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Lung cancer is a highly prevalent type of cancer with a poor 5-year survival rate
of about 4–17%. Eighty percent lung cancer belongs to non-small-cell lung cancer
(NSCLC). For a long time, the treatment of NSCLC has been mostly guided by tumor
stage, and there has been no significant difference between the therapy strategy of
lung adenocarcinoma (LUAD) and squamous cell lung carcinoma (SCLC), the two
major subtypes of NSCLC. In recent years, important molecular differences between
LUAD and SCLC are increasingly identified, indicating that targeted therapy will be
more and more histologically specific in the future. To investigate the LUAD and SCLC
difference on multi-omics scale, we analyzed the methylation and gene expression
data together. With the Boruta method to remove irrelevant features and the MCFS
(Monte Carlo Feature Selection) method to identify the significantly important features,
we identified 113 key methylation features and 23 key gene expression features. HNF1B
and TP63 were found to be dysfunctional on both methylation and gene expression
levels. The experimentally determined interaction network suggested that TP63 may
play an important role in connecting methylation genes and expression genes. Many
of the discovered signature genes have been supported by literature. Our results may
provide directions of precision diagnosis and therapy of LUAD and SCLC.

Keywords: lung adenocarcinoma, squamous cell lung carcinoma, methylation, gene expression, Boruta, Monte
Carlo Feature Selection

INTRODUCTION

Lung cancer, considered to be a highly prevalent type of cancer, is a leading cause of cancer-related
mortality worldwide, resulting in 1.6 million deaths each year with poor 5-year survival rate of
about 4–17% (Hirsch et al., 2017; Altorki et al., 2019). Lung cancer is classified as follows: small-
cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC), accounting for approximately
20 and 80% of all lung cancer cases, respectively (Oser et al., 2015). NSCLC is a complex
systems disease with dysfunctions on multiple pathways and multiple molecular levels (Huang
et al., 2012, 2015; Li et al., 2013; Zhou et al., 2015; Chen et al., 2016; Liu et al., 2017). It can
also be typically divided into three main subtypes, lung adenocarcinoma (LUAD), squamous cell
lung carcinoma (SCLC), and large cell cancer (LCC), according to standard pathology methods
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(Socinski et al., 2016; Swanton and Govindan, 2016; Herbst et al.,
2018). Compared with squamous lung cancer, adenocarcinoma
was associated with better prognosis. Despite the advances in
diagnostic and therapeutic technology, lung cancer remains a
serious global public health concern.

For a long time, the treatment of NSCLC has been mostly
guided by tumor stage, and there has been no significant
difference between the therapy strategy of LUAD and SCLC. Most
lung cancers are usually diagnosed at an advanced stage and
are treated primarily with systemic chemotherapy, typically with
platinum-based regimens (Bishop et al., 2010). Recent progress
in characterization of NSCLC by molecular typing, especially in
adenocarcinomas of the lung, have brought new investigation
of therapeutic agents that target dominant oncogenic mutations,
such as epidermal growth factor receptor (EGFR)-targeted
therapies, which have showed improved response rates in patients
with NSCLC (Shigematsu et al., 2005).

Currently, progress in molecular biology of lung cancer has
resulted in the identification of multiple potential biomarkers that
may be related to the clinical management of NSCLC patients. In
recent years, with the emergence of next-generation sequencing
technologies, important molecular differences between LUAD
and SCLC are increasingly identified, indicating that targeted
therapy will be more and more histologically specific in the future
(Kim et al., 2005; Sun et al., 2007; Li et al., 2014). Several studies
have identified multiple gene expression subtypes that differ in
prognosis, genomic alterations, clinical characteristics, including
tumor differentiation, stage-specific survival, underlying drivers,
and potential responses to treatment within LUAD and SCLC
(Wilkerson et al., 2010; Thomas et al., 2014; Lu et al., 2016).
For example, LUAD patients that harbor EGFR, ALK, ROS1,
or BRAF mutations were discovered to benefit the most
(Villalobos and Wistuba, 2017; Herbst et al., 2018). Targeted
therapies for gene abnormalities of HER2, MET, RET, and
NTRK1 appear to be an effective approach to treat LUAD
(Dearden et al., 2013; Mazieres et al., 2013). SCLC shows
different mutation spectrum from that of adenocarcinoma,
and the mutation targeted therapy for SCLC has not been
thoroughly studied to obtain approved treatment (Bunn et al.,
2016; Soldera and Leighl, 2017).

