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Abstract: Tissue engineering using scaffolds is a promising strategy to repair damaged articular carti-
lage, whose self-repair is inefficient. Cellulose properties have been recognized for their application
in the biomedical field. The aim of this study was to fabricate and characterize novel scaffolds based
on poly(E-caprolactone) (PCL) and sustainable cellulose. Thus, the performance of corncob-derived
cellulose (CC) in scaffolds as an alternative to wood cellulose (WC) was also investigated to reduce
the environmental footprint. Two concentrations of CC in scaffolds were tested, 1% and 2% (w/w),
and commercial WC using the same concentrations, as a control. Morphologically, all the developed
scaffolds presented pore sizes of ~300 µm, 10 layers, a circular shape and well-dispersed cellulose.
Thus, all of these characteristics and properties provide the manufactured scaffolds suitable for use
in cartilage-replacement strategies. The use of 2% CC results in higher porosity (54.24%), which
promotes cell infiltration/migration and nutrient exchange, and has similar mechanical properties to
WC. As for the effects of enzymatic degradation of the scaffolds, no significant changes (p > 0.05) were
observed in resistance over time. However, the obtained compressive modulus of the scaffold with 2%
CC was similar to that of WC. Overall, our results suggest that the integration of 2% corncob cellulose
in PCL scaffolds could be a novel way to replace wood-cellulose-containing scaffolds, highlighting its
potential for cartilage-replacement strategies.

Keywords: cartilage repair; corncob cellulose; scaffold; tissue engineering; sustainability

1. Introduction

Osteoarthritis and rheumatoid arthritis are the most common musculoskeletal dis-
orders affecting articular cartilage [1,2]. Data from 2017 indicated that, worldwide, the
prevalence of osteoarthritis was around 303 million people, and of these, ca. 263 million
were knee osteoarthritis [3]. The self-repair of cartilage is ineffective, as this tissue is
avascular and the chondrocytes, if disordered, produce fibrocartilaginous tissue, which
has lower mechanical properties and is predisposed to the progression of arthritis [4].
Currently, the available treatments for cartilage repair include techniques such as palliative
therapies, microfracture, autologous chondrocyte implantation, osteochondral autograft
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transfer, osteochondral allograft transplantation, or scaffold-based techniques [5–7]. This
latter technique relies on tissue engineering (TE), which provides a promising strategy to
replace damaged cartilage with a long-lasting temporary implant [8–10]. The structure of
this implant must offer mechanical support and ensure that it degrades while new tissue is
formed [11]. Scaffolds must be three-dimensional (3D) with an interconnected pore struc-
ture and tunable size, mechanical properties, and degradation rates to meet the specific
requirements of the target tissue. Moreover, a scaffold has to be biocompatible and promote
cell adhesion and proliferation [12,13]. Different techniques for scaffold production can be
used such as freeze drying, electrospinning, 3D printing or stereolithography. With these
techniques, electrospinning meshes, rigid structures, sponges and even hydrogels/aerogels
can be obtained. However, meshes, hydrogels/aerogels and sponges are not very effective
due to their limited compressive strength [14,15].

Cartilage has unique characteristics, constituting a major challenge in TE approaches.
One of these fundamental characteristics is mechanical resistance, which is believed to be
overcome through a good support structure. Scaffolds manufactured by 3D printing with
different biomaterials have the necessary support characteristics to withstand the forces
exerted after its implantation, mimicking the mechanical resistance of the native tissue
while allowing cell adhesion, proliferation and differentiation [16–18].

Cellulose is recognized as a natural polysaccharide that promotes cell adhesion. Its
major contribution to the nanostructure of tissue-engineering scaffolds and impact on their
macroscale mechanical properties has also been highlighted [19,20]. In addition, it has
good biocompatibility with the human body, low toxicity, high surface area, resistance
and rheological properties while being a renewable material. Thus, in the recent years,
cellulose has experienced an increasing interest in the tissue-engineering and regenerative-
medicine fields, with applications in skin [21], bone [22], nerves [23], blood vessels [24] and
cartilage [25].

Cellulose is obtained from plants, algae, and tunicates—but mainly from wood [26]—
by mechanical and chemical processes [27,28]. The extraction of cellulose from wood
has been causing deforestation [29], and with the climate changes that the planet has
been experiencing in recent years, it is of the utmost importance to reduce it. Currently,
deforestation is occurring more in the Amazon, in Africa (Congo Basin) and in Indonesia,
whose main causes are the massive production of soy and the exploitation of cellulose [30].
Thus, it is imperative to find wood-cellulose substitutes.

