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Abstract
Many clinical trials repeatedly measure several longitudinal outcomes on
patients. Patient follow-up can discontinue due to an outcome-dependent event,
such as clinical diagnosis, death, or dropout. Joint modeling is a popular choice
for the analysis of this type of data. Using example data from a prodromal
Alzheimer’s disease trial, we propose a new type of multivariate joint model
in which longitudinal brain imaging outcomes and memory impairment rat-
ings are allowed to be associated both with time to open-label medication and
dropout, and where the brain imaging outcomes may also directly affect the
memory impairment ratings. Existing joint models for multivariate longitudi-
nal outcomes account for the correlation between the longitudinal outcomes
through the random effects, often by assuming a multivariate normal distribu-
tion. However, for these models, it is difficult to interpret how the longitudinal
outcomes affect each other. We model the dependence between the longitudi-
nal outcomes differently so that a first longitudinal outcome affects a second
one. Specifically, for each longitudinal outcome, we use a linear mixed-effects
model to estimate its trajectory, where, for the second longitudinal outcome, we
include the linear predictor of the first outcome as a time-varying covariate. This
facilitates an easy and direct interpretation of the association between the lon-
gitudinal outcomes and provides a framework for latent mediation analysis to
understand the underlying biological processes. For the trial considered here,
we found that part of the intervention effect is mediated through hippocampal
brain atrophy. The proposed joint models are fitted using a Bayesian framework
via MCMC simulation.
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1 INTRODUCTION

In randomized clinical trials, the focus is often on whether an intervention has a beneficial effect on the outcome of inter-
est rather than the mechanism through which the intervention exerts its effects. However, identifying the mechanism
can strengthen the validity of findings and can generate ideas to improve the effectiveness. This is particularly useful for
interventions in complex diseases. Alzheimer’s disease (AD) is such a complex disease as it is a slowly progressing neu-
rodegenerative disease affecting several domains, including memory, cognition, executive function, and brain atrophy.
Consequently, AD trials typically collect several longitudinal outcomes repeatedly measured for months or even years.
An example for our work is a long-term AD trial, namely the LipiDiDiet trial.1,2 The LipiDiDiet trial aimed to investigate
the effects of medical nutrition (Souvenaid) on cognition and related measures in prodromal AD individuals. Various
outcomes, including scores on cognitive performance, memory, and brain atrophy measures, were collected over time.
During the trial, subjects that progressed to dementia were allowed to remain in the trial while using open-label medica-
tion, defined as active study product and/or AD medication. However, as the trial was designed to investigate the effects
of the intervention on drug-naïve individuals with prodromal AD, data collected after subjects started open-label medi-
cation were prespecified to be excluded from the efficacy analysis. In addition to the exclusion of data after the start of
open-label medication, some subjects dropped out during the trial.

This article focuses on two longitudinal outcomes: memory domain measured based on a neuropsychological test
battery (NTB memory domain) and hippocampal brain atrophy. The hippocampal brain atrophy outcome is expected to
affect the memory impairment ratings, as the hippocampus’s importance in memory functioning has been demonstrated.3
For verbal memory tasks, stronger associations in AD patients have been reported for the volume of the left hippocam-
pus than for the volume of the right hippocampus.3,4 Therefore, in this article, we concentrate on the volume of the left
hippocampus. The memory impairment ratings, in turn, are expected to affect the time to open-label medication. Impor-
tantly, in this research, we use the time to open-label medication as a proxy for disease progression. Also, hippocampal
brain atrophy might affect the time to open-label medication, and the same types of relationships might exist for the time
to dropout. Furthermore, the intervention is expected to affect both hippocampal brain atrophy and memory. The lat-
ter effect might be through hippocampal volume or a different pathway. Figure 1 provides a schematic representation of
the potential underlying biological processes in the data. As can be seen, several paths link the intervention to time to
open-label medication and dropout. Additionally, the intervention effect can be partitioned into direct and indirect paths
of influence. Our goal is to estimate these different paths to better understand the underlying biological mechanisms, and
in particular, to understand how the intervention affects the time to open-label medication.