A series of imaging studies suggested that NSCLC may
progress rapidly between occurrence and primary treatment
(Koh et al., 2017). Therefore, it is necessary for clinicians
to identify between these two subtypes of NSCLC in a
convenient and rapid way. With the improvement of the
above clinical and molecular levels, growing evidences have
shown that immunohistochemistry (IHC) is an effective tool for
differentiating adenocarcinoma from squamous cell carcinoma
(Bass et al., 2009; Weiss et al., 2010).

It is reported that the formation and development of lung
cancer are related to the accumulation of permanent genetic
changes and dynamic epigenetic changes. Therefore, enhancing
our understanding of tumor biology and gene expression profiles
will be critical for cancer treatment and diagnosis. In this study,
an integrative analysis of lung cancer methylation data and gene
expression data was performed, and mixed features were also
screened out for analysis.

MATERIALS AND METHODS

The Joint Methylation and Expression
Profiles of Lung Cancer Patients
The methylation and gene expression profiles of lung cancer
patients were obtained from GEO (Gene Expression Omnibus)1.
The data were originally generated by Karlsson et al. (2014). They
used the data to cluster the patients into five groups, and these
groups showed different overall survival (Karlsson et al., 2014).
We were more interested in how the methylation and expression
differ from well-known subtypes, especially LUAD and SCLC.
Therefore, we analyzed the 77 LUAD and 22 SCLC patients who
had both methylation and expression data.

The methylation profiles were measured with Illumina
HumanMethylation450 BeadChip while the gene expression
profiles were measured with Illumina HumanHT-12 V4.0
expression BeadChip. The probe expression levels were averaged
onto 20,178 genes. The 354,251 methylation sites within genes
were analyzed. Therefore, each patient was represented with
20,178 genes and 354,251 methylation sites.

Screen for the Relevant Methylation and
Expression Features
Since the number of methylation and expression features was
very large, it was difficult to analyze directly. We applied
the Boruta method (Kursa and Rudnicki, 2010) to screen
the combined data and identify the relevant methylation and
expression features. The Boruta method was based on random
forest classification, and the relevance of features to sample
classes was measured by the ensemble of the random forest
classifier’s stochasticity.

Evaluate the Importance of Relevant
Methylation and Expression Features
After the irrelevant features were removed, the relevant
methylation and expression features were ranked based on
their importance evaluated with MCFS (Monte Carlo Feature
Selection) (Draminski et al., 2008). The MCFS was a widely used
method to rank features based on classification trees (Chen et al.,
2018, 2019; Pan et al., 2018, 2019a,b; Li et al., 2019). First, for
the d features, we selected s subsets and each subset included m
features (m was much smaller than d). Then, for each subset, t
trees were constructed. Based on the s × t trees, we can estimate a
feature’s importance by considering how many times it appeared
in these trees and how well it performed in these trees as a
node. By comparing the permutation results, the significance of
features was evaluated.

Perdition Performance of the Mixed
Methylation and Expression Signature
The MCFS can find the significant top-ranking features by
comparing with permutations. To objectively evaluate the
significant top-ranking features’ prediction performance, we
performed LOOCV (Leave One Out Cross Validation) using

1https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60645
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SVM (Support Vector Machine) classifier (Li et al., 2018; Sun
et al., 2018; Pan et al., 2019a). Each time, one sample was chosen
as test samples and all other samples were used to train the SVM
predictor. After all samples were tested once, we compared the
actual sample classes with predicted sample classes and calculated
the sensitivity, specificity, accuracy, and Mathew’s correlation
coefficient (MCC) based on the confusion matrix (Huang et al.,
2011, 2013; Cai et al., 2012).