Studies developed by our group investigated potential substitutes for wood cellulose,
such as cellulose extracted from agro-industrial residues. The study proved that it is
possible to extract cellulose from corn husk, pomegranate peel, fava pod, grape stalk,
strawberry-tree fruit marc and corncob. Among the sources studied, the highest percentage
of cellulose was obtained from corncob, and its properties are quite similar to those of
cellulose extracted from wood [31].

Natural polymers such as cellulose have several advantages as mentioned earlier,
but unfortunately, due to rapid hydrolysis, they quickly lose their mechanical/structural
properties. Alternatively, synthetic polymers offer good mechanical support and high
reproducibility and processability. However, unlike natural polymers, they have the
disadvantage that cells in contact with them do not maintain their phenotype and produce
an extracellular matrix with inferior properties, limiting the regenerative potential of the
scaffold [11]. In this sense, more recent studies have concluded that a hybrid scaffold, i.e.,
the combination of synthetic and natural materials, is the most viable option to guarantee
all the desired properties [13]. Synthetic polymers commonly used in cartilage regeneration
include poly(D, L-lactic-co-glycolic acid), poly(caprolactone) (PCL), poly(ethylene glycol)
and poly(glycolic acid) [32]. PCL has excellent mechanical properties, is biodegradable,
biocompatible, resorbable by the human body, FDA approved as implantable material, and
has been extensively used for the repair of cartilage defects [33,34].

There are very few studies in the literature that describe the combination of PCL and
cellulose through the extrusion technique. Alemán-Domínguez ME et al. (2018, 2019)
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studied the influence of cellulose concentration on scaffold properties and found that the
incorporation of 2% of cellulose in PCL scaffolds results in higher mechanical properties
(elastic modulus of flexure and compression) and better cell proliferation [35,36].

In this work, scaffolds composed of poly-E-caprolactone (PCL) and corncob cellulose
(CC) were manufactured by extrusion using the fused-deposition-modeling technique, to
replace wood cellulose with more sustainable cellulose. Thus, scaffolds with PCL and CC at
two different levels of incorporation, 1% and 2% (w/w), were prepared and analyzed against
control samples produced with commercially available wood cellulose (WC, microcrys-
talline cellulose). Thus, the manufactured composite scaffolds were characterized in terms
of their morphological, chemical, and mechanical compressive properties. Additionally,
their enzymatic degradation profile and in vitro biocompatibility were also assessed.

2. Materials and Methods
2.1. Scaffold Manufacturing

The manufacturing process of the composite scaffolds involves 2 steps (Scheme 1):
(i) composite development (mixture of the 2 polymers) and (ii) extrusion of the scaffold.
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Scheme 1. Composite development. Step 2: Scaffolds extrusion by fused-deposition-modeling
(FDM) technique.

Thus, the first step concerns the mixture of PCL with cellulose through the solvent-
casting technique. First, PCL (Perstorp, Warrington, UK, MW = 50,000) was dispersed in
dimethylformamide (DMF) (Chem-Lab, Zedelgem, Belgium) at a ratio of 1:3 (w/v) for 1 h
at 80 ◦C under constant stirring. Then, corncob cellulose (CC), previously characterized
by our group [31], was dispersed in DMF in the ratio of 1:100 and 1:50 (w/v) for 15 min at
room temperature (RT) using an ultrasonic homogenizer (Hielsher UP200Ht). Finally, each
cellulose dispersion was added to the PCL solution at a ratio of 1:3 (v/v) under constant
stirring at 80 ◦C for 3 h. The mixture was deposited in Petri dishes and allowed to dry at
RT for 7 days to evaporate the DMF. Commercial wood cellulose (WC) with PCL at the
same concentrations were used as control samples.

The mixtures of PCL with cellulose were classified as follows: CC_1% and CC_2%
represent the mixtures with 1% and 2% (w/w) corncob cellulose, respectively; WC_1% and
WC_2% represent the mixtures with 1% and 2% (w/w) of wood cellulose, respectively.

In the second step, the extrusion of the scaffolds was performed by the fused-deposition-
modeling (FDM) technique using the Bioextruder equipment previously developed by our
group [37]. As the composite developed in step 1 was in the form of a membrane, it was
cut into small pieces and melted in the extruder chamber.

The operational parameters used in the production of the scaffolds using the Bioex-
truder were 8 mm/s and 14.6 rpm spindle speed and material-flow speed, respectively. The
temperatures of the melting chamber and the extrusion nozzle were set at 75 ◦C and 80 ◦C,
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respectively. The scaffold structure was designed in the form of a cylinder, with a diameter
of 10 mm, composed of 10 layers with a fiber diameter of 300 µm and filament alignment
of 0◦/90◦. The needle used to obtain this fiber diameter had a diameter of 22 ga/400 µm.

