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A B S T R A C T   

Purpose: To investigate if network thresholding and raw data harmonization improve consistency of diffusion 
MRI (dMRI)-based brain networks while also increasing precision and sensitivity to detect disease effects in 
multicentre datasets. 
Methods: Brain networks were reconstructed from dMRI of five samples with cerebral small vessel disease (SVD; 
629 patients, 166 controls), as a clinically relevant exemplar condition for studies on network integrity. We 
evaluated consistency of network architecture in age-matched controls, by calculating cross-site differences in 
connection probability and fractional anisotropy (FA). Subsequently we evaluated precision and sensitivity to 
disease effects by identifying connections with low FA in sporadic SVD patients relative to controls, using more 
severely affected patients with a pure form of genetically defined SVD as reference. 
Results: In controls, thresholding and harmonization improved consistency of network architecture, minimizing 
cross-site differences in connection probability and FA. In patients relative to controls, thresholding improved 
precision to detect disrupted connections by removing false positive connections (precision, before: 0.09–0.19; 
after: 0.38–0.70). Before harmonization, sensitivity was low within individual sites, with few connections sur-
viving multiple testing correction (k = 0–25 connections). Harmonization and pooling improved sensitivity (k =
38), while also achieving higher precision when combined with thresholding (0.97). 
Conclusion: We demonstrated that network consistency, precision and sensitivity to detect disease effects in SVD 
are improved by thresholding and harmonization. We recommend introducing these techniques to leverage large 
existing multicentre datasets to better understand the impact of disease on brain networks.   
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1. Introduction 

Describing the human brain as a network of nodes (gray matter re-
gions) connected by edges (white matter pathways) can provide 
powerful insights into neurological disorders (Bullmore and Sporns, 
2009; van den Heuvel and Sporns, 2013). Changes in local and global 
properties of brain networks reconstructed from diffusion MRI (dMRI) 
have been associated with many disease processes (Pievani et al., 2014). 
An important issue in this rapidly evolving research field is that network 
analysis is highly dependent on how the network nodes and connections 
are defined, particularly when trying to identify specific connections or 
subnetworks that are disrupted by particular disease. To date, network 
studies have used various definitions for edges and nodes, different 
tractography algorithms and edge-weights, resulting in inconsistent re-
ported architectures across datasets (for example, Du et al., 2020; 
Tuladhar et al., 2017). 

Without proper processing, brain networks reconstructed from dMRI 
are known to contain many false-positive connections which contribute 
for variability in network architecture (Buchanan et al., 2014). This can 
be alleviated by thresholding the network to a core structure with more 
reliable connections, over which eventual disease effects can be assessed 
with higher confidence (McColgan et al., 2018). A second issue that 
needs to be considered when detecting network injury patterns in rela-
tion to disease is statistical power. To identify specific disrupted con-
nections, methods such as network-based statistics (NBS) are applied to 
fit a univariate model at every connection and test hypotheses of interest 
(e.g., differences in fractional anisotropy – FA – between patients and 
controls at connection level) (Zalesky et al., 2010). Since networks 
typically contain thousands of connections, multiple tests are per-
formed, often in study populations with a modest sample size, resulting 
in type I and type II errors. In this scenario, filtering for potentially false- 
positive connections reduces multiple testing. Moreover, an obvious 
strategy to improve power is to increase the sample size by pooling 
existing data from different sites. To date, however, dMRI data pooling 
has been hampered by acquisition-related differences across sites 
(Bonilha et al., 2015; Vollmar et al., 2010). As a consequence, network 
studies of network topology in patients have been predominately single 
centre with inconsistent recognition of network connections affected by 
disease (Du et al., 2020; Reijmer et al., 2016; Tuladhar et al., 2017). 

