geometric mean

fitness at the genotype level also involves a simultaneous decrease

in arithmetic mean fitness, it is defined as bet-hedging (Philippi

and Seger 1989). Two main types of bet-hedging are usually con-

sidered, diversifying bet-hedging (DBH) and conservative bet-

hedging (CBH) (Philippi and Seger 1989; Simons 2011; Starrfelt

and Kokko 2012). DBH increases phenotypic variance and thus

reduces the correlations in fitness between individuals of the same

genotype, such that not all individuals are affected by the environ-

ment in the same correlated way. DBH strategies can include both

producing two discrete “types” of individuals, such as dry and

wet-year specialists, or dormant and active life stages in response

to good and bad years (Lewontin and Cohen 1969; Venable 2007;

Graham et al. 2014), and continuous variation in a trait among in-

dividuals, such as size of offspring, or timing of reproduction and

entering or exiting dormancy (Simons 2009; Devaux and Lande

2010; Lof et al. 2012). In contrast, CBH reduces variance in re-

alized fitness at the individual level, such that each individual

within a genotype will perform moderately well across a range of

environments. However, there is nothing stopping a strategy from

combining the two types, and Starrfelt and Kokko (2012) argue

that DBH, reducing only among-individual fitness variance, and

CBH, reducing only each individual’s fitness variance, are actu-

ally two ends of a continuum with strategic combination of DBH

and CBH possible in between. Despite this, neither Starrfelt and

Kokko (2012) nor later authors exploring similar models (e.g.,

Crowley et al. 2016) explain how such a combination of DBH

and CBH would work. These papers examine models with two

discrete environments, and a suggested conservative bet-hedger

(acting as a generalist coping moderately well with both environ-

ments) is never able to outperform a diversified bet-hedger (pro-

ducing specialists to each environment in the proportions that they

occur).

We present a different interpretation of CBH, which poten-

tially allows for both CBH and DBH to coexist within the same

model. Considering a continuous trait with an asymmetric fitness

function that fluctuates between generations, CBH can be envi-

sioned as having a cliff-edge effect in the same way as insurance

(see above). Organisms would thus be “playing it safe” by shifting

the mean trait value away from the fitness function maximum, to-

ward the less steeply decreasing side (analogous to that in Fig. 1).

In such a scenario, we expect insurance to maximize arithmetic

mean fitness within each generation. An additional shift in the op-

timal trait value even further away from the cliff edge might then

be selected for if it lowers fitness variance between generations

(despite lowering arithmetic mean fitness in a single generation).

Such an effect would essentially constitute a CBH strategy. Phe-

nological features such as breeding date, migration date or egg

laying date for temperate birds are examples of traits with such

asymmetric fitness functions. The strength of selection may dif-

fer for the underlying selection pressures, for example if being

too late leads to lower offspring competitive ability, but being too

early leads to a much more severe mismatch with the food peak re-

sulting in complete reproductive failure (Gienapp 2012). Whether

breeding after the peak in the fitness function represents insurance

or CBH depends upon whether the mismatch between the mean

trait value and the peak of the asymmetric fitness function is the

result of individuals maximizing arithmetic mean fitness within

their lifetime versus lineages being favored that maximize geo-

metric mean fitness over long time periods (see Lof et al. 2012).

Despite having much in common and some confusion between

the terms in the literature, CBH has rarely been placed in the

same theoretical framework as insurance, and insurance has been

all but absent as part of the bet-hedging literature.

Here, we investigate the relative importance of insurance

and CBH in coping with stochastically fluctuating environments

within and between generations when the fitness function is

skewed. We use a single, continuous trait and calculate the means

and variances in phenotype that maximize arithmetic or geomet-

ric mean fitness under different magnitudes of fluctuations in the

optimal trait value. Mechanisms regulating the phenotypic vari-

ance expressed within a genotype, such as DBH increasing such

variance or environmental canalization decreasing it, are expected

to interact with insurance and/or CBH. Previous theoretical work

has shown that DBH will adaptively increase variance in trait

values once the variance in the phenotypic optimum exceeds the

squared width of the fitness function, whereas smaller environ-

mental variance favors the opposite mechanism, canalization of

the trait toward the value that maximizes fitness in the mean

environment (Bull 1987; Slatkin and Lande 1976). Intuitively,

greater stochastic variation in trait values should require there to

be more insurance or CBH modifying the mean trait value, but

these different components have not previously been placed in a
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common framework. By using a skewed fitness function to illus-

trate the effects of insurance versus CBH, we are able to examine

these interactions, while modeling DBH alongside CBH in such

a way allows us to formally explore Starrfelt and Kokko’s (2012)

suggestion regarding an adaptive continuum between these two

potentially coexisting forms of bet-hedging.

Model Description
THE SKEW NORMAL FITNESS FUNCTION

A wide variety of fitness functions have been used to characterize

asymmetrical relationships between phenotype and fitness (Mar-

tin and Huey 2008; Vasseur et al. 2014), and the results we demon-

strate here can also arise from other functions with nonzero skew.