2.2. Differential-Scanning-Calorimetry (DSC) Analysis

To extrude the composites developed in step 1 of the scaffold manufacturing, it is
necessary to consider their melting temperature, since the chamber where it will be placed
must be at a temperature higher than the melting temperature of the material. Therefore,
thermal analysis of the dried composites was performed using DSC on a Simultaneous
Thermal Analyzer, STA 6000 system (Perkin Elmer, Waltham, MA, USA). The samples
(approximately 6.5 mg) were weighed in alumina pans and heated from 20 ◦C to 150 ◦C at
10 ◦C/min, under a nitrogen-flow rate of 20 mL/min. Melting temperature was recorded
and analyzed using PyrisTM software. This analysis was performed in triplicate.

2.3. Attenuated-Total-Reflectance–Fourier-Transform-Infrared (ATR–FTIR)-Spectroscopy Analysis

The dry composites obtained in step 1 of the fabrication of the scaffolds were analyzed
by ATR–FTIR to confirm the complete evaporation of the solvent, DMF. A Bruker Alpha-
P FTIR spectrometer was used in the absorbance mode, with ATR platinum–diamond
coupling. The dry composites were analyzed at RT, with a spectral resolution of 4 cm−1 at
64 scans per sample, and in the range 4000–400 cm−1.

2.4. Morphological Analysis of the Scaffolds

The structure and surface morphology of the produced scaffolds were observed to
obtain some important parameters for comparison with native cartilaginous tissue.

Thus, the scaffolds were morphologically analyzed by: (i) digital caliper (Wurth,
Künzelsau, Germany) for diameter and thickness; (ii) optical microscopy (Micros, Gewer-
bezone, Austria) using the Microvisible software to obtain pore and filament dimensions;
(iii) computerized microtomography (Micro-Computed Tomography, MicroCT, SkyScan
1174TM, Bruker, MA, USA) for porosity and interconnectivity assessment. Microscopic
analysis was performed at 40× magnification. The MicroCT analysis was performed using
a 50 kV/40 W X-ray source and a 1.3 megapixel X-ray camera. The parameters used for
scanning the samples were: a step of 0.7 around the medio-lateral axis, resulting in 210 im-
ages; an acceleration voltage of 50 kV; a beam of 800 µA; an exposure time of 3500 ms; an
image pixel size of 9.6 µm; without a filter.

2.5. Mechanical Analysis

The purpose of the scaffold is to replace damaged articular cartilage. Thus, it is
necessary that the produced scaffolds exhibit mechanical properties similar to those of
native tissue. The mechanical strength of the scaffolds was tested using a universal testing
machine (Instron 5544, Instron, Norwood, MA, USA) at an extension rate of 1 mm/min.
The compression modulus of elasticity (E) was calculated by the slope of the linear region
in the stress–strain curve. Five samples of each scaffold composition were tested.

2.6. Enzymatic Degradation

Enzymes are naturally present in the human body. In the case of a traumatic situation
in cartilage, lysozyme concentration is increased. Therefore, a degradation test with
lysozyme illustrates the resistance of the produced scaffolds when in contact with this
enzyme. The scaffolds of each formulation were incubated in phosphate-buffered-saline
(PBS) medium (Alfa Aescar, Kandel, Germany), at pH 7.4, with a lysozyme (Sigma-Aldrich,
St. Louis, MO, USA) concentration of 2 mg/mL [38]. The enzyme solution was prepared
by adding the enzyme to the PBS medium under stirring at 100 rpm for 10 min. After
preparation, the enzyme solution was included in each microplate well with the scaffold
and incubated at 37 ◦C for 28 days. The enzymatic degradation of the scaffolds was
evaluated by measuring its mechanical resistance to compression at days 1, 7, 14 and 28.
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Scaffolds with WC were used as controls and submitted to the same treatment. Mechanical
tests throughout the assay were compared with the values obtained in the mechanical
analysis of the untreated scaffold after production (called day 0). The assay was performed
in triplicate.

2.7. In Vitro Cytotoxicity Test

The biocompatibility of the manufactured scaffolds was assessed using L929 mouse
fibroblasts (ATCC number CCL-1) and following the ISO 10993-5 and ISO 10993-12 guide-
lines [39]. Prior to testing, manufactured PCL-based cellulose scaffolds were sterilized
by overnight exposure to ultraviolet (UV) light, washing with ethanol 70%, and incuba-
tion with a 1% (v/v) antibiotic–antimycotic solution (Anti–Anti, Gibco™, Fisher Scientific,
Waltham, MA, USA) in phosphate-buffered saline (PBS, Gibco™, Fisher Scientific, USA) for
3 h at RT (one wash every hour).