RESULTS AND DISCUSSION

Rank the Methylation and Expression
Features
The methylation and gene expression data were combined
and, therefore, each lung cancer patient was represented with
mixed methylation and gene expression features. The number
of mixed features (20,178 gene expression features and 354,251

methylation features) was too large to conduct sophisticated
statistical analysis. So, we removed irrelevant features using the
Boruta method (Kursa and Rudnicki, 2010). At last, 711 relevant
features were remained.

Then, these 711 Boruta selected features were further
ranked with the MCFS method (Draminski et al., 2008). As
a classification tree-based ensemble learning algorithm, MCFS
can rank the features based on how many times and how
much it contributed to the sample classification in s × t trees.
By comparing with permutation results, it can evaluate the
significance of features.

Identify the Methylation and Expression
Signature
The 136 significant top-ranking features were identified using
the latest dmLab version 2.3.0 software downloaded from2

2https://home.ipipan.waw.pl/m.draminski/mcfs.html

TABLE 1 | The 136 methylation and gene expression signature identified with the MCFS method.

Rank Feature Rank Feature Rank Feature Rank Feature

1 DSC3 35 cg08796240 69 cg14487292 103 cg08621277

2 KRT5 36 cg08198430 70 cg03545620 104 cg13387113

3 cg02194717 37 cg10969178 71 DSG3 105 S1PR5

4 cg17814481 38 cg07838427 72 cg10991454 106 cg14769121

5 cg00415665 39 cg15958289 73 ANXA8L1 107 cg25634000

6 cg04432660 40 cg19445207 74 cg18736431 108 cg07417666

7 cg12932675 41 DLX5 75 cg14108894 109 cg18383680

8 cg13715502 42 cg26117023 76 cg17775621 110 cg11640015

9 cg08436756 43 cg16148454 77 cg15221831 111 cg02328660

10 cg02771299 44 cg13089599 78 cg26150462 112 cg08379517

11 cg06555468 45 cg00180559 79 cg11288202 113 cg04778236

12 cg13626676 46 cg21845794 80 cg27623451 114 cg11416243

13 KRT6C 47 cg26819757 81 cg02459569 115 cg18368125

14 cg01397507 48 cg03782130 82 cg24228306 116 cg09853371

15 SPRR2A 49 cg17005319 83 RORC 117 cg16260888

16 cg23613253 50 cg26795540 84 cg07538160 118 cg10842126

17 cg24235613 51 cg17957094 85 cg12448539 119 cg17094593

18 cg16969274 52 cg17543218 86 cg08774902 120 cg15335334

19 FAT2 53 cg13522118 87 cg04488647 121 KRT17

20 cg02579706 54 cg26431815 88 cg08190615 122 RFC4

21 TMEM63A 55 cg06332339 89 cg09470758 123 cg27009392

22 cg07568117 56 cg19883066 90 cg21922731 124 TP63

23 KRT6A 57 cg21013395 91 cg20197694 125 cg08327518

24 cg25922471 58 cg19526267 92 ACSL5 126 cg05800082

25 cg23628350 59 cg02634861 93 KRT6B 127 cg05128003

26 cg19032799 60 cg20803931 94 RAE1 128 cg04926361

27 cg04703476 61 cg05351785 95 cg24083274 129 cg01943337

28 cg01176141 62 cg21936454 96 cg23037777 130 cg06520450

29 cg12788467 63 cg03361585 97 cg07112556 131 cg15441535

30 cg24211826 64 cg20637223 98 cg26807301 132 cg25521254

31 MUC1 65 ANXA8 99 HNF1B 133 cg21176488

32 FMO5 66 cg15247247 100 cg18771553 134 cg05267427

33 cg06200607 67 cg06411879 101 cg18720506 135 cg05575304

34 VSNL1 68 cg10720966 102 cg04345366 136 cg20544605
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FIGURE 1 | The heatmap of LUAD and SCLC lung cancer patients with 113 methylation features. Almost all samples were correctly clustered using the 113
methylation features and only three SCLC samples were misclassified.

with default parameters. These 136 methylation and expression
signatures are given in Table 1.