Both the use of open-label medication and dropout resulted in missing data for the longitudinal outcomes. We can
expect different (missing) longitudinal trajectories for subjects whose data collected after the start of open-label medica-
tion were censored than for subjects who dropped out of the trial. Both these events, but particularly the use of open-label
medication following progression to dementia, could be related to disease progression. Therefore, the missing data might
be nonrandom (i.e., the probability of dropout depends on unobserved longitudinal responses). When analyzing this type
of longitudinal data, we rely on methods that jointly estimate the longitudinal outcome and the dropout process, such
as the joint model for longitudinal and time-to-event data.5-7 Using the joint modeling framework, it is also possible to
deal with the competing events of open-label medication use and dropout.8-10 Joint models for two or more longitudinal

F I G U R E 1 A conceptual diagram of the potential underlying biological processes in the LipiDiDiet data
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outcomes have been considered before. For example, Brown et al11 proposed a multivariate joint model with a B-spline
formulation for the longitudinal part, and Rizopoulos and Ghosh12 proposed a semiparametric multivariate joint model.
In these existing joint models for multiple longitudinal outcomes, longitudinal outcomes are assumed to be correlated but
not to causally influence one another. Often, in these models, the interdependencies between the longitudinal outcomes
are captured by the random effects, typically by assuming a multivariate normal distribution; for other examples, see Chi
and Ibrahim13 and Andrinopoulou et al.14 However, these models are not suitable when in the hypothesized working
mechanism one longitudinal outcome is assumed to influence another.

We propose a new type of multivariate competing risk joint model in which, for each of the longitudinal outcomes,
we use a linear mixed-effects model to estimate its evolution over time, where for the second longitudinal outcome, we
include the predictor of the first outcome as a time-varying covariate. The proposed model provides a framework for
latent mediation analysis, which we use to estimate the different direct and indirect effects to understand the underlying
biological processes. Our approach is different from traditional mediation analysis as we use the predicted values (ie,
latent processes) of the longitudinal outcome instead of the observed outcomes.

This article is organized as follows: Section 2 presents the proposed multivariate competing risk joint model. Section 3
describes how the proposed model can be used to investigate mediation. Section 4 shows the results for the proposed
model on the LipiDiDiet data. Finally, in Section 5, we evaluate the proposed model’s performance.

2 MODEL FORMULATION

For subject i (i = 1, … ,n), let yi1(t) and yi2(t) denote the longitudinal values at time point t for respectively the first and
second longitudinal outcome. These values are observed at specific time points that can differ for each subject and each
longitudinal outcome. We use mixed-effects models to describe the trajectories of the longitudinal outcomes over time.
In particular, to model the first longitudinal outcome, we postulate

yi1(t) = mi1(t) + 𝜖i1(t)
= x⊤i1(t)𝜷1 + z⊤i1(t)bi1 + 𝜖i1(t),

where 𝜷1 denotes the vector for the fixed regression coefficients, bi1 denotes the vector of random effects, xi1(t) and zi1(t)
are design vectors for the fixed and random effects, respectively, and 𝜖i1(t) denotes the measurement error term for which
we assume 𝜖i1(t) ∼ (0, 𝜎2

1 ). Further, the random effects are assumed normally distributed with mean zero and covari-
ance matrix Σb1, being independent of 𝜖i1(t). The linear predictor mi1(t) denotes the true but unobserved trajectory, that
is, the latent process, of the first longitudinal outcome over time. We postulate that mi1(t) affects mi2(t), that is, the latent
process of the second longitudinal outcome, and we assume that the intervention and other covariates affect both

yi2(t) = mi2(t) + 𝜖i2(t)
= x⊤i2(t)𝜷2 + z⊤i2(t)bi2 + 𝜉mi1(t) + 𝜖i2(t).

In this way, using the parameter 𝜉, we can directly interpret the association between the two longitudinal outcomes
as it denotes the change in the predicted value of the second longitudinal outcome for a one unit increase in the pre-
dicted value of the first longitudinal outcome, holding the other factors constant. Further, 𝜷2, bi2, xi2(t), and zi2(t) denote,
respectively, the fixed regression coefficients, the random effects, and the design vectors, similar as before but now for
the second longitudinal outcome. The random effects bi2 are assumed to be normally distributed, with mean zero and
covariance matrix Σb2. Note that the random effects bi1 and bi2 are not assumed to be correlated.

For subject i, let T∗ik denote the true event time for event k = 1, 2, and let Ci denote the censoring time. Moreover, let
Ti = min(T∗i1,T

∗
i2,Ci) be the observed survival time and 𝛿i the event indicator, where 𝛿i = k in case of the competing events

and 𝛿i = 0 for censoring. The hazard function for subject i for competing event k is modeled as follows

hik(t,𝜽sk) = h0k(t) exp{𝜸⊤k wi + 𝛼k1mi1(t) + 𝛼k2mi2(t)},

where h0k denotes the baseline hazard for the kth event, which we approximate in a flexible manner, using B-splines 𝝓sk.
Further, 𝜽sk is the parameter vector for the kth survival outcome, and wi is a design vector of baseline covariates with a
corresponding vector of regression coefficients 𝜸k. The latent processes of the first and second longitudinal outcome are
allowed to be associated with both competing events, quantified by the association parameters 𝛼k1 and 𝛼k2.
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F I G U R E 2 Schematic representation of the proposed joint model. Note that this represents a simplified version of the model, as next to
the intervention, also other covariates may affect mi1(t), mi2(t), and the competing events.