We base our skewed fitness function on the density function of the

skew normal distribution (O’Hagan and Leonard 1976), omitting

the normalizing constant such that individual fitness takes a value

of one for z = θ. Fitness as a function of the phenotype z is then

given by

w (z; θ,ω, α) = 2e− (z−θ)2

2ω2 �

(
α

z − θ

ω

)
, (1)

which is a Gaussian function multiplied by a term involving the

cumulative distribution function � of the standard normal distri-

bution. The parameter θ specifies the location, ω the width, and α

the skew of the fitness function. α > 0 gives a right-skewed func-

tion (positive skewness), α < 0 a left-skewed function, and α = 0 a

symmetric Gaussian fitness function. Importantly, α also changes

the position of the maximum value of w (despite location parame-

ter θ being kept constant), so we will write θ0 as the value of θ that

provides maximum fitness for a trait value of zero. To examine the

effects of skewed fitness functions on trait values we will use α

> 0 and θ = θ0, so that adaptations in terms of phenotypic values

shifted away from the fitness function maximum (due to insurance

or CBH) become positive and easily interpretable relative to zero

(i.e., the value of z simply becomes the distance from the peak,

or the “amount” of insurance or CBH). The fitness function in

Fig. 1 (black) has θ = θ0, ω = 1, and α = 5.

GENOTYPIC FITNESS WHEN PHENOTYPES VARY

WITHIN GENOTYPE

There may be uncertainty in the fitness returns of individuals

of genotype k. This can be due either to different individuals

experiencing different microenvironments (Fig. 1A), or due to

some (adaptive or nonadaptive) environmentally induced insta-

bility in individual development, leading to individuals express-

ing stochastically different phenotypes z despite having the same

gene for the mean phenotype (Fig. 1B). Whichever the mech-

anism, we assume there is a genetic basis that can modulate

this uncertainty. If the variation in fitness returns arises from

environmental variation (Fig. 1A), a gene affecting this variation

at the genotype level is envisioned as controlling some trait that

affects the degree of similarity between microenvironments that

offspring experience. For example, dispersal can place offspring

in more different microenvironments, whereas other traits such as

building well-insulated nests that lower the effect of temperature

variation, or habitat choice or seeking out habitats with less vari-

able food availability, can provide offspring of the same genotype

with more similar microenvironments. The variation in fitness re-

turns due to phenotypic differences arising from intrinsic factors,

such as susceptibility to developmental instability or environmen-

tal canalization (Fig. 1B), are known to have a genetic basis (e.g.,

Shen et al. 2012). The evolution of such genes under fluctuating

selection has previously been modeled in detail (Bull 1987; Tufto

2015), and this is the mechanism modulating individual variation

in fitness typically considered in the context of bet-hedging.

Whichever the mechanism, we follow Bull (1987), and as-

sume this phenotypic variation to exhibit a normal distribution

fk(z), with a mean μk and a variance σ2
k. We are interested in

the joint evolution of the two underlying genotypic values μk and

σk, and assume no genetic linkage or pleiotropic effects between

them.

The mean fitness of all individuals with the genotype k (with

genotypic values μk and σ2
k) in any given environment θ (or a

constant environment over time) then becomes:

w̄ (μk , σk |θ,ω, α) =
∞∫

z = −∞
w (z; θ,ω, α) fk (z) dz

= 2ω√
ω2 + σ2

k

e

(
− (μk −θ)2

2(ω2+σ2
k)

)
�

⎛
⎝ ωα√

ω2 + σ2
k
(
1 + α2

) μk − θ√
ω2 + σ2

k

⎞
⎠ ,

(2)

which is akin to equation (3) in Bull (1987). The resulting func-

tion w̄ has the same form as (1), but with a larger width parameter

and a smaller skew parameter. When σ2
k = 0, the functions are

identical. Choosing a constant phenotypic variance σ2
k > 0, we

can use numerical optimization over μk and compare the differ-

ence in maxima of w and w̄, to find the amount of insurance

needed to maximize arithmetic mean fitness across all individu-

als of the genotype (i.e., the optimal shift in the mean phenotype

away from the fitness function maximum). Figure 1C shows w

(in black) together with w̄(k; θ0, 1, 5)|σk (in reds) for increasing

values of σk (darker to lighter colors represent σk = {0.5, 1, 1.5,

2}). In this case, since the maximum of the fitness function is

at zero, the optimal amount of insurance is simply the value of

the phenotype that gives the highest fitness, argmaxμ(w̄). These

approximate to 0.044, 0.153, 0.297, and 0.458, respectively. The

larger the phenotypic variance σ2
k, the more insurance is needed

to maximize genotype fitness. We also note that genotype fitness
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strongly declines with increasing phenotypic variance – except

when the mean phenotype is far away from the fitness function

peak.