Here, we address the challenge of using multicentre dMRI data to 
study abnormalities in network topology, using cerebral small vessel 
disease (SVD) as an exemplar condition. In this context SVD is of clear 
interest because it is considered to affect cognition by disrupting brain 
connectivity as a result of vascular injury (Frey et al., 2021; Lawrence 
et al., 2018; Reijmer et al., 2015). However, the exact impact of SVD on 
network topology is still unknown, with variable results between studies 
(Du et al., 2020; Tuladhar et al., 2017). This likely relates to the issues 
raised above, in particular possible confounding by false positive con-
nections and insufficient sample sizes. Recently, in a monocentre setting, 
we demonstrated the benefits of pre-processing steps such as thresh-
olding to reduce the number of false positive connections and generate 
more consistent network architectures to assess disease effects (de Brito 
Robalo et al., 2020). We have also shown proof of concept of raw data 
harmonization to minimize acquisition-related differences in multi-
centre dMRI, at the level of basic diffusion metrics (e.g., FA from the 
white matter skeleton; de Brito Robalo et al., 2021). In this study, we 
apply these techniques to higher order diffusion models, to demonstrate 
the feasibility of multicentre studies of network topology in disease. 

We assess the joint application of network thresholding and 
harmonization to improve sensitivity and precision to detect connec-
tions disrupted in SVD. We expect that applying network thresholding 
leads to more consistent architectures by reducing false positives and 
improving precision in network analysis, whereas dMRI harmonization 
improves the sensitivity, by reducing site variability to leverage large 
multicentre data to increase sample size. We reconstruct dMRI-based 
networks from four samples with sporadic SVD and one sample with a 

monogenic form of SVD (Cerebral autosomal dominant arteriopathy 
with subcortical infarcts and leukoencephalopathy – CADASIL, Craggs 
et al., 2014) and controls. We first evaluate cross-site consistency of 
network architecture before and after thresholding and harmonization, 
using age-matched controls from each site. Next, we determine within 
sites which connections are most affected in patients relative to controls, 
before and after thresholding and harmonization. To date there is no 
gold standard for which connections are actually affected by SVD. We 
therefore use the genetically defined SVD (CADASIL), which is charac-
terized by severe and pure vascular injury, as a reference standard to 
determine precision and sensitivity for detecting affected connections in 
the sporadic SVD samples. Finally, we assessed how pooling of scans 
from all sporadic SVD samples, before and after thresholding and 
harmonization, improved sensitivity and precision to detect affected 
connections. 

2. Methods 

2.1. Datasets 

Four samples of patients with sporadic SVD and one sample with 
CADASIL were included. Inclusion and exclusion criteria of each cohort 
are reported in the original studies (summarized below). For the current 
analysis, we used a harmonized definition for selecting patients and 
controls from the original cohorts, which was based primarily on the 
degree of white matter injury, since our objective was to assess benefits 
of thresholding and harmonization on the detection of injured connec-
tions but not their functional impact. Patients had symptomatic SVD 
defined as a) history of stroke, with a corresponding small subcortical 
infarct visible on MRI or b) cognitive complaints and presence of white 
matter hyperintensity (WMH) burden on MRI (Fazekas score ≥ 2, 
Fazekas et al., 1987). Patients were excluded if they had other major 
neurological or psychiatric conditions (e.g., multiple sclerosis, epilepsy, 
Parkinson’s disease). Each cohort also included control subjects, with no 
history of stroke or cognitive complaints and no signs of lacunes on MRI 
and minimal WMH (Fazekas score 0 or 1). All subjects had T1-weighted 
and dMRI scans. Characteristics of the study samples (629 patients and 
166 controls in total) are provided in supplementary Table 1. All studies 
included in this analysis were approved by the ethics committees of the 
respective institutions and all participants provided written informed 
consent. 