It can be seen that within these 136 signature features,
there were 113 methylation features and 23 gene expression
features. The annotations of the 113 methylation features based
on GPL135343 are provided in Supplementary Table S1. We
plotted the heatmaps of LUAD and SCLC lung cancer patients
with 113 methylation features and 23 gene expression features

3https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL13534

in Figures 1, 2, respectively. Both the 113 methylation features
and 23 gene expression features can successfully group almost all
samples with only three misclassified SCLC samples. They did not
show difference on cluster results.

To more objectively and carefully compare the performance of
the 113 methylation features and 23 gene expression features, we
conducted LOOCV with SVM classifier. The LOOCV prediction
performances of the 136 mixed features, 113 methylation features
and 23 gene expression features are listed in Tables 2–4. It can
be seen that the prediction results of 113 methylation features
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FIGURE 2 | The heatmap of LUAD and SCLC lung cancer patients with 23 gene expression features. Almost all samples were correctly clustered using the 23 gene
expression features and only three SCLC samples were misclassified.

TABLE 2 | The confusion matrix using 136 mixed methylation and gene
expression features.

Actual LUAD Actual SCLC

Predicted LUAD 77 2

Predicted SCLC 0 20

Performance
Measurements

Sensitivity: 1.000, specificity: 0.909, accuracy:
0.980, MCC: 0.941

TABLE 3 | The confusion matrix using 113 methylation features.

Actual LUAD Actual SCLC

Predicted LUAD 77 2

Predicted SCLC 0 20

Performance
Measurements

Sensitivity: 1.000, specificity: 0.909, accuracy:
0.980, MCC: 0.941

were the same as the 136 mixed features and better than the 23
gene expression features. The 23 gene expression features had one
more misclassified SCLC samples. It seemed that methylation had
better performance.

Comparison With CNV Signature
Comparing with the 136 LUAD and SQCLC CNV signatures
identified by Li et al. (2014), we found that the methylated genes
HORMAD2, KLHL3, LPP, and PTPN3 are also CNAs genes.
HORMAD2 is expressed in nearly 10% of Chinese Han lung
cancer tissues, which is a new target for lung cancer research
(Liu et al., 2012). Lipoma preferred partner (LPP) may be an
important candidate molecular marker for the classification of
NSCLC tissue subtypes. PTPN3 can inhibit lung cancer by
regulating EGFR signal (Li et al., 2015). However, there are no
reports of KLHL3 in lung cancer, which also suggests a new idea
of candidate molecular markers for the identification of lung
cancer subtypes.

The Relationship Between Methylation
and Expression Signature Genes
The 113 methylation features can be mapped onto 93 genes.
We overlapped the selected methylation feature genes and

TABLE 4 | The confusion matrix using 23 gene expression features.

Actual LUAD Actual SCLC

Predicted LUAD 77 3

Predicted SCLC 0 19

Performance
Measurements

Sensitivity: 1.000, specificity: 0.864, accuracy:
0.970, MCC: 0.912

expression feature genes and found that HNF1B and TP63 were
dysfunctional on both methylation and gene expression levels.
HNF1B was one of the DNA methylated markers of the same
subtype (Matsuo et al., 2014; Shi et al., 2017). TP63, also known
as P63, was considered to be the most common marker for SCLC
(Bishop et al., 2012; Van de Laar et al., 2014).

We downloaded the 66 lung cancer genes from KEGG
hsa05223 NSCLC4 and mapped them and the overlapped two
genes: HNF1B and TP63, onto STRING network (Szklarczyk
et al., 2018). TP63 interacted with 39 KEGG lung cancer genes:
AKT1, AKT3, ALK, BAK1, BAX, CASP9, CCND1, CDK4, CDK6,
CDKN1A, CDKN2A, DDB2, E2F1, E2F2, E2F3, EGF, EGFR,
EML4, ERBB2, FHIT, FOXO3, GADD45A, GRB2, HRAS, KRAS,
MAP2K1, MAPK1, MAPK3, NRAS, PIK3CA, PIK3CB, PIK3R1,
RB1, STAT3, STAT5A, STAT5B, STK4, TGFA, and TP53. HNF1B
interacted with 14 KEGG lung cancer genes: AKT1, AKT2,
CCND1, CDKN1A, CDKN2A, EGF, HRAS, KRAS, MAPK1,
MAPK3, PIK3CA, RXRA, STAT3, and TP53.