The scaffolds were evaluated by performing the indirect-extract test and direct-contact
test. In both tests the negative control was prepared by culturing L929 fibroblasts on tissue-
culture-polystyrene (TCPS) plates with Dulbecco’s Modified Eagle’s Medium (DMEM,
Gibco™, Fisher Scientific, USA) supplemented with 10% (v/v) Fetal Bovine Serum (FBS,
Life Technologies, Carlsbad, CA, USA) and with 1% Anti–Anti in an incubator at 37 ◦C/5%
CO2. Latex was used as a positive control for cell death. L929 fibroblasts were seeded on
TCPS plates at a cell density of 105 cells/well and cultured for 24 h at 37 ◦C/5% CO2 to
generate a confluent monolayer.

For the indirect test, the extracts were prepared by incubating the scaffolds in DMEM,
10% FBS and 1% Anti–Anti culture medium at a ratio of 0.2 g scaffold/mL for 72 h at
37 ◦C/5% CO2. This ratio ensures that the test sample covers one-tenth of the surface
of the cell layer, according to ISO 10993-5:2009 [39]. After that, the culture medium was
removed and L929 fibroblasts were exposed to the material extract’s conditioned medium
for 72 h at 37 ◦C/5% CO2. Then, the extract-conditioned medium was removed and
the 3-(4,5-dimethylthiazol-2-yl)-2-5 diphenyl tetrazolium bromide (MTT) assay (In Vitro
Toxicology Assay Kit MTT based, Sigma-Aldrich, St. Louis, MO, USA) was performed
in accordance with the manufacturer’s guidelines. Briefly, the cells were incubated with
MTT solution (1 mg/mL, yellow) for 2 h at 37 ◦C, and afterwards the violet formazan
product resulting from the metabolic reduction of MTT by the metabolically active cells
was dissolved under stirring using a solution of 0.1 N HCl in anhydrous isopropanol
(Sigma-Aldrich). The absorbance of the final solutions was measured in a plate reader
(Infinite M200 PRO, TECAN, Mannedorf, Switzerland) at 570 nm.

In the case of the direct-contact assay, the scaffolds were carefully placed over the
previously formed confluent monolayer of L929 fibroblasts (in the center of each of the
replicate wells; three replicates were used for each sample) and incubated for 72 h at
37 ◦C/5% CO2, according to the ISO 10993-5:2009. Afterwards, cell viability and morphol-
ogy were qualitatively evaluated under an inverted optical microscope (LEICA DMI3000B,
Leica Microsystems, Wetzlar, Germany) equipped with a digital camera (Nikon DXM1200F,
Nikon Instruments Inc., Melville, NY, USA) to assess any cytotoxic responses such as the
occurrence of halo-inhibition effect or abnormal fibroblast morphology.

2.8. Statistical Analysis

Statistical analysis was performed using the GraphPad Prism 8 software (GraphPad
Software, Inc., San Diego, CA, USA). One-way ANOVA with Tukey’s test was applied to
analyze differences in morphological parameters (diameter and thickness), the mechanical
properties and in vitro cytotoxicity results. A two-way ANOVA, with Tukey’s test, was
applied to the mechanical tests performed after enzymatic degradation. In addition, the
level of statistical significance was set as 95%, 99% and 99.9% (* p < 0.05, ** p < 0.01,
*** p < 0.001).
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3. Results
3.1. PCL–Cellulose Composites Characteristics

The thermal properties of the PCL–cellulose composites developed in step 1 of the
scaffold manufacturing (Section 2.1., Materials and Methods) were evaluated. As the PCL–
cellulose composites must be melted in order to be extruded, their melting temperature
was determined by controlled heating from 30 ◦C to 150 ◦C, and through this, the extruder
chamber temperature was set. Figure 1 shows that all PCL–cellulose composites had similar
melting temperatures, 65.31 ± 0.10 ◦C, 66.84 ± 1.2 ◦C, 66.53 ± 0.56 ◦C, and 68.64 ± 0.29 ◦C
for WC_1%, WC_2%, CC_1% and CC_2%, respectively. The corncob cellulose increases the
melting temperature in composites in relation to wood cellulose, and also by increasing
its percentage in the formulation. Furthermore, it is possible to increase the extrusion
temperature up to 150 ◦C and no degradation event will occur.
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Figure 1. Thermal analysis by differential scanning calorimetry (DSC) of the PCL–cellulose compos-
ites produced in step 1 with: 1% wood cellulose (WC_1%); 2% wood cellulose (WC_2%); 1% corncob
cellulose (CC_1%); 2% corncob cellulose (CC_2%).