The parameters are estimated under the Bayesian framework, using Markov chain Monte Carlo (MCMC) methods
and using the JAGS software.

3 MEDIATION

3.1 Different intervention effects

The proposed joint model can be used to understand the process(es) of how the intervention affects the competing risks.
A schematic representation of the proposed model is presented in Figure 2, based on which we can distinguish different
paths that link the intervention to the competing events, either passing through none, one, or both of the longitudinal
outcomes (i.e., their latent processes). Our goal is to estimate each of these paths. For ease of illustration, let 1(t) and
2(t) denote the regression coefficients involving the intervention effect in, respectively, the first and second longitudinal
submodel. These are typically time-dependent due to the specification of an interaction of intervention by time in the
longitudinal models. Based on Figure 2, we can distinguish a direct path, quantified by 𝛾11, and three different indirect
paths linking the intervention to the first competing event, passing through one or both of the longitudinal outcomes. In
Supplementary Figures 7a-c, we highlighted the indirect paths one by one.

The first indirect path we can distinguish (see Supplementary Figure 7a) is the path that links the intervention to the
first event, passing through the first longitudinal outcome. The parameter 1(t) describes the intervention effect on the
first longitudinal outcome over time, and the parameter 𝛼11 quantifies the effect of this longitudinal outcome on the first
event. Therefore, the indirect effect of the intervention on the first event mediated through the first longitudinal outcome
is quantified as the product 𝛼111(t).

Second, we observe an indirect path (see Supplementary Figure 7b) quantifying the intervention effect on the first
event mediated through the second longitudinal outcome. This path involves the parameters 2(t) and 𝛼12.

The third indirect path (see Supplementary Figure 7c) quantifies the mediation through the first and second longitu-
dinal outcome on the first competing event. That is, the intervention may affect the first longitudinal outcome, quantified
by the parameter1(t), which in turn is expected to affect the second longitudinal outcome. The second longitudinal out-
come, in turn, may affect the risk of the first event. This path is quantified as 𝜉 𝛼12 1(t). As is the case for the Cox model,
these quantities’ exponent expresses the effects as multiplicative changes on the hazard. For example, exp {𝜉 𝛼12 1(t)}
denotes the increase in the risk of the first event due to the indirect effect of the intervention through both longitudinal
outcomes.

Lastly, the total intervention effect on the first event in the joint model is the hazard ratio of the active vs the control
group, with all other covariates held constant. For the proposed joint model, this hazard ratio is a combination of the direct
path, which is time-independent, and the three, typically time-dependent, indirect paths. Therefore for the proposed joint
model, the time-varying hazard ratio for the overall intervention effect can be expressed as:

 (t) = exp{𝛾11 + 𝛼111(t) + 𝛼122(t) + 𝜉𝛼121(t)}.
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Note that the hazard ratios for the direct, indirect, and total effect are conditional on the random effects and therefore
have subject-specific interpretations. For more information and a method to obtain the marginal overall treatment effect,
we refer to Reference 15.

3.2 Traditional mediation analysis and our approach

There are two major general approaches for calculating the point estimate of the mediated effect in single-mediator
models: the difference in coefficients and the product of coefficients methods. Consider the following three regression
equations:

Y = i1 + cX + 𝜖1,

Y = i2 + c′X + bM + 𝜖2,

M = i3 + aX + 𝜖3,

where X is the independent variable, M is the mediator, Y is the dependent variable, c represents the relation between
the independent and dependent variable, c′ represents the relation between the independent and dependent variables
adjusted for the effect of the mediator, b represents the relation between the mediator and the dependent variable
adjusted for the effect of the independent variable, and a represents the relation between the independent variable and
the mediator. With the difference in coefficients methods, the difference between the regression coefficients before and
after adjustment for the mediator is calculated: c − c′. The product of coefficients method computes the product ab
and is based on the rationale that the mediated effect is equal to the effect of the independent variable on the media-
tor times the effect of the mediator on the dependent variable. MacKinnon et al16 have shown that the two estimators,
c − c′ and ab, are mathematically equivalent when the dependent variable is continuous and ordinary regression is
used. However, for multilevel models, logistic or probit regression, and survival analysis, the estimators are not always
equivalent.16-19