What’s more, we searched the methylation genes and
expression genes in STRING database (Szklarczyk et al., 2018)
and extracted the experimentally determined interaction and
plotted the network in Figure 3. The light-yellow nodes were
methylation genes, the light-blue nodes were expression genes.
The overlapped methylation and expression genes were marked
in red, the overlapped methylation and CNV genes from Li
et al. (2014) were marked in pink. It can be seen that TP63
played an important role in connecting methylation genes
and expression genes. The methylation genes and expression
genes were closely connected to form a dense functional
module on the network.

4https://www.genome.jp/dbget-bin/www_bget?pathway+hsa05223
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FIGURE 3 | The methylation genes and expression genes with experimentally determined interactions on STRING network. The light-yellow nodes were methylation
genes, and the light-blue nodes were expression genes. The overlapped methylation and expression genes were marked in red, and the overlapped methylation and
CNV genes were marked in pink. TP63 played an important role in connecting methylation genes and expression genes.

The Biological Significance of the
Identified Signature
To develop more specific and individualized targeted therapy,
there is an urgent need to improve our knowledge on
the molecular basis, in addition to different phenotypes.
It is noteworthy that adenocarcinoma and squamous cell
carcinoma show marked differences in expression profiles, DNA
methylation, and lesion location. In this study, the features
containing methylation and expression data were screened by

Boruta and then further sorted by MCFS. After comparing the
selected features with related literatures, a certain correlation was
found between these features and lung cancer subtypes.

In this study, 113 methylation features were screened and
mapped to 93 genes. We inquired about the functions of these
genes and their relationship with lung cancer to discuss whether
they have the potential as molecular markers to recognize LUAD
and SQCLC. Many genes have been proved to promote or
inhibit the progression of lung cancer. For instance, FOXK1
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was expressed in many malignant tissues (Huang and Lee,
2004) and Ma et al. (2018) also found that FOXK1 plays a
carcinogenic role in lung cancer. MAD1L1 is a checkpoint gene,
with its mutation been proved to play a pathogenic role in
lung cancer (Tsukasaki et al., 2001). Some genes have been
reported to be related with the prognosis of NSCLC, such
as HORMAD2 and ANO1. The overexpression of ANO1 is
related to the high expression of EGFR, which can be used
as a predictor of recurrence after NSCLC (He et al., 2017).
In addition, according to Zhang et al. (2014) HORMAD2
gene polymorphism has great potential prognostic value in
Chinese patients with NSCLC. Other genes are associated
with NSCLC subtypes, such as another member of the FOX
family, FOXK2, which was reported to be closely related to
the overall survival of LUAD (Chen et al., 2017). DOK1
and HOPX were found to serve as lung tumor suppressors
for LUAD (Berger et al., 2010; Chen et al., 2015). In the
study of Zhou et al. (2017) the methylation locus of PARD3
gene was positively correlated with the expression of PARD3
and suppression of PARD3 intensified chemoresistance in
LUAD cells. SFTA3 was found obviously overexpressed in
LUAD, and its expression in LUAD and SQCLC was quite
different. Therefore, the sensitivity and specificity of using
SFTA3 to distinguish the two subtypes will be relatively high
(Zhan et al., 2015). ARHGEF1 aliased p114RhoGEF and its
expression might help to predict progression and survival of
SQCLC patients (Song et al., 2013). Notably, LPP has multiple
functions of actin binding protein and transcriptional coactivator
(Kuriyama et al., 2016). Ngan et al. (2017) proved that the
expression of LPP reduces the number of circulating tumor
cells and inhibits lung cancer metastasis. Kang et al. (2009)
used high-resolution array-CGH to find that the difference
in genomic imbalance patterns between SQCLC and LUAD
was most significant in 3q26.2-q29, while LPP (3q28) was
significantly targeted in SQCLC, suggesting that LPP may
be an attractive candidate molecular marker for histological
subtype classification of NSCLC and may be involved in the
pathogenesis of SQCLC.