LONG-TERM FITNESS IN A FLUCTUATING

ENVIRONMENT

In a fluctuating environment it is not just individual fitness but the

fitness of a genotype that will differ in different environments, and

long-term fitness in such cases is determined by geometric mean

rather than arithmetic mean fitness (Lewontin and Cohen 1969;

Simons 2011). In the case of no fluctuations, the geometric mean

is simply equal to the arithmetic mean, and equation (2) is valid.

If we let the optimum position θ follow a normal distribution f

with a mean of θ0 and a variance σθ across generations, long-term

arithmetic mean fitness can be found by taking the expectation of

equation (2) across the environmental fluctuations,

Warit =
∞∫

θ=−∞
w̄ (μk, σk |θ,ω, α) f (θ|θ0, σθ) dθ, (3a)

and for geometric mean fitness we can take the exponential of log

fitnesses integrated across all different environmental conditions,

Wgeom = exp

⎧⎨
⎩

∞∫
θ=−∞

ln [w̄ (μk, σk |θ,ω, α)] f (θ|θ0, σθ) dθ

⎫⎬
⎭. (3b)

These are shown as fitness surfaces in Figs. 2 and 3. Max-

imizing both equations (3a) and (3b) with respect to μk and σk

gives the strategy that provides the highest long-term arithmetic

or geometric mean fitness, respectively, for genotype k. Com-

paring them allows us to tease apart bet-hedging effects (those

maximizing geometric mean fitness at the expense of arithmetic

mean fitness) from non-bet-hedging effects (those maximizing

only arithmetic mean fitness). Maximizing 3a for a fixed σk gives

the optimal amount of insurance (since the peak of the individual

fitness function is at zero), equal to argmaxμ [Warit|σk]. Maximiz-

ing 3b for the same σk then reveals whether any additional shift in

mean phenotype can be attributed to bet-hedging rather than just

insurance, with the optimal amount of CBH then being equal to

argmaxμ [Wgeom|σk] − argmaxμ [Warit|σk]. This result is plotted in

Fig. 4.

Numerical integration was carried out in R version 3.3.1

(R Core Team 2016) and the code is provided in the online Sup-

porting Information (Appendix S1).

Results
Figures 2 and 3 show the long-term fitness of genotype k (consist-

ing of the gene for mean phenotype, μk, and for variance in the

phenotype, σ2
k) measured in either arithmetic or geometric mean

fitness in an environment with increasing fluctuations in the po-

sition parameter θ of the individual fitness function (increasing

σθ). In Fig. 2 the individual fitness function is symmetrical and in

Fig. 3 it is skewed. With a stable environment across generations

(σθ = 0) the arithmetic and geometric mean fitness are equal (top

and bottom panels the same). The fitness surface in these cases

peaks at μk = 0 and σ2
k = 0, that is, the optimal genotype is

a trait value phenotypically canalized (i.e., with as little varia-

tion as possible) at the peak of the individual fitness function.

As environmental fluctuations increase (σθ > 0), the differences

between arithmetic and geometric mean fitness increase. Notably,

in Fig. 2 the peak moves upwards in the bottom panels as the en-

vironmental fluctuations increase. This adaptive increase in phe-

notypic variation (σk) within the genotype represents DBH, and

since arithmetic mean fitness strictly declines with increasing σk

(top panels), the necessary requirement that bet-hedging involves

a lowering of arithmetic mean fitness is fulfilled. In accordance

with Bull’s (1987) result, this selection for increased phenotypic

variation only appears once the environmental variance σ2
θ is

larger than the squared width of the fitness function, and the op-

timal σ2
k is then equal to σ2

θ − ω2. For the symmetric Gaussian

distribution (Fig. 2) this threshold is simply ω2 = 1, and DBH

appears when σ2
θ > 1. In Fig. 3 asymmetry is introduced into the

fitness function (results are shown for α = 5, which matches the

fitness function in Fig. 1), but all other parameters remain as in

Fig. 2. The width of the fitness function decreases as the skew

increases, so this scenario also produces DBH (fitness surface

peak with σ2
k > 0) under lower levels of environmental variance.

The skew also leads to the fitness surface peaks shifting to pos-

itive values of μk, away from the steeply decreasing side of the

individual fitness function. This shift is seen both in the top and

bottom rows of Fig. 3. The shift produced when maximizing arith-

metic mean fitness represents insurance, but in each case there is

a small additional shift when maximizing geometric mean fitness

that can be attributed to CBH, amounting to between 27% for σθ

= 0.5 (μk = 0.77 vs. 0.60) and 1.6% for σθ = 3 (μk = 0.783 vs.

0.771). The amount of CBH on top of insurance decreases as σθ

increases, due to the large amounts of DBH at these scenarios

that lowers the skew parameter of the mean fitness function w̄

(eq. (2)).

The amount of CBH needed is larger when phenotypic

variation σk is constrained at low values—see Figs. 4 and 5A.