For the PCL–cellulose-composite preparation, DMF was used as a solvent to solubilize
and aggregate PCL and cellulose. A chemical analysis was performed using ATR–FTIR
(Figure 2) to assess whether the DMF was completely removed and whether the composites
could be extruded.

The FTIR spectrum (400 to 3200 cm−1) shows that the strongest band in DMF is the
vC=O at 1673 cm−1 [40]. This band does not appear in any spectrum of the developed
composites, demonstrating that DMF was fully evaporated from all composite samples,
suggesting its readiness for extrusion.

3.2. Morphological Characteristics of the Scaffolds

Despite the configurations designed for the scaffolds, i.e., cylinders with 10 mm of
diameter and 2.5 mm of height, the samples produced show some deviation, which is easily
explained by the shrinkage/contraction of the material during solidification after extrusion
(Table 1). The scaffolds’ diameter varied between 8.92–9.34 mm and their height ranged
from 2.29–2.39 mm.

Thus, the scaffolds whose dimensions more closely approached the theoretical con-
figuration were WC_2% and CC_1%, with 2.38 ± 0.10 mm and 2.39 ± 0.11 mm in height,
respectively, and 9.27 ± 0.15 mm and 9.34 ± 0.15 mm in diameter, respectively.
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Figure 2. Attenuated-total-reflectance–Fourier-transform-infrared (ATR–FTIR)-spectroscopy analysis
of the composites produced in step 1 with PCL and: 1% wood cellulose (WC_1%); 2% wood cellulose
(WC_2%); 1% corncob cellulose (CC_1%); 2% corncob cellulose (CC_2%); and DMF as the solvent
used in composite preparation.

Table 1. Dimensions of the scaffolds produced with PCL and: 1% of WC (WC_1%); 2% of WC
(WC_2%); 1% of CC (CC_1%); 2% of CC (CC_2%). (n = 9).

Scaffolds Height
(mm)

Diameter
(mm)

CAD Design 2.50 10.00
WC_1% 2.34 ± 0.09 *** 8.92 ± 0.12 ***
WC_2% 2.38 ± 0.10 * 9.27 ± 0.15
CC_1% 2.39 ± 0.11 * 9.34 ± 0.15
CC_2% 2.29 ± 0.05 *** 9.12 ± 0.13 ***

Statistically significant differences at p < 0.05 (*) and p < 0.001 (***).

The surface of all scaffolds can be observed by naked eye and optical microscopy
(Figure 3) and the internal and external 3D structure by MicroCT (Figure 4). Using optical
microscopy at 40× magnification, it is possible to observe the upper layer of the scaffold,
which provides more detailed information on the dimensions of the filaments and pores.
Thus, it is possible to verify that both the pore and filament diameters were ~300 µm. On
the other hand, the MicroCT images showed homogeneous samples, with no cellulose
agglomerates being detected, either in WC or CC scaffolds.

The porosity of the tested scaffolds was very similar, ranging between 49% and 54%.
The scaffold with the highest porosity was CC_2% (54.24%) as opposed to WC_1% (49.14%),
which presented the lowest porosity. In addition, all samples showed interconnectivity
percentages of approximately 100%, with the lowest being WC_2% (99.997%) and the
largest being CC_1% (100.000%) (Figure 4).

3.3. Mechanical Properties of the Scaffolds

The mechanical behavior of the scaffolds was evaluated under compressive testing
(Figure 5), since the samples are intended for articular cartilage substitutes, in which
the compressive loads are particularly relevant. Figure 5a shows the standard compres-
sion stress–strain curves for the different scaffolds, corresponding to the behavior of a
thermoplastic material, with an initial elastic region followed by a plastic zone.
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Figure 5. Mechanical properties: (a) Stress–strain curves and (b) compression modulus of elasticity of
the scaffolds produced with PCL and: 1% wood cellulose (WC_1%); 2% wood cellulose (WC_2%); 1%
corncob cellulose (CC_1%); 2% corncob cellulose (CC_2%). Measures of five samples were considered
(n = 5). Statistically significant differences at p < 0.01 (**) and p < 0.001 (***).

