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The rhodium-catalyzed transannulation of N-perfluoroalkyl-1,2,3-triazoles with aromatic and aliphatic terminal alkynes under

microwave heating conditions afforded N-perfluoroalkyl-3,4-disubstituted pyrroles (major products) and N-fluoroalkyl-2,4-disubsti-

tuted pyrroles (minor products). The observed selectivities in the case of the reactions with aliphatic alkynes were high.

Introduction

Pyrroles are known to be important structural moieties
appearing in natural products, synthetic drugs, agrochemicals,
and functional materials (polymers, dyes, films, etc.) (Figure 1)
[1-4]. Numerous methods exist for pyrrole synthesis, including
the classical and industrially important condensation ap-
proaches, such as the Hantzsch, Huisgen, and Paal-Knorr pro-
cesses [5]. However, the direct modification of pyrroles to the
3,4-disubstituted derivatives is challenging because an electro-
philic aromatic substitution of pyrroles or the metalation of
N-substituted pyrroles and the subsequent reaction with electro-
philes take place in position two of the ring [6,7].

Recently, N-sulfonyl-1,2,3-triazoles, conveniently prepared by

[3 + 2] cycloadditions of terminal alkynes with sulfonyl azides,

have been used as the precursors to N-sulfonylindoles by
transition-metal-catalyzed transannulation reactions. In the
presence of Rh(II) or Ni(0) catalysts the triazole ring-opening
takes place and intermediate highly electrophilic metal-bound
iminocarbenes form. These iminocarbenes undergo a variety of
intriguing reactions, such as a cycloaddition and a C—H functio-
nalization, among others, leading mostly to nitrogen hetero-
cycles [8-10]. Using this chemistry, a variety of pyrroles have
been prepared starting from N-sulfonyl-1,2,3-triazoles
(Scheme 1) [11-17].

We have recently reported that N-perfluoroalkyl-1,2,3-triazoles

[18] undergo rhodium-catalyzed transannulation reactions

leading to various nitrogen heterocycles, such as imidazoles,
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Figure 1: Selected pyrrole-containing natural products, drugs, agrochemicals, and functional materials.
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Scheme 1: Transformation of N-sulfonyl-1,2,3-triazoles to pyrroles via metal iminocarbenes.

pyrrolones, imidazolones, oxazoles, azepines [19-22], and
pyrroles [19].

The use of fluorine atoms and fluoro groups (including the tri-
fluoromethyl group) is a widely used strategy to improve the
properties of drug candidates or agrochemicals [23-28]. The de-
velopment of new methods for the synthesis of selectively fluo-
rinated and trifluorometylated compounds is essential for future
progress in areas that eventually improve the quality of life. In
this context, N-trifluoromethylated compounds (amines, amides

and nitrogen heterocycles) are a relatively underexplored group

of molecules with a high potential in medicinal chemistry
[29,30]. Taking inspiration from the work of Gevorgyan
(Scheme 1h) [11], we report herein our recent results on the
rhodium-catalyzed transannulation of N-perfluoroalkyl-1,2,3-
triazoles with terminal alkynes leading to unusually substituted

N-perfluoroalkylpyrroles.

Results and Discussion
The published transannulation of N-tosyl-1,2,3-triazoles with
terminal alkynes requires the use of a Rh/Ag binary catalyst

system, works only with electron-rich arylacetylenes and
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leads to N-tosyl-2,4-disubstituted pyrroles (Scheme 1h) [11].
The application of these conditions to N-trifluoromethyl-
triazole 1a and phenylacetylene leads to a mixture of 3,4-
diphenylpyrrole 2a and 2,4-diphenylpyrrole 2a’. However,
repeating the experiment without the silver catalyst afforded
the same results showing that the silver catalyst was not
necessary in our case and that the product regioselectivity
was not dependent on the silver catalyst (Table 1, entry 1).
Chloroform was found to be the most suitable solvent
and varying rhodium catalysts led to the 2a + 2a’ product
mixture of various ratios. Rhy(oct)4 and Rhjy(esp), gave the
highest 2a/2a’ ratio, while the electron-deficient Rh,(pfb),
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catalyst gave the lowest 2a/2a’ ratio and an incomplete
conversion. Reducing the reaction temperature to 80 °C
afforded a full conversion of the starting triazole, but no
reaction took place at 60 °C. The optimized conditions are
presented in Table 1, entry 8; however, for the following reac-
tion scope study, a temperature of 100 °C and 20 min reaction
time were used to ensure a full conversion for all studied sub-

strates.