Figure 4 shows this difference in mean phenotype (argmaxμ

[Wgeom] – argmaxμ [Warit]), which is attributable to CBH (y-axis),

for different amounts of phenotypic variation σk (x-axis) and

environmental variation σθ (line color). Note that this CBH

effect is largest when phenotypic variation σk is small, and

environmental fluctuations σθ are large enough that DBH would

provide a much greater fitness gain (the steepest incline on the

fitness surface comes by moving upwards along the σk axis). The
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Figure 2. Fitness surfaces for a symmetrical fitness function for genotypes with different values of the mean phenotype μk and variation

in phenotype σk. Contour lines show long-term arithmetic mean fitness (top row) and geometric mean fitness (bottom row). The position

θ of the fitness function fluctuates stochastically between generations, θ�N (0, σθ), the magnitude σθ of environmental fluctuations

increases successively (from 0 to 3) in the different columns from left to right. Irrespective of the scale of these fluctuations and the

phenotypic variation (σk), fitness is always maximized by a peak in the contours in the middle of the x-axis, corresponding to a mean

phenotypic value (μk) of zero, because the individual fitness function is a symmetrical normal distribution with a mean of 0 and width

of ω = 1.

selection gradient will thus adaptively increase the phenotypic

variance, and not the mean phenotype per se.

For phenotypically canalized traits (i.e., traits that have expe-

rienced selection in σk toward zero), we can infer that the fitness

functions of these traits have fluctuated less across generations

(smaller σθ), as we otherwise would not have seen this environ-

mental canalization. For these values of σθ, geometric and arith-

metic mean fitness peaks at more similar μk values when σk is low

(Fig. 4, darker lines). As σk increases, mean fitness w̄(k) becomes

less skewed (see eq. (2), skew parameter α decreases with increas-

ing σk) and therefore CBH will to a smaller extent shift μk on top of

any insurance already occurring. We note that if σk is constrained

to only exhibit a limited amount of DBH, then considerable CBH

and DBH will co-occur (e.g., the dependence of optimal μk on σk

in the lower right panel of Fig. 3; lighter lines showing large CBH

at low σk in Fig. 4), but only limited amounts of CBH (a shift of

up to 10% in μk for σθ = 1, Fig. 3) can co-occur with optimal

amounts of DBH. However, we note that there is a consistent

difference in that geometric mean fitness is much more sensitive

than is arithmetic mean fitness to slight changes in μk away from

the optimum, i.e. the geometric mean fitness surfaces are much

more “peaked” than the arithmetic mean fitness surfaces, and a

horizontal displacement from the peak would cause much greater

fitness decline. This effect is due to the higher fitness variance

at these μk values, and this stronger stabilizing selection towards

the optimum can thus represent an underappreciated bet-hedging

mechanism.

Figure 5B illustrates a similar case of an apparent bet-hedging

effect being instead attributable to simply maximizing arithmetic

mean fitness, and thus not necessarily representing bet-hedging at

all. In this case, if the mean phenotype is constrained at a subop-

timal value, such as may be the case in a climate change scenario

shifting the position of the fitness function, a positive amount of

phenotypic variance is adaptive (i.e., a risk-prone strategy due to
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Figure 3. Fitness surfaces for an asymmetrical fitness function for genotypes with different values of the mean phenotype μk and

phenotypic variation σk. Contour lines show long-term arithmetic mean fitness (top row) and geometric mean fitness (bottom row).

The position θ of the fitness function fluctuates stochastically between generations, θ�N (0, σθ), the magnitude σθ of the fluctuations

increasing from left to right. In contrast to Fig. 2, as soon as σθ > 0 fitness is always maximized here by a peak in the contours to the

right of the middle of the x-axis (where μk=0), because the individual fitness function is a skew normal distribution with a mode of 0,

width of ω=1 and skew of α=5.

risk sensitivity (Caraco et al. 1980; Stephens 1981), later termed

variance sensitivity—see Discussion). This result can be under-

stood, like DBH, as the different individuals of the genotype being

phenotypically different (so that at least some are well adapted

to the current conditions) rather than everyone being somewhat

maladapted. However, there is no need here to invoke a geomet-

ric mean (bet-hedging) argument because this diversification of

phenotypes simply maximizes arithmetic mean fitness across the

individuals of the genotype. This type of adaptive phenotypic

variance is often attributed to bet-hedging without considering

whether the trait specifically increases geometric mean fitness

at the cost of a decrease in arithmetic mean fitness (Mountford

1968).

Discussion
Among the various types of adaptive strategies to cope with

environmental stochasticity, many have typically been considered

from a within-individual perspective in the tradition of behavioral

ecology. These use optimality theory to maximize some fitness

proxy using the arithmetic mean across instances within a single

generation, such as energy intake per time (Davies et al. 2012).