Through the analysis of the compression modulus of elasticity (Figure 5b), it appears
that the use of WC, regardless of the degree of incorporation (1% or 2%), resulted in similar
mechanical performance (56 ± 6.3 MPa and 61 ± 2.8 MPa, respectively). However, in
CC scaffolds, the use of 2% significantly increased the compression modulus of elasticity
(44 ± 1.3 MPa for CC_1% and 62 ± 5.5 MPa for CC_2%). It was possible to observe
significantly lower mechanical properties during compression in the case of CC_1%, while
CC_2% presented similar values to WC. In addition, the yield stress (Figure 5a) was the
highest for the CC_2%, demonstrating a better response to higher loads.

3.4. Enzymatic Degradation of the Scaffolds

When traumatic situations occur, lysozyme levels in articular cartilage increase [41].
Therefore, an enzymatic-degradation assay was performed and the mechanical properties
of the scaffolds under compression were monitored on days 1, 7, 14 and 28 of the experiment
and compared to day 0 (Table 2).
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Table 2. Compression modulus of elasticity (MPa) of scaffolds produced with PCL and: 1% wood
cellulose (WC_1%); 2% wood cellulose (WC_2%); 1% corncob cellulose (CC_1%); 2% corncob cellulose
(CC_2%) during enzymatic degradation with lysozyme. (n = 3).

Time
(Days)

Compressive Modulus (MPa)

WC_1% WC_2% CC_1% CC_2%

0 55.55 ± 4.67 A,a 60.76 ± 2.11 44.54 ± 0.82 b,c 63.31 ± 3.95 d

1 47.66 ± 4.63 B,a 58.18 ± 3.12 b 47.74 ± 8.02 53.88 ± 3.76
7 35.32 ± 3.26 a 56.00 ± 2.99 b,c 47.52 ± 2.29 b 42.95 ± 1.35 d

14 37.19 ± 1.27 a 59.48 ± 0.25 b 51.91 ± 7.32 b 48.47 ± 9.84
28 43.77 ± 4.17 a 59.01 ± 3.48 b 48.50 ± 7.89 54.40 ± 8.91

A–B Different capital letters mean significant differences (p < 0.001) over time. a–b, c–d Different small letters mean
significant differences (p < 0.05) among scaffolds each time.

During enzymatic degradation, the only sample that showed changes in its mechanical
properties was WC_1% with a decrease in its compression modulus of elasticity from day 0.
Throughout the test, WC_1% presented the lowest modulus in relation to the other scaffolds
(WC_2% and CC_1%). CC_1% and CC_2% presented statistically similar performances.

Since no degradation effects were detected through the analysis of the compressive
modulus of elasticity, the standard compression curves of the scaffolds were evaluated to
validate this fact. Thus, Figure 6 depicted the curves of the scaffolds on days 0, 7 and 28.
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It should also be noted that the scaffold manufactured with WC exhibited the same
behavior regarding the yield stress. At day 7 they presented the highest yield stress but at
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day 28 it decreased to values similar to day 0. However, when scaffolds were manufactured
with CC, the behavior changed, with a decrease in the yield stress over time.

3.5. In Vitro Cytocompatibility of the Scaffolds

Since the purpose of scaffolds is to support damaged cartilaginous tissue to aid in
its recovery, it is necessary to evaluate them in terms of their cytotoxicity effect. Figure 7
shows the cytotoxicity results of indirect- and direct-contact tests performed with L929
fibroblast cells. Figure 7a shows that not only are all PCL–cellulose scaffolds not cytotoxic
but, additionally, that they promote cell viability/proliferation, since all viability values
were higher than the negative control (>100%), with the highest value corresponding to the
CC_2% scaffold (142.8 ± 10.7%). The direct-contact test (Figure 7b) demonstrated that, after
72 h of contact between the scaffolds and fibroblast-confluent cultures, WC_1%, WC_2%,
CC_1% and CC_2% presented viable cells with a typical spindle-shaped morphology, in
which no halo-inhibiting effect was observed.
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cellulose (CC_1%); 2% corncob cellulose (CC_2%). Scale bar: 100 µm. p < 0.001 (***).
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4. Discussion

Previous work by our group [31] proved that corncob, an agro-industrial byproduct,
can be a viable option as a source of cellulose to replace wood cellulose due to its charac-
teristics. To evaluate the performance of the corncob cellulose in real applications against
commercial wood cellulose, PCL-based scaffolds were produced with different percentages
of cellulose using the additive manufacturing technique (extrusion).

Before scaffold extrusion, it is necessary to access the properties of the developed
composite materials. Thermal characterization by DSC was performed to determine the
melting temperature of the composites and predict the occurrence of any undesired event
in the extrusion temperature range. Figure 1 demonstrates that the melting temperature
of all developed PCL–cellulose composites was around 65 ◦C, which is approximately the
melting temperature of PCL [36].