Utrecht: Patients (n = 170) were selected from a memory clinic 
cohort (Aalten et al., 2014). Controls (n = 46) were recruited from a 
community-based cohort (Reijmer et al., 2013). MRI scans were ac-
quired on a 3 Tesla Philips scanner (Achieva, Philips, Best, the 
Netherlands). T1-weighted images had a voxel size of: 1 × 1 × 1 mm3, 
echo time (TE): 4.5 ms and repetition time (TR): 7.9 ms. dMRI data were 
obtained with a voxel size: 2.5 × 2.5 × 2.5 mm3, TR/TE: 6638/73 ms, 
45 diffusion gradients directions with a b-value of 1200 s/mm2, and 1b 
= 0 s/mm2 averaged 3 times. 

Utrecht 2 (ZOOM): A second dataset from the University Medical 
Center Utrecht consisted of patients (n = 26) and controls (n = 18) from 
an ongoing prospective observational cohort study (ZOOM@SVDs, van 
den Brink et al., 2021). MRI scans were acquired using the same scanner 
system and acquisition parameters as “Utrecht”, albeit with different 
scanner software versions. Utrecht2 is referred to as “ZOOM” for the 
remainder of this manuscript. 

Hong Kong: Subjects from a community-based cohort that fitted our 
definition of patients (n = 20) and controls (n = 20) were included (Lam 
et al., 2019). MRI scans were acquired on a 3 Tesla Philips scanner 
(Achieva, Philips, Best, the Netherlands). T1-weighted images were 
obtained with a voxel size: 0.60 × 1.04 × 1.04 mm3, TR/TE: 7.49/3.46 
ms and dMRI had a TR/TE: 8944/60 ms, voxel size: 1 × 1 × 2 mm3; 32 
diffusion gradient directions with b-value 1000 s/mm2 and 1b = 0 s/ 
mm2. 

Singapore: A second community-based cohort was included, with 
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cases (n = 359) and controls (n = 54) fitting our selection criteria (Hilal 
et al., 2013). MRI were performed on a 3 Tesla Siemens Magnetom Trio 
Tim scanner (Siemens Healthineers, Erlangen, Germany). T1-weighted 
images had TR/TE: 2300/1.9 ms, voxel size: 1 × 1 × 1 mm3 and 
dMRI was acquired with a TR/TE: 6800/85 ms, voxel size: 3.1 × 3.1 × 3 
mm3; 61 diffusion gradient directions with b-value 1150 s/mm2 and 7b 
= 0 s/mm2. 

Munich: Patients (n = 54) with CADASIL and controls (n = 28) were 
selected from a prospective study (Baykara et al., 2016). All MRI scans 
were acquired on a 3 Tesla Magnetom Verio scanner (Siemens 
Healthineers, Erlangen, Germany). T1-weighted images were obtained 
using TR/TE: 2500/4.73 ms, voxel size: 1 × 1 × 1 mm3 and dMRI were 
acquired with a voxel size: 2 × 2 × 2 mm3, TR/TE: 12,700/81 ms, 30 
diffusion gradient directions with a b-value of 1000 s/mm2, and 1b = 0 
s/mm2. 

2.2. Network reconstruction 

Diffusion scans were pre-processed using ExploreDTI version 4.8.6 
(Leemans et al., 2009). Images were corrected for signal drift (Vos et al., 
2017), eddy currents, subject motion with rotation of the B-matrix 
(Leemans and Jones, 2009), and susceptibility induced distortions 
(Veraart et al., 2013). Individual T1-weighted images were resampled to 
an isotropic resolution of 2 mm3, then dMRI scans were nonlinearly 
registered to the resampled T1 images to correct for susceptibility ar-
tefacts. Subsequently, the diffusion tensor was estimated with a robust 
approach (Tax et al., 2015). Deterministic fiber tractography was per-
formed with seed points distributed uniformly throughout the brain, 
using ExploreDTI. Streamlines were propagated using integration over 
fiber orientation distributions (FOD), with a step size of 1 mm. FODs 
were inferred using constrained spherical deconvolution (CSD) with a 
maximum harmonic order (l-max) of 6 (Jeurissen et al., 2011). Fiber 
tracking was terminated when streamlines entered a voxel with FOD 
amplitude < 0.1, or when the deflection was >45◦. Streamlines with a 
length outside of the bounds 10–500 mm were deemed implausible and 
excluded. To reconstruct whole brain networks, the Automated 
Anatomical Labeling (AAL) atlas was used to define 90 cortical and 
subcortical brain regions that represent network nodes (Tzourio- 
Mazoyer et al., 2002). Networks were reconstructed by combining the 
segmented AAL regions with the tractography data. Two nodes were 
considered connected if they contained the end-points of at least one 
streamline, resulting in 90 × 90 binary connectivity matrices. The 
connectivity matrices were also weighted by fractional anisotropy (FA) 
to obtain 90 × 90 FA-weighted connectivity matrices. 