An example is optimal foraging, a large body of the behavioral

ecology literature that deals with such within-individual traits,

including variance-sensitivity, state-dependent energy budgets,

adaptive levels of energy reserves, and information sampling of

foraging options (Stephens et al. 2007). Some rather different

strategies have been considered to operate among individuals

and over many generations. This long-term perspective has been

in the tradition of evolutionary theory, which has identified key

concepts such as environmental canalization and bet-hedging

(Slatkin and Lande 1976; Bull 1987; Philippi and Seger 1989;

Frank and Slatkin 1990). In an attempt to reconcile these

contrasting views, we have calculated both long-term arithmetic

and geometric mean fitnesses for combinations of trait means

and variances under different levels of stochastic environmental
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Figure 4. Conservative bet-hedging (CBH), defined as the differ-

ence in the mean phenotype (μk) maximizing long-term arithmetic

fitness and the phenotype that maximizes geometric mean geno-

type fitness, for given phenotypic standard deviation (σk). Lines

represent results for different values environmental variation σθ ,

as in Fig. 3. The individual fitness function w has a width of ω =
1 and skew of α = 5, also as in Fig. 3. Colored stars along the σk

axis represent the optimal amount of DBH for the corresponding

magnitude of environmental variation σθ and width of the fitness

function ω.

fluctuations. By comparing the results obtained when maximizing

arithmetic versus geometric mean fitness, we have illustrated

some possible similarities between the two approaches, and the

discrepancies that arise when considering the effects of either of

these two measures of fitness in isolation.

Crucially, we use skewed fitness functions to demonstrate

that shifting the mean phenotype away from the steeply decreas-

ing side of the fitness function may provide a more useful and

realistic case of conservative bet-hedging (CBH). This fulfills the

definition of bet-hedging, in that it increases geometric mean fit-

ness at a cost of lower arithmetic mean fitness (i.e., it provides

lower fitness in the average environment, but also a lower vari-

ance in fitness across environments). Such a type of CBH has not

been formally modeled previously, rather theoretical treatments

of CBH have been limited to models with two discrete environ-

ments, where CBH has been envisioned as a canalized phenotype

providing a compromise between the peaks of the fitness func-

tions for the two environments (Crowley et al. 2016; Starrfelt and

Kokko 2012). This “generalist” CBH strategy always loses to a

DBH strategy (producing specialists for the two environments)

and is therefore not compatible with the concept of a “contin-

uum” between CBH and DBH and thus some sort of coexistence

of the two strategies.
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Figure 5. Cross-sections of fitness surfaces in the third column of Fig. 3 (σθ = 1). The red line is the fitness surface for arithmetic

mean fitness, the blue line is the fitness surface for geometric mean fitness. Dotted vertical lines show the maxima for the respective

functions. (A) A horizontal cross-section taken in the trait (μk) dimension at σk = 0, hence the individual fitness function (black line)

peaks at zero, but fluctuates over time (black arrows), which causes mean fitness to be maximized at positive values of mean phenotype

for both arithmetic and geometric mean. (B) A vertical cross-section taken in the phenotypic variance (σk) dimension at μk = –2, and

so diversifying bet-hedging is favored by geometric mean fitness, but arithmetic mean fitness also increases with phenotypic variance,

because of Jensen’s inequality (the individual fitness function is strongly convex at μk = –2) and hence what is known as a variance-prone

strategy – see text for details.
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Various empirical studies of traits based on skewed fitness

functions have invoked CBH arguments of the type we model

here (e.g., Boyce and Perrins 1987; Simons and Johnston 2003).

However, this shift is often also adaptive from an arithmetic mean

fitness point of view in terms of an “insurance” strategy (Dall

2010). With a skewed fitness function, the cliff-edge effect entails

that if individuals with the same genotype differ stochastically in

their phenotypes (or the fitness value of their phenotypes, e.g., due

to inhabiting different microenvironments – see Fig. 1), their av-

erage fitness is maximized if the mean phenotype is shifted away

from the peak of the fitness function, toward the less steeply de-

creasing side (Mountford 1968; Vercken et al. 2012; Mitteroecker

et al. 2016). The same is also true for a single individual ex-

periencing uncertainty about its current state (i.e., regarding its

phenotype or position on the x-axis on the fitness function) or

uncertainty about its current microenvironment (i.e., the position

of the fitness function on the x-axis relative to its phenotype).

Its average fitness is therefore also maximized by “playing it

safe” and moving its phenotype away from the peak down the

shallow slope of the skewed fitness function. This shift (insur-

ance) in the mean phenotype thus increases both arithmetic and

geometric mean fitness and is not a bet-hedging strategy. Ad-

ditionally, we hypothesized that CBH (lowering the variance in

expected fitness for each individual) might shift the mean pheno-

type even more away from the peak of the fitness function than

insurance alone. However, our analysis shows that maximizing

geometric mean fitness only requires a moderate or small fur-

ther shift in the mean phenotype of at most 27% as compared to

the mean phenotype that maximizes arithmetic mean fitness, and

that this effect decreases as environmental fluctuations become

larger.

An exception to this is in cases where there is some con-

straint limiting the phenotypic variance, σk. The effect is shown in

Fig. 4 and especially in Fig. 5A, where geometric mean fitness

(blue line) is maximized for a higher phenotypic value (the indi-

vidual fitness function peaks at zero and has its steepest decline for

negative values, see Fig. 1) than arithmetic mean fitness (red line).