Regarding the use of DMF as a solvent to combine PCL with cellulose during the
development of the composite, its complete evaporation is essential to in order not to affect
the extrusion process and not to be retained in the polymeric network of the scaffolds, which
causes cytotoxicity, since DMF is a very toxic organic solvent for cells [42]. The ATR–FTIR
analysis (Figure 2) demonstrated that DMF was fully removed from the composites since
the band at 1673 cm−1, which concerns the link vC=O, does not appear in the composites’
spectra. Thus, it is possible to safely extrude the scaffolds and they will probably not
exhibit cytotoxicity.

The scaffolds were designed with a cylindrical shape, facilitating their incorporation
into the knee as a cartilage substitute. Some deviations from the initial designed CAD
configurations were observed. These were due to the temperature variations to which the
composites were submitted during melting, causing a certain material shrinkage from the
viscous to the solid state, which justifies the smaller dimensions observed. There were
also differences between the height of the scaffolds, which are also justified by the fact
that, ideally, the layers are tangential to each other, with a cylindrical filament geometry
of 300 µm diameter. However, in practice and to ensure adhesion between the layers, the
increment in the Z axis is not 300 µm, but 280 µm (approximately 7% less than the total
filament height). Accordingly, the shrinkage of the material causes a slight reduction in
the height of the scaffold. In this study, in terms of dimensions, the CC_1% and WC_2%
scaffolds presented less statistically significant differences when compared to the CAD-
design models.

Scaffolds at 40× magnification showed a detailed top layer that allowed the determi-
nation of filament and pore dimensions. Thus, a pore and filament diameter of ~300 µm
was obtained, which is in the range of the desired dimensions for cell adhesion and prolifer-
ation. The literature results suggest that chondrocytes present in the articular cartilage [43]
show a preference for matrices with pore sizes ranging from 200 µm to 405 µm [44,45].
Additionally, studies that developed different pore sizes in the same scaffold indicated
that the cell adhesion was greater in the center of the scaffolds, where the pore size was
390 µm [46]. Furthermore, all the surfaces of the scaffolds were shown to have a smooth
surface, as indicated in the study by Alemán-Domínguez ME et al. (2019), for samples with
cellulose concentrations below 5% [36].

It is important to verify that the cellulose is well dispersed throughout the scaffold,
avoiding cellulose agglomerates. MicroCT analysis shows that no cellulose agglomerates
were detected, suggesting that the cellulose from wood or corncob was well dispersed
within the scaffolds. The porosity results of each scaffold determined through MicroCT
showed a maximum variation of 5% (from 49 and 54%). Despite this, the porosity of the
scaffold was positively correlated with the increase in the cellulose content, as indicated in
other studies [35]. CC_2% stands out for its higher porosity; however, it was not close to the
desired value for chondrocyte proliferation, which is between 77% and 92% [47]. However,
a previous study observed a porosity for PCL scaffolds of 57%, which is close to that
observed in the CC_2% scaffold. This value was estimated considering the biodegradation
of the material and its mechanical and biological requirements [48]. All samples presented
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interconnectivity percentages of approximately 100%, indicating that cells can migrate
and proliferate throughout the entire scaffold [49]. Interestingly, despite the low porosity,
the pore size and interconnectivity values were within the ideal range for chondrocyte
adhesion/proliferation [50].

As the purpose of scaffolds, such as those developed in this work, is the replace-
ment/repair of hyaline cartilage (e.g., knee), understanding its response to compressive
loads is extremely important. According to Shepherd (1999), the compression modulus
of elasticity for human cartilage in the knee is between 5.5 and 11.8 MPa [51]. The results
revealed no improvement of the compression modulus of elasticity for the incorporation of
1% or 2% of WC (56 ± 6.3 and 61 ± 2.8 MPa, respectively). Comparing the two types of
cellulose at 1%, CC scaffolds showed a significant decrease of about 21% (45 ± 1.3 MPa,
p < 0.01) over WC scaffolds. This occurred due to the fact that WC is morphologically
more homogeneous in terms of particle size and has a more regular/smoother surface than
CC [31]. These particle differences result in distinct mechanical properties between the
celluloses, where heterogeneous particles create greater instability in the structure, thereby
reducing its mechanical properties. Furthermore, after increasing the cellulose content from
1% to 2%, there was a significant increase of about 40% (p < 0.05). Regarding the results
obtained from the two different sources of cellulose at 2%, similar values were found, 61
± 2.8 MPa for WC and 62 ± 5.5 MPa for CC, suggesting that corncob cellulose is a viable
alternative to cellulose from wood, reducing agro-industrial waste and contributing to a
more sustainable approach for a biotechnological application.