The traditional single-mediator model can be extended to models with more than one mediator. Two forms of multiple
mediator models are serial multiple mediator models, in which the mediators are linked together in a causal chain, and
parallel multiple mediator models, in which the mediators are merely allowed to correlate but not to causally influence
another mediator in the model.20 The parallel and serial mediator model are shown in Figure 3. The existing multivariate
joint models belong to the class of parallel multiple mediator models. In these models, there is no direct link between the
mediators; the mediators are allowed to correlate but not to causally influence one another.

This article’s proposed model has the form of the serial multiple mediator model with two mediators. As can be seen
in the lower panel of Figure 3, X is modeled as affecting Y through one direct and three indirect paths. The four regression
equations that represent the two-mediator serial mediator model are:

Y = i1 + cX + 𝜖1,

Y = i2 + c′X + b1M1 + b2M2 + 𝜖2,

M1 = i3 + a1X + 𝜖3,

M2 = i4 + a2X + dM2 + 𝜖4,

where the total indirect effect can either be calculated by the difference in coefficients method, quantified as c − c′, or by
the product of coefficients methods, quantified as the sum of the three indirect effects a1b1, a2b2, and a1db2.

Although the proposed model has the form of the serial multiple mediator model, our approach to assessing latent
mediation analysis differs from traditional mediation analysis for a few reasons. First, we assume that the observed lon-
gitudinal outcomes are realizations with error from latent processes, and we postulate that the latent process of the first
longitudinal may affect the latent process of the second longitudinal outcome. Using the latent processes is advantageous
as it allows to distinguish the true process of interest from its noisy observations. For the estimation of the mediated effect
on the risk of the first competing event through the longitudinal outcomes, based on the product of coefficients method,
we need the following equation:

hi1(t) = h01(t) exp{𝛾 ′11wi + 𝛼11mi1(t) + 𝛼12mi2(t)}.
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F I G U R E 3 Two multiple mediator models with two mediators

The total indirect effect based on the product of coefficients methods can be calculated by taking the sum of the three
indirect effects 𝛼111(t), 𝛼122(t), and 𝜉𝛼121(t). As such, another advantage of using a joint model compared to tradi-
tional mediation analysis is that the path coefficients for the product of coefficients method can be estimated based on
a single equation. In other words, they can be estimated simultaneously based on the same model while controlling for
one another.

To estimate the mediated effect based on the difference in coefficients method, we would need a second equation to
obtain the unadjusted effect of the intervention on the risk of the first event (𝛾11). For this reason, we do not recommend
using the difference in coefficients method for our approach, as it is unclear whether we can combine estimates based
on different models in this setting. Furthermore, modeling an interaction of the intervention by time in the longitudinal
submodel(s) results in a time-dependent intervention effect on the survival outcome. Using the difference in coefficients
method it is not possible to capture such a time-dependent mediated effect, as the estimator (𝛾11 − 𝛾 ′11) is time-independent
by definition. Using the product of coefficients methods, it is straightforward to estimate a time-dependent mediated
effect because the estimator 𝛼111(t) + 𝛼122(t) + 𝜉𝛼121(t) includes the time-dependent intervention effects on the
longitudinal outcomes 1(t) and 2(t).

4 ANALYSIS OF THE LIPIDIDIET DATA

This section presents the analysis of the LipiDiDiet trial, briefly introduced in Section 1, using the proposed multivariate
competing risk joint model. The LipiDiDiet trial is a randomized, controlled, multicenter trial performed at study sites
in Finland, Germany, the Netherlands, and Sweden. The trial had an initial 24-month intervention period and up to
72-month double-blind extension periods and showed positive effects on longitudinal measures of cognition, functioning,
and brain atrophy.1,2 Here, we focus on the first 36 months of intervention, which currently is the maximum reported
intervention period. Our primary interest is in estimating the different effects of how the intervention affects the risk of
starting open-label medication use, both directly and indirectly, through one or both of the longitudinal outcomes. In the
model, we assume that there is a true underlying profile for each subject, that is, the latent process mi1(t) that dictates
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how the observed values of hippocampal volume change over time. Likewise, we assume that the NTB memory domain
instrument measures the true underlying memory profile mi2(t). We model that the latent process of hippocampal volume
mi1(t) has a direct effect on the latent process of NTB memory domain mi2(t). We assume that the intervention and other
covariates affect both latent processes, and we allow both latent processes to be associated with the risks of open-label
medication and dropout. To model hippocampal volume, we use a mixed-effects submodel with random intercepts and
slopes. We include both a main effect of the intervention and an interaction of intervention by time to allow the trajectory
of the intervention groups to be different over time. Further, following References 1 and 2, we correct for the effect of
baseline MMSE and site. The mixed-effects submodel for hippocampal volume is