This difference in optimum phenotypic values for such canalized

traits stems solely from a fitness variance-reducing benefit and

can thus be attributed to CBH. However, whenever the pheno-

typic variance (σk) is unconstrained and can evolve to optimum

values, the diversification bet-hedging (DBH) effect of increasing

phenotypic variance instead increases fitness much more effec-

tively than does any such possible CBH effect, shifting the canal-

ized phenotype to more positive values further down that shallow

side of the fitness function. We would therefore expect selection

to favor this DBH mechanism to reduce fitness variance (Lande

and Arnold 1983), rather than shifting the phenotype with addi-

tional CBH beyond that already captured by the effect of adaptive

insurance.

We therefore conclude that, given the opportunity for insur-

ance, there is a limited scope for a single trait to exhibit both

DBH and CBH as an additional adaptation on top of any adap-

tive insurance already being selected for. If any environmentally

induced phenotypic variation (σk) is allowed to evolve then DBH

does appear alongside insurance, which decreases the need for

CBH. Note that in our model we used as a starting point for such

investigations only one phenotypic trait and a single pattern of

environmental stochasticity, even if there was also independent

environmentally induced effects on phenotypic variation (σk) –

see Figs. 2 and 3. Hence, any adaptive solution that maximized

arithmetic mean fitness could potentially also account for the

same pattern of environmental stochasticity experienced at the

genotype level. This “alignment of fitness interests” maximizing

both arithmetic and geometric mean fitnesses of a single trait in

the face of the same regime of environmental fluctuations and

skewed fitness functions at the two levels is intriguing, but it

does not promise to make empirical evidence for conservative

bet-hedging any less “elusive” (Childs et al. 2010; Simons 2011).

While the structure of environmental variation in our model might

reflect the general pattern expected of environmental stochastic-

ity in nature, regimes of environmental stochasticity may dif-

fer between levels and timescales (e.g., seasonal variation versus

El Niño events, as experienced by annual organisms) and are

likely to implicate more than one trait in any evolutionary re-

sponse. Therefore, understanding adaptations to environmental

stochasticity at different levels, such as insurance versus CBH,

requires that we appreciate how patterns of the stochasticity in

question align and differ at the different levels of organismal

experience.

Our result in this regard brings into focus the ecological rel-

evance of previous work. For example, Lof et al. (2012) used a

stochastic dynamic model of timing of reproduction in great tits

when the timing of the food peak fluctuates between years. They

assumed an asymmetric fitness function of laying date relative to

the food peak and showed that maximizing expected (arithmetic

mean) fitness does indeed produce an adaptive mismatch with the

food peak, in the direction away from the steeply decreasing side

of the fitness function (an “insurance” result). They acknowledge

that “there might be additional benefits of adaptive mismatch

in terms of reductions in fitness variance” – i.e., maximizing

geometric rather than arithmetic mean fitness might yield a dif-

ferent result if fitness variance is lowest for a different laying date

than the observed outcome. However, their forward simulations

(using the optimal decision matrix from the dynamic model) “sug-

gest that the variation in fitness often exhibited a minimum close

to the observed optimal laying dates” (Lof et al. 2012). Hence,

there is little scope for CBH to shift the optimal laying date any

further away from the cliff edge. However, geometric mean fit-

ness benefits resulting from a reduction in fitness variance across
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generations can provide an added selection pressure towards the

same optimum phenotypic values as insurance. This result ap-

pears in our model in that the geometric mean fitness surfaces are

more peaked around the maxima than the arithmetic mean fitness

surfaces (Figs. 2 and 3) – i.e., the selection pressure toward the

same insurance optimum becomes stronger due to also producing

lowest fitness variance (i.e., the CBH effect) across generations at

this same optimum. All of which may provide reason for optimism

with regards to species survival in a period when human-induced

environmental change may produce sudden increases in environ-

mental stochasticity that are too rapid for effective evolutionary

responses (Barrett and Hendry 2012; Nadeau et al. 2017). This

is because in the case of asymmetric fitness functions then any

currently adaptive insurance strategy will already have selected

for the appropriate phenotype, and little extra evolutionary con-

servative bet-hedging (CBH) response will be needed in terms of

additional changes to the mean phenotype.

The importance of environmental stochasticity at the individ-

ual versus genotypic level is highlighted in a large body of pre-

vious work on bet-hedging (Levins 1962; Cohen 1966; Gillespie

1974). These identify the “grain” of the environmental variation as

a strong determinant of whether bet-hedging strategies will evolve

(Crowley et al. 2016; Starrfelt and Kokko 2012). If individuals in a

population experience very different environments (i.e., the envi-

ronment is “fine-grained” or “locally variable”), the fitness corre-

lations between individuals of the same genotype will be low and

the scope for DBH is reduced. Assuming a continuous distribution

of environmental fluctuations, such as in our model, a very fine-

grained environment also implies that a larger proportion of the

total environmental variation is experienced by individuals of the

same genotype within each generation. The between-generation

fluctuations in mean environment therefore become smaller, and

a smaller proportion of the variance in fitness is experienced at the

genotype level. Only when the environmental conditions are com-

mon to a large proportion of the population every generation (i.e.,

a “coarse-grained” environment, featuring “global variation”) is

there a large variance in genotype fitness between generations,

which can be ameliorated by adaptive bet-hedging strategies.