We also investigated 23 expressed genes in lung cancer,
and found that many studies clearly indicated that some genes
were associated with LUAD or SQCLC. DSC3 (Han et al.,
2014; Lv et al., 2015) and KRT5 (Xu et al., 2014; Travis et al.,
2015) have been proved to be an effective marker of SQCLC.
ANXA8 (Chao et al., 2006) and DSG3 (Savci-Heijink et al., 2009)
were significantly over-expressed in SQCLC, and DSG3 could
be an effective ancillary marker to identify SQCLC (Sanchez-
Palencia et al., 2011; Gómez-Morales et al., 2013). VSNL1, also
known as VILIP-1, was a tumor suppressor gene specific to
SQCLC (Fu et al., 2008). KRT6A, KRT6B, and KRT6C, members
of the keratin protein family, are specific to squamous cells
and associated with epidermis of squamous epithelium (Fujii
et al., 2002; Hawthorn et al., 2006; Chang et al., 2011). In
addition, we also identified several genes primarily associated
with LUAD. According to Balabko et al. (2014) RORC is a specific
transcription factor in the tumor area of lung tissue in patients
with LUAD. DLX5 (Kato et al., 2008; Balabko et al., 2014),
MUC1 (Mashima et al., 2005; Molina-Pinelo et al., 2014), and

TABLE 5 | The GO enrichment results of the identified signature.

GO Term FDR P value Number of
overlapped genes

GO:0070268 cornification 8.58E-05 5.39E-09 9

GO:0009913 epidermal cell
differentiation

0.0109 1.42E-06 11

GO:0031424 keratinization 0.0109 2.05E-06 9

GO:0030216 keratinocyte
differentiation

0.0109 2.73E-06 10

GO:0060429 epithelium
development

0.0115 3.59E-06 20

GO:0030855 epithelial cell
differentiation

0.0130 4.91E-06 15

GO:0043588 skin development 0.0172 7.57E-06 11

GO:0009888 tissue
development

0.0202 1.01E-05 25

GO:0008544 epidermis
development

0.0319 1.80E-05 11

GO:0005737 cytoplasm 0.0045 2.34E-06 79

GO:0005829 cytosol 0.0083 8.55E-06 46

KRT17 (Erdogan et al., 2009; Liu et al., 2018) were found to be
overexpressed in LUAD.

The GO Enrichment Analysis of the
Identified Signature
In order to further analyze the relationship between mixed
characteristics and lung cancer, we carried out GO enrichment
analysis. The results suggest that characteristic genes are mainly
related to keratinization, epidermal cell differentiation, tissue
development, and cytoplasm. The GO enriched results with FDR
(False Discovery Rate) smaller than 0.05 are listed in Table 5.
P63 appears to be useful in differentiating SQCLC from LUAD
in small biopsies with no keratosis or glandular differentiation,
helping to establish different treatments (Camilo et al., 2006).
The expression of keratinocyte transglutaminase and cytokeratin
10 was measured as markers of squamous differentiation
(Lokshin et al., 1999). Epidermal cell differentiation is related
to EGFR signal pathway, which can inhibit the proliferation
and metastasis of cancer cells, while EGFR mutation is largely
limited to LUAD (Ladanyi and Pao, 2008). The expression of
Promyelocytic leukemia zinc finger (PLZF) in SQCLC was weak
or absent, which was significantly lower than that in LUAD
(Xiao et al., 2015).

To sum up, most of the 113 methylated genes and 23 expressed
genes we found are closely related to lung cancer, and some
of them have the possibility of distinguishing SQCLC from
LUAD, which is helpful for the targeted selection of lung cancer
treatment and provide more research support for lung cancer
molecular markers.
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