yi1(t) = mi1(t) + 𝜖i1(t)
= 𝛽10 + 𝛽11t + 𝛽12interventioni + 𝛽13interventioni × t + 𝛽14bmmsei + 𝜷15sitei + bi10 + bi11t + 𝜖i1(t).

The model for NTB memory domain takes the same form, except we include the latent process of hippocampal volume
as a time-varying covariate.

yi2(t) = mi2(t) + 𝜖i2(t)
= 𝛽20 + 𝛽21t + 𝛽22interventioni + 𝛽23interventioni × t + 𝛽24bmmsei + 𝜷25sitei

+ 𝜉mi1(t) + bi20 + bi21t + 𝜖i2(t).

For these models, 1(t) and 2(t), defined as the regression coefficients involving the intervention effects denote
𝛽12 and 𝛽13 for the first longitudinal submodel and 𝛽22 and 𝛽23 for the second longitudinal submodel. To facilitate the
comparison among the longitudinal outcomes, we scaled both longitudinal outcomes to zero-mean and unit variances
using the mean and standard deviation (SD) among all subjects and time points.

To model the two competing events, we use cause-specific hazard regression with separate Cox proportional hazards
models for each of the competing events. We include the intervention, baseline MMSE, and site as baseline covariates
(with k = 1 for open-label medication and k = 2 for dropout)

hik(t,𝜽sk) = h0k(t) exp{𝛾k1interventioni + 𝛾k2bmmsei + 𝜸k3sitei + 𝛼k1mi1(t) + 𝛼k2mi2(t)}.

The association parameters 𝛼k1 and 𝛼k2 measure the strength of the association between the longitudinal outcomes and
the risk of the corresponding events. For example, the quantity exp(𝛼11) denotes the hazard ratio for open-label medication
use at time point t for one SD increase in the longitudinal trajectory of hippocampal volume at the same time point.
We ran the MCMC for 100 000 iterations and discarded the first 50 000 iterations as burn-in. Detailed information on
the estimation procedure, such as the prior distributions, can be found in the supplementary material. Convergence was
assessed based on trace plots, based on which we concluded that the fit is satisfactory.

Next to the different mediated effects, we are also interested in the overall intervention effect on the risk of open-label
medication use. Here, the overall intervention effect  (t) can be expressed as:

 (t) = exp
{
𝛾11 + 𝛼11 (𝛽12 + 𝛽13t) + 𝛼12 (𝛽22 + 𝛽23t) + 𝜉 𝛼12 (𝛽12 + 𝛽13t)

}
.

Table 1 shows the results using the proposed multivariate joint model with hippocampal volume and NTB memory
domain as longitudinal outcomes. Only the results for the most relevant parameters are shown here (all results are shown
in the supplementary material).

The parameter 𝛾11 quantifies the direct effect on the risk of open-label medication use. However, the 95% credible
interval for 𝛾11 does include 0, indicating there is much uncertainty about this effect.

For the first indirect path (see Supplementary Figure 7a), that is, the path that quantifies the intervention effect on
open-label medication mediated through hippocampal volume, we observe a strong intervention effect on hippocampal
volume (𝛽13). In particular, we observe 0.071 SD (95% CI: 0.011 to 0.129) less reduction in hippocampal volume per year
in the active group than in the control group. Furthermore, we observe a strong association (𝛼11) between hippocampal
volume and the risk of open-label medication. The sign of the 𝛼-coefficient indicates the direction of the association. For
hippocampal volume, the sign of the coefficient is negative, indicating that a higher value is found to be associated with
a lower risk of open-label medication use. Specifically an increase of one SD (0.62 units) in the trajectory of hippocampal
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T A B L E 1 Posterior means, standard deviation, and the 95% credibility intervals for the multivariate joint model using left
hippocampal volume and NTB memory domain as longitudinal outcomes

Mean SD 95% credibility interval

Longitudinal process (hippocampal volume)

𝛽11 −0.183 0.021 −0.224 to −0.143

𝛽12(1(t)) −0.064 0.118 −0.296 to 0.166

𝛽13(1(t)) 0.071 0.030 0.011 to 0.129

Longitudinal process (NTB memory domain)