While environmental “grain” is not explicitly modeled here,

it is interesting to consider the σk gene as any trait that interacts

with the grain of the environment. DBH traits, such as offspring

dispersal and variation in dormancy duration (i.e., dispersal in

time and space), in effect respond to and modify the grain of

the environment as it is experienced. Hence, adaptive dispersal

(in time or space) leads such genotypes to experience a more

fine-grained environment (Gourbière and Menu 2009; Scheiner

2014). We therefore see why our model suggests that the possi-

bility of DBH makes additional CBH on top of insurance unnec-

essary – the correlation in fitness between individuals of the same

genotype can always evolve to be low enough (via DBH) such

that arithmetic mean fitness is a good determinant of long-term

fitness.

An early model that hinted at this point involved three distinct

adaptations for “reducing risk in variable environments” in seed

production in desert plants: seed size, dispersal, and dormancy

(Venable and Brown 1988). Seed size increases survival in bad

environments, but does not affect survival in good environments.

Given the trade-off between seed number and size, small seeds

are optimal in good environments, but large seeds have a lower

variance in expected fitness per individual. Whether increasing

seed size represents insurance or CBH depends on the proportion

of the environmental variation that is experienced by the geno-

type within versus between each generation. With no dispersal

or dormancy, the environment is coarse-grained, fitness is purely

a multiplicative process and increased seed size is clearly a bet-

hedging trait increasing geometric mean fitness at the cost of a

lower arithmetic mean fitness. But increased seed size may also

maximize arithmetic mean fitness across fine-grained environ-

ments, which is the appropriate fitness measure if the genotype

is sufficiently spread in space (or time, in this case) to experi-

ence the full range of environmental variation in each generation

(Levins 1962). Thus, dispersal and dormancy are not only diver-

sifying bet-hedging (DBH) traits, but also determine the grain

of the environment and the need for conservative bet-hedging

(CBH) versus insurance. Venable and Brown (1988) show that

these adaptations to reduce risk are essentially substitutable and

that a decrease in the value of either of the traits away from

the optimum leads to evolutionary compensation in an increased

value of the other traits. However, note that the DBH traits here,

dispersal and dormancy, are inherently different from a conceiv-

able fourth risk-reducing strategy: variation in seed size itself.

In discrete environments (“good” and “bad”) the optimal DBH

strategy maximizing geometric mean fitness is to produce seeds

with optimal size for each of the environments (small and large)

with the probabilities of those respective environments occurring,

while in continuously varying environment seed size should vary

around a mean trait value, as in our model. Here, we showed that

in a continuously varying environment, this type of DBH (which

Venable and Brown (1988) do not explore) generally provides

a greater benefit than CBH. However, we do not rule out that

with other types of environmental variation and environment-

specific fitness functions then changing the mean trait value

may be a better strategy. We also point out again that both of

these risk-reducing strategies are only effective once the grain of

the environment causes selection to maximize geometric rather

than arithmetic mean fitness (Venable and Brown 1988; Scheiner

2014).

In our current model, the only time arithmetic mean fitness

would be higher with more phenotypic variance (i.e., for an indi-

vidual, rather than a DBH genotype increasing among-individual
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variation) would be if its fitness function were strongly convex

around its current phenotype (Fig. 5B), such as at the tails of

a Gaussian fitness function. This is the same adaptive gambling

effect that produces risk sensitivity (Caraco et al. 1980; Stephens

1981), aka variance sensitivity (Smallwood 1996; Stephens et al.

2007), which is an important concept from economics used to

explain foraging decisions and other behaviors when there are

more or less variable options. The fitness advantage of variance

sensitivity follows directly from Jensen’s inequality: if the fitness

function f of some utilized resource or trait x is convex, then the

mean fitness gained over a sequence of events with variable re-

ward x will be larger than the fitness gained from the mean reward

x: E[f(x)] > f(E[x]). This is an arithmetic mean fitness maximizing

argument, and the benefit of increasing phenotypic variance can

therefore be seen in our calculations of arithmetic mean fitness as

well (top rows of Fig. 2 and 3; Fig. 5B). Essentially, for a constant

μk sufficiently far from the fitness function peak, arithmetic mean

fitness is maximized at an intermediate value σk > 0. This similar-

ity between variance sensitivity and DBH in producing variable

phenotypes but at different adaptive timescales has not been re-

ported before, and it is made explicit here through our comparison

of trait means and variances maximizing long-term arithmetic or

geometric mean fitness.