Next, the transannulation reaction was tested using a range of
different substituted N-trifluoromethyl- and N-pentafluoroethyl-
4-aryl-1,2,3-triazoles 1 with phenylacetylene (Scheme 2). Good

Table 1: Reaction conditions screening of the transannulation of triazole 1a with phenylacetylene.

Ph Ph Ph
g ° e
L/N_CFs . P [Rh] (1 mof %) /N\ . /N\ o
Ph MW, 15 min | )
CF3 CF3

1a (3 equiv) 2a 2a'
Entry [Rh] Solvent Temp. (°C) Conv. (%)2 2a/2a’
1P Rhao(oct)4 cyclohexane 120 90 75:25
2 Rha(oct)4 CHCl5 120 100 60:40
3 Rha(OAC)4 CHCly 120 100 34:66
4 Rha(esp)z CHCl3 120 100 75:25
5 Rha(pfb)s CHCl3 120 54 14:86
6 Rha(esp)z CHCl3 100 100 75:25
7 Rha(esp)z DCE 100 100 40:60
8 Rha(esp)z CHCl3 80 100 75:25
9 Rho(esp)z CHCly 60 NR -

NR: no reaction. oct: n-C7H{5COO. esp: a,a,0',&'-tetramethyl-1,3-benzenedipropionate. pfb: n-C3F7COO. @Conversion of 1a was determined by
19F NMR spectroscopy. PThe same result was observed in the presence of CF3COOAg (5 mol %) in addition to Rha(oct)4 (1 mol %).

Ar Ph Ar
N o
N="\ Rh(es| 1 mol %
A/N_RF — 2(esp)2 ( o) Z/ \S . I\ o
A CHCI3 100 °C, N N
f MW, 20 min Rr Re
1 (3 equiv) 2 2'
MeO FsC F.
%Ph Y _Ph Y_Ph % _Ph Y_Ph Y Ph
N N N N N N
CF; CF,4 CF; CF; CF3 CF,CF3
56% 66% 54% 55% 58% 52%
2a/2a’ = 75:25 2b/2b' = 73:27 2c/2¢’ = 72:28 2d/2d" = 59:41 2e/2¢' = 79:21 2f/2f = 69:31

Scheme 2: Transannulation of triazoles 2 with phenylacetylene.
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to moderate yields of product mixtures 2 and 2” were obtained
and the 2/2’ ratio ranged from 59:41 to 79:21.

While aliphatic alkynes were found to be ineffective in transan-
nulations with N-tosyl-1,2,3-triazoles, the reactions of N-per-
fluoroalkyl-1,2,3-triazoles with aliphatic alkynes proceeded
well and the pyrroles 3 were formed in unexpectedly high selec-
tivities, ranging from 87:13 to 98:2 (Scheme 3). The isolated
product yields were moderate to good and the products were
generally obtained as mixtures of regioisomers. Column chro-
matography allowed the separation of pure isomers of 2a, 2a’,
3a, 3b, 3d, 3h, 31, 3m, and 3n. However, no general trend in the
efficiency of the reaction or product selectivity was observed.
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Hex-5-ynenitrile was used in the transannulation with 1a with
the aim to assess the relative propensity of nitrile and alkyne
groups in the reaction. The triple bond reacted in the transannu-
lation about two times faster than the nitrile group and again the
3,4-disubstituted pyrrole 4 regioisomer dominated over the 2,4-
disubstitued pyrrole 4’ (Scheme 4).