𝛽21 −0.088 0.034 −0.155 to −0.022

𝛽22(2(t)) 0.060 0.091 −0.119 to 0.239

𝛽23(2(t)) 0.051 0.046 −0.038 to 0.140

𝜉 0.354 0.057 0.244 to 0.465

Survival process (open-label medication)

𝛾11 0.153 0.210 −0.259 to 0.563

𝛼11 −0.416 0.151 −0.710 to −0.118

𝛼12 −1.073 0.166 −1.409 to −0.758

Survival process (dropout)

𝛾21 −0.241 0.179 −0.597 to 0.114

𝛼21 0.047 0.142 −0.230 to 0.327

𝛼22 −0.242 0.136 −0.509 to 0.025

volume is estimated with a risk reduction of 34% for open-label medication use ((1 − exp(𝛼11) = 0.34). The effect of the
intervention on open-label medication mediated through this path expressed as the time-varying hazard ratio is shown
in Figure 4. This figure also shows the results of the other mediated effects and the total intervention effect.

The second indirect path (see Supplementary Figure 7b) quantifies the intervention effect on open-label medication
through NTB memory domain. In this path, the parameter 𝛽23 describes the intervention effect on NTB memory domain
over time. The average decrease is estimated to be 0.051 SD (95% CI: −0.038 to 0.140) per year less in the active group
than in the control group. Importantly, this effect does not quantify the full treatment effect on NTB memory as part of
the effect is mediated through hippocampal volume. In its turn, the predicted value of NTB memory domain is strongly
associated with the risk of open-label medication, quantified by the parameter 𝛼12. Also for NTB memory domain, a higher
value is associated with a lower risk of open-label medication use. Specifically, an increase of one SD (0.90 units) in the
trajectory of NTB memory is estimated with a risk reduction of 66.0% ((1 − exp(𝛼12) = 0.66).

The parameter 𝜉 reflects the association between the two longitudinal outcomes. We observe a strong association; an
increase of one SD (0.62 units) in the trajectory of hippocampal volume is estimated to increase the trajectory of NTB
memory domain with 0.354 SD (95% CI: 0.244 to 0.465).

5 SIMULATION STUDY

We performed four simulation studies. The first simulation study aimed to verify that the proposed method results in
unbiased estimates. In the second simulation study, we investigated the bias when the actual underlying data mechanism
was based on the proposed model, with a first longitudinal outcome affecting a second one, but when only one of them
was taken into account. Specifically, we used a univariate competing risk joint model for the first longitudinal outcome
in the analysis step. In the third and fourth simulation study, we respectively compared the proposed model with the
existing multivariate joint model and investigated the robustness of the direct and indirect effects when the model is
slightly misspecified. For information on these simulation studies, we refer to the supplementary material.
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F I G U R E 4 The total intervention effect, the direct effect, and the different mediated effects for the LipiDiDiet data. The colors
correspond with the mediation paths in Figure 7a-c. The combined mediation through hippocampal volume denotes the total mediation
through hippocampal volume. It is the sum of the mediation through only hippocampal volume and through both hippocampal volume and
NTB memory domain. Further, the total intervention effect is the sum of the direct effect and the different mediated effects

5.1 Design

Data for the first three simulation studies were simulated under the same model structure, which we will now describe.
For each simulation study and each scenario, we simulated 200 datasets based on the proposed multivariate competing
risk joint model. The longitudinal submodels included an intercept, a linear time effect, an interaction of treatment by
time, and random intercepts and slopes. In the second longitudinal submodel, we included the linear predictor of the
first outcome as a time-varying covariate, where the parameter 𝜉 quantified the association between the longitudinal
outcomes. For the first and third simulation study we used 𝜉 = −0.5. For the second simulation study, we considered
four simulation scenarios, for which we used parameter values for 𝜉 with an increasing magnitude: (I) 𝜉 = −0.01, (II)
𝜉 = −1, (III) 𝜉 = −2, and (IV) 𝜉 = −3. For the survival submodels, we used cause-specific hazard regression with separate
Cox proportional hazards models with the intervention as the only covariate. In the first three simulation studies, the
remaining parameters were 𝛽10 = 0.07, 𝛽11 = −0.25, 𝛽12 = 0.12, 𝛽20 = 0.15, 𝛽21 = 0.45, 𝛽22 = −0.10, 𝛾11 = −0.2, 𝛾21 = 0.1,
𝛼11 = −0.6, 𝛼12 = 0.4, 𝛼21 = −0.1, 𝛼22 = 0.1. The baseline hazards were simulated using B-splines, and we used the same
knots and spline coefficients for both survival submodels. For each dataset, we simulated 500 subjects and 10 equally
spaced measurements per subject. The maximum follow-up was 3.2, and the mean of the exponential distribution for the
censoring mechanism was 5.