We have demonstrated several results linking theory con-

cerning individual-level strategies from behavioral ecology with

genotype-level adaptations from evolutionary biology in context

of environmental uncertainty. There is still more work to be done

in reconciling bet-hedging theory with other types of adaptations

to variable and unpredictable environments, such as specialist ver-

sus generalist strategies (Gilchrist 1995; Buckley and Huey 2016),

interactions with phenotypic plasticity (Simons 2014; Grantham

et al. 2016), the evolution and maintenance of sexual reproduction

(Burke and Bonduriansky 2017; Li et al. 2017; Gerber et al. 2018),

and topics on human development and decision-making (McNa-

mara et al. 2011; Fawcett et al. 2014; Higginson et al. 2016). An

important next step is now to connect these theoretical studies to

real world examples and quantitative studies of organisms in the

lab and in the wild, for example if we are to understand how pop-

ulations might respond to current human-induced rapid environ-

mental change. Applying this genotype-level view to predictive

statements concerning evolutionary responses requires extensive

data on past environmental fluctuations, clear links between trait

values and individual fitness, as well as detailed knowledge of the

genetic mechanisms underlying the traits. While this might seem

an insurmountable task, the empirical evidence for bet-hedging

in the wild has shown that long-term studies on natural popula-

tions can provide answers to these types of questions (Simons

2011). We hope that our results here act as a motivation to both

empirical and theoretical studies on adaptations to stochastic en-

vironments to compare and contrast individual versus genotype

perspectives and the alternative adaptive currencies of arithmetic

versus geometric mean fitness.
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beyond plain heritability: variance-controlling genes in Arabidopsis

thaliana. PLoS Genet. 8:e1002839.
Simons, A. M. 2002. The continuity of microevolution and macroevolution.

J. Evol. Biol. 15:688–701.
———. 2009. Fluctuating natural selection accounts for the evolution of

diversification bet hedging. Proc. R Soc. B Biol. Sci. 276:1987–1992.
———. 2011. Modes of response to environmental change and the elusive

empirical evidence for bet hedging. Proc. R Soc. B Biol. Sci. 278:1601–
1609.

———. 2014. Playing smart vs. playing safe: The joint expression of phe-
notypic plasticity and potential bet hedging across and within thermal
environments. J. Evol. Biol. 27:1047–1056.

Simons, A. M., and M. O. Johnston. 2003. Suboptimal timing of reproduction
in Lobelia inflata may be a conservative bet-hedging strategy. J. Evol.
Biol. 16:233–243.

Slatkin, M., and R. Lande. 1976. Niche width in a fluctuating environment—
density independent model. Am. Nat. 110:31–55.

Smallwood, P. D. 1996. An introduction to risk sensitivity: the use of Jensen’s
inequality to clarify evolutionary arguments of adaptation and constraint.
Am. Zool. 36:392–401.

Starrfelt, J., and H. Kokko. 2012. Bet-hedging—a triple trade-off between
means, variances and correlations. Biol. Rev. 87:742–755.

Stephens, D. W. 1981. The logic of risk-sensitive foraging preferences. Anim.
Behav. 29:628–629.

Stephens, D. W., J. S. Brown, and R. C. Ydenberg, eds. 2007. Foraging:
Behavior and ecology. 1st ed. Chicago Univ. Press, Chicago.

Tufto, J. 2015. Genetic evolution, plasticity, and bet-hedging as adaptive re-
sponses to temporally autocorrelated fluctuating selection: a quantitative
genetic model. Evolution 69:2034–2049.

Urban, M. C., R. Bürger, and D. I. Bolnick. 2013. Asymmetric selection and
the evolution of extraordinary defences. Nat. Commun. 4:2085.

Vasseur, D. A., J. P. Delong, B. Gilbert, H. S. Greig, C. D. G. Harley, K. S.
Mccann, V. Savage, T. D. Tunney, M. I. O. Connor, D. A. Vasseur, et al.
2014. Increased temperature variation poses a greater risk to species
than climate warming. Proc. R Soc. B Biol. Sci. 281:20132612.

Venable, D. L. 2007. Bet hedging in a guild of desert annuals. Ecology
88:1086–1090.

Venable, D. L., and J. S. Brown. 1988. The selective interactions of dispersal,
dormancy, and seed size as adaptations for reducing risk in variable
environments. Am. Nat. 131:360–384.

Vercken, E., M. Wellenreuther, E. I. Svensson, and B. Mauroy. 2012. Don’t fall
off the adaptation cliff: when asymmetrical fitness selects for suboptimal
traits. PLoS One 7:e34889.

1 5 6 EVOLUTION FEBRUARY 2019



INSURANCE VERSUS BET-HEDGING

Yoshimura, J., and W. M. Shields. 1987. Probabilistic optimization of phe-
notype distributions: a general solution for the effects of uncertainty on
natural selection? Evol. Ecol. 1:125–138.

Zhang, X. S., and W. G. Hill. 2005. Evolution of the environmen-
tal component of the phenotypic variance: stabilizing selection in

changing environments and the cost of homogeneity. Evolution 59:1237–
1244.

Associate Editor: B. Hollis
Handling Editor: M. Servedio

Supporting Information
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Appendix S1: R code

EVOLUTION FEBRUARY 2019 1 5 7