In general, CC (2%) endows PCL-based scaffolds with mechanical properties equal to
WC, thus functioning as a good substitute. However, in addition to ensuring the mechanical
performance of the scaffolds at the time of their implantation, evaluating their performance
over time under in vivo conditions is also very important. Since the final biomedical
application of the scaffold is to replace damaged cartilage, which has a higher concentration
of lysozyme when injured [41], it is important to assess the performance of the scaffold in
contact with this enzyme.

During the 28 days of enzymatic degradation, all scaffolds presented statistically simi-
lar values of the compression modulus of elasticity, with the exception of WC_1%, which
reduced its modulus on the first day of testing. This translates into a mechanical stability
of the scaffold structure even after exposure to lysozyme, except for WC_1%. Observing
the values of the compression modulus of elasticity, WC_2% presented higher values at
each day of testing, indicating that the concentration of cellulose influenced the mechanical
resistance of the scaffold throughout the entire experiment. However, with regard to CC,
the increase in its concentration did not influence its mechanical strength when subjected to
enzymatic degradation, with CC_1% and CC_2% being statistically equal over time. This
result proves that corncob cellulose can be used in smaller amounts in the manufacturing
of scaffolds and the mechanical response will be similar. Nonetheless, CC_1% presented
mechanical values of compression that were higher than WC_1%, (p < 0.05) but that were
statistically different only on day 7. However, CC_2% was the most similar in mechanical
terms to WC_2%, but with a lower compression modulus of elasticity on day 7. Thus,
scaffolds with CC_2% contain an ideal percentage for application as a viable replacement
for WC. Since lysozyme is an antibacterial enzyme capable of degrading the β-1,4-linkages
between N-acetylmuramic acid and N-acetyl-d-glucosamine, which are found in the bac-
terial cell wall [52], no degradation by the action of lysozyme in the scaffolds is expected.
In fact, no reduction or change in the structure of the developed scaffolds was noticed,
since the two polymers applied in this study, PCL and cellulose, do not contain that specific
chemical bond. This was further validated by the analysis of the standard stress–strain
curves of the scaffolds exposed to lysozyme at days 0, 7 and 28. Although the yield stress
decreased, the thermoplastic behavior persisted, with the observation of an elastic region
followed by a plastic one.

Regarding the cytotoxicity tests, the results suggested the in vitro cytocompatibility of
the developed scaffolds. Previous studies performed with PCL and commercial cellulose
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scaffolds at different concentrations (2, 5 and 10%) indicated that cellulose does not affect
cell adhesion; however, cell proliferation increases when cellulose concentration is 2% [36].
These results corroborate those obtained in this study. All the scaffolds, with both com-
mercial and corncob cellulose, did not exhibit cytotoxicity and, additionally, potentiated
the viability/proliferation of the L929 fibroblasts used in the analysis. These results also
reinforce those obtained through FTIR analysis, proving that all DMF was removed during
the drying process of the composites.

Regarding WC, increasing the concentration decreases cell viability, as previously de-
scribed by Alemán-Domínguez, M.E., (2019) [36]. However, when CC is used, the increase
in concentration increases cell viability to levels higher than WC. Fibroblast morphology
was also not altered, and no halo of inhibition was detected, indicating that all the pro-
duced scaffolds have high potential for cartilage-regeneration applications both in vitro
and in vivo. Future work will include the evaluation of the biological performance of PCL–
CC-composite scaffolds in the context of cartilage tissue engineering by culturing them
with human chondrocytes as well as assessing their ability to promote the chondrogenic
differentiation of human mesenchymal stem/stromal cells.

5. Conclusions

The development of PCL–cellulose scaffolds to repair damaged cartilage was studied
with corncob cellulose as an alternative to wood cellulose. Scaffolds with corncob cellulose
presented morphological and mechanical properties similar or better to scaffolds with wood
cellulose. The concentration of 2% of corncob cellulose presented the best results, proving
to be the optimal concentration. The enzymatic degradation revealed that CC_2% presents
a compression modulus of elasticity very similar to WC_2%, with both scaffolds resisting
degradation over time. Regarding the cytotoxicity assay, it was revealed that not only are
all manufactured scaffolds not cytotoxic, but they also promote cell viability/proliferation.
CC_2% presents the highest cell viability, suggesting its advantageous biological perfor-
mance over WC. Overall, regarding the properties assessed in this study, the scaffolds
developed with 2% corncob cellulose seem to have high potential to be applied as novel
biocompatible and renewable materials for articular-cartilage-replacement strategies.
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