To demonstrate the compatibility of the formed N-perfluo-
roalkylpyrroles with the conditions of pyrrole derivatization by
metalation in position two and reaction with an electrophile, the
crude product 2a was treated with butyllithium, followed by the
reaction with carbon dioxide to afford pyrrole carboxylic acid 6
in a good overall yield (Scheme 5). The trifluoromethyl group

Ar R Ar
_N
NN ke - Rhy(esp), (1 mol %) Z/ \S . n
- - N R
Ar CHCl3, 100 °C, N \
MW, 20 min Re Re
1 (3 equiv) 3 3
cl
Ph Ph PR ) PR () Ph )
Z/ X Z/ % /% Z/ % Z/ ¥ Z/ e
) ) ) ) ) )
CF; CF; CF, CF4 CF; CF,
84% 56% 56% 48% 36% 43%
3a/3a’ = 955 3b/3b' = 94:6 3c/3c' = 91:9 3d/3d' = 97:3 3e/3e’ = 98:2 3f/3f = 94:6
|
Ph MeO
Br =0 cl © cl
ph Cl Ph ; Ph Ph Q
Y r I Y \ \
\ v v y * ¥
CF4 CF, CF, CF; . .
CF, CF4
43% 48% 36% 50% 60% 49%
39/3g' =87:13 3h/3h' = 93:7 3i/3i' = 98:2 3j/3j" = 89:11 3k/3k' = 92:8 31/31' = 90:10
F3G cl F cl OzN cl cl Fo& cl
;/ f / § ;/ f / § / §
’.“) '.“) “.‘) “.‘) N
CF, CF, CF, CF,CF; CF,CF;
59% 70% 27% 51% 42%
3m/3m' = 95:5 3n/3n' =92:8 30/30' = 96:4 3p/3p' =937 39/3q' =98:2

Scheme 3: Transannulation of N-perfluoroalkyl-1,2,3-triazoles with aliphatic alkynes.
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Scheme 4: Reaction of 1a with hex-5-ynenitrile.
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Scheme 5: Metalation and carboxylation of in situ-prepared pyrrole 2a.

on the nitrogen was not affected by these highly basic reaction
conditions.

The mechanism of the rhodium-catalyzed transannulation to
pyrroles has recently been investigated computationally with
N-sulfonyltriazoles [31]. It seems that the formed rhodium
carbenoid B reacts with the alkyne in a concerted process and
even in the presence of Ag* salts, a nucleophilic addition of
silver acetylides does not take place. In our case, the transition
states TS1 and TS2 have roughly similar energies for phenyl-
acetylene and TS1 is lower in energy for aliphatic alkynes
(Scheme 6).

CF3
6, 75%

Conclusion

In conclusion, the rhodium-catalyzed transannulation of N-per-
fluoroalkyl-1,2,3-triazoles with terminal alkynes was described.
The reaction led to a mixture of the N-perfluoroalkyl-3,4- and
2,4-disubstituted pyrroles. The reactions with phenylacetylene
afforded a mixture of 3,4- and 2,4-disubstituted pyrroles in a
ratio from 59:41 to 79:21, while the reactions with aliphatic
acetylenes gave higher product regioselectivities (87:13 to
98:2). This is the first report of a transannulation leading to 3,4-
disubstituted pyrroles. Additionally, the method did not require
the use of a silver(I) co-catalyst. The scope for aliphatic alkynes
is reasonably wide and the isolated yields were moderate to
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Scheme 6: Plausible mechanism for rhodium-catalyzed transannulation of N-perfluoroalkyl-1,2,3-triazoles with alkynes.
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good. A one-pot transannulation/carboxylation process was
demonstrated for the construction of the functionalized pyrrole
2-carboxylic acid with an N-trifluoromethyl functionality. Thus,
this work improves the synthetic access to N-perfluoroalkyl-3,4-
disubstituted pyrroles.

Supporting Information
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