5.2 Analysis and results

5.2.1 Simulation study 1

In the first simulation study, we analyzed each simulated dataset with the same model structure as in the simulation step.
The results are shown in Table 2, where the mean, bias, and coverage rate are given for each parameter. The bias is the
mean difference between the estimate of the simulation and the true value. The coverage rate is the percentage of times
the true parameter value falls in each simulation’s credible interval. The proposed model seems to be performing well as
means are close to the true values, the bias is small, and coverage rates are high. Supplementary Figure 9 also compares
the average overall intervention effect with the true intervention effect. As can be seen, they are nearly identical.
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T A B L E 2 Results of simulation study 1 including the true parameter values, the mean of the MCMC sample means, the bias, and
coverage for each parameter

True values Mean Bias Coverage

𝛽10 0.070 0.066 −0.004 94%

𝛽11 −0.250 −0.251 −0.001 97%

𝛽12 0.120 0.120 0.000 98%

𝛽20 0.150 0.149 −0.001 94%

𝛽21 0.450 0.452 0.002 96%

𝛽22 −0.100 −0.100 0.000 96%

𝛾11 −0.200 −0.231 −0.031 95%

𝛾21 0.100 0.085 −0.015 97%

𝛼11 −0.600 −0.599 0.001 96%

𝛼21 −0.100 −0.096 0.004 95%

𝛼12 0.400 0.390 −0.010 95%

𝛼22 0.100 0.093 −0.007 94%

𝜉 −0.500 −0.497 0.003 95%

Note: Results are based on 200 simulated datasets.

5.2.2 Simulation study 2

In the second simulation study, we analyzed each simulated dataset with a model in which the second longitudinal out-
come was not included. We simulated the data under the proposed multivariate competing risk model but analyzed the
data with a univariate competing risk joint model for the first longitudinal outcome. Supplementary Figure 8 presents a
visualization of this simulation study. The gray parts denote the parameters that are omitted from the model. The results
for each simulation scenario are presented in Figure 5. As can be seen, the overall intervention effect as estimated by the
univariate joint model is biased in this situation, and the bias increases for larger values of 𝜉.

6 DISCUSSION

Motivated by data from a prodromal AD trial, we proposed a multivariate competing risk joint model in which a first
longitudinal outcome is allowed to influence a second longitudinal outcome. Existing multivariate joint models have the
form of so-called parallel mediator models, in which the longitudinal outcomes are merely allowed to be correlated but not
to causally influence one another. Using the proposed model, we could model a direct effect of hippocampal brain atrophy
on the memory impairment ratings. We allowed both hippocampal brain atrophy and memory to be associated with
the risk of open-label medication use and dropout. The intervention was also allowed to affect both hippocampal brain
atrophy and memory, with the latter effect being direct or indirect through hippocampal volume. The proposed method
provided a framework for latent mediation analysis, which helped understand the intervention’s underlying biological
processes. For the LipiDiDiet trial, we found that part of the intervention effect is mediated through hippocampal brain
atrophy. However, there could be other effects of the underlying biological processes that we were not aware of, and
therefore did not consider in our model.

For the data we considered here, the choice on the directionality was based on biological grounds. As the intervention
(Souvenaid) was designed to provide neuroprotection (by supplying rate-limiting compounds for brain phospholipid syn-
thesis and addressing multiple AD-related pathological processes1), our hypothesized working mechanism was that the
intervention affects the brain, which is noticeable with brain imaging outcomes of, for example, hippocampal volume.
In turn, changes in the brain may affect how well patients perform on cognitive tests, such as on NTB memory domain.
For other datasets where the predominant order between the longitudinal outcomes might be less clear, a decision on the
directionality should be made with care and together with a clinical expert. However, we also argue that the proposed
model is developed explicitly for situations in which the longitudinal outcomes are hypothesized to be linked together in a
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F I G U R E 5 Average time-varying overall intervention effect  (t) (solid line) based on 200 simulated datasets with corresponding 95%
percentile confidence interval for simulation scenarios I) 𝜉 = −0.01, II) 𝜉 = −1, III) 𝜉 = −2, and IV) 𝜉 = −3. The dashed line denotes the true
overall intervention effect

causal chain, where a first longitudinal outcome is expected to affect a second one. If no direct link or clear order between
the outcomes is assumed, the existing multivariate joint models are perhaps more suitable as the outcomes are only
allowed to be correlated in these models. Also, the estimation process here cannot be entirely separated for the two longi-
tudinal outcomes due to their simultaneous estimation (for more information, we refer to the supplementary material).

A first simulation study showed good performance of the proposed method. A second simulation study showed the
bias in the overall intervention effect when the data was analyzed with a standard univariate competing risk joint model,
while the actual underlying data mechanism was based on the proposed model.

We argue that the joint model, and particularly the proposed type of joint model, is a very suitable and intuitive method
for latent mediation analysis with a survival outcome and has certain advantages compared to traditional mediation
analysis. First, the different effects that form the total indirect effect, that is, the total mediated effect, can be estimated
based on the same joint model while controlling for one another. Second, it is straightforward to model a time-varying
effect on the survival outcome using a joint model. Third, in the proposed method, we assume that the latent process rather
than the observed values of the first longitudinal outcome affects the latent process of the second longitudinal outcome,
which allows us to focus on the true process of interest instead of its noisy observations. This is different from traditional
mediation analysis, where the observed outcomes are used. Another difference is that the hazard ratios for the direct,
indirect, and total effect presented here are conditional hazard ratios, whereas often marginal hazard ratios are considered.

In this article, we have assumed that the first longitudinal outcome’s underlying value at time t affects the second
longitudinal outcome’s underlying value at the same time point. However, similar to the association structure between the
longitudinal outcome and the survival outcome,21,22 we could use a more complex association structure for the association
between the longitudinal outcomes. For example, the second longitudinal outcome’s value at time point t could be related
to the slope at or the cumulative value up to t of the first longitudinal outcome. A simulation study (not shown here)
confirmed that the proposed method also works for these types of dependencies between the longitudinal outcomes.
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Checking for model misspecification is always important, but it is even more important for our approach as the latent
process of the second longitudinal outcome (i.e., NTB memory) depends on the model for the first longitudinal outcome
and whether this model is correctly specified. It is recommended to investigate the model’s fit using figures, such as
comparing the fitted vs predicted trajectories for different subjects and examining the models’ assumptions using QQ
and residuals vs fitted values plots. These figures can often show if a model adequately fits the data and guide analysts to
adapt it if it does not fit the data. Here, we have used linear models for both longitudinal outcomes, but it is also possible
to use more complex functions of time such as quadratic or higher-order polynomials, such as splines. We suggest fitting
several plausible models as a sensitivity analysis. In the supplementary material, we included such a sensitivity analysis
for the data considered in this article.

We modeled a constant intervention effect across subjects and across time within subjects. One should be aware that
this is a simplification that might be more or less permissible depending on the nature of the intervention, disease, and
time frame under investigation. However, when this assumption is not plausible, the model could easily be extended
with a random treatment effect and a random treatment by time interaction (and potentially more complex forms of this
interaction), allowing each subject to respond differently to the treatment, that is, having its own time-varying treatment
effect.

Finally, it is important to emphasize that although we have been able to perform latent mediation analysis, we did
not prove the pattern of causation, as shown in Figure 1. One of the main assumptions in causal mediation analysis is
the assumption of sequential ignorability, which, for a single mediator, assumes that (i) given the observed covariates,
the intervention assignment is ignorable of the mediator process and the outcome of interest, and (ii) given the observed
covariates and the intervention, the mediator is ignorable of the outcome. Usually, the randomization can only guarantee
the ignorability of the intervention assignment, whereas the second part of this assumption also requires that, conditional
on the intervention and the observed covariates, the mediator can be treated as if it were randomized. In other words, the
ignorability of the mediator implies that there is no unmeasured confounding between the mediator and the outcome,
which excludes the possibility of both unobserved pretreatment confounding or any post-treatment confounding. In our
case, with multiple (causally) dependent mediators, this ignorability assumption is violated as one mediator acts as a
post-treatment confounder for the other mediator on the outcome of interest.23,24 Moreover, because the mediators are
repeatedly measured, the association between a mediator at a given time point and the outcome may be confounded by
other previously measured assessments of the mediator.25 It is of our future interest to investigate how we can extend the
proposed model to allow for a causal interpretation. However, even for the joint model with one longitudinal outcome,
research on its causal (latent) mediation mechanism is very limited26,27 and has yet to be investigated.

The code to fit the proposed multivariate competing risk joint model is available in the supplementary material.
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