2.3. Analysis 

2.3.1. Cross-site consistency of network architecture 
We assess whether harmonization and thresholding improve the 

consistency of network architecture across sites. For this objective we 
focused on networks of controls, which were age-matched across sites (n 

= 15 for each site). The most straightforward definitions of network 
architecture are the presence or absence of connections (i.e., the binary 
structure) and their corresponding weights (e.g., FA). These character-
istics constitute the basis of all network properties from which all 
network metrics are derived (Messaritaki et al., 2019). To evaluate 
consistency of the binary structure, we first constructed a group-level 
probability matrix for each site by averaging the binary connectivity 
matrices of all subjects. In this probability matrix, each entry represents 
the probability a connection being reconstructed in that group. For 
example, a connection with a probability of 0.5 is detected in 50 % of 
subjects. Second, we defined consistency between two sites as the 
average relative difference (in %) between the group-level probability 
matrices. 

difference = 100% ×
|Site1 − Site2|

Site1+ Site2
2

(1) 

Note that the lower the difference between sites the higher the 
consistency in connection probability. To evaluate consistency of FA- 
weights, we also constructed a group group-level matrix containing 
the average FA of connections reconstructed within each group. We 
computed the consistency in FA as the difference between the group- 
level FA-matrices of different sites as by the formula above. We deter-
mined the consistency before and after thresholding and harmonization, 
with each method being applied separately and in combination. 

Thresholding was performed on the group-level probability matrix 
by removing connections with low probability until a fixed network 
density of 15 % was achieved (de Reus and van den Heuvel, 2013a; de 
Reus and van den Heuvel, 2013b; Roberts et al., 2017). This thresh-
olding approach removes the most improbable connections within each 
site, while also ensuring that networks with equal densities are achieved 
across all sites. 

Harmonization was performed by scaling the dMRI signal off 15 age 
and sex-matched controls of all sites to an arbitrary reference (Utrecht) 
using rotation invariant spherical harmonic (RISH) features (Cetin 
Karayumak et al., 2019). Both our previous work (de Brito Robalo et al., 
2021) and other method papers (Mirzaalian et al., 2015; Cetin Kar-
ayumak et al., 2019) have shown that 15 to 20 controls is sufficient to 
calculate average RISH features that capture group properties of each 
site, rather than individual characteristics, to perform effective harmo-
nization. This harmonization method is applied to the raw dMRI signal 
to remove acquisition-related differences while preserving biological 
effects and between-subject variation. 

2.3.2. Sensitivity and precision to disease effects in SVD 
Here we assess if thresholding and harmonization improve precision 

and sensitivity to detect connections affected in patients with SVD. 
Clearly there is no established ground-truth, apart from histology, on 
which tracts are preferentially affected by SVD and which are relatively 
spared (Craggs et al., 2014). Moreover, substantial inter-individual 
variation is likely to occur, according to lesion burden and location. 
Yet, we required a reference standard to provide a basis to test the 

Table 1 
Precision to detect connections affected in sporadic SVD samples and pooled data, relative to the reference CADASIL sample.     

UT ZO HK SI Pooled data (non-harmonized) Pooled data (harmonized) 

Connections with large effect sizes (>0.8) TP 56 105 30 63 231 67 
FP 576 588 350 270 2040 1065 
Precision 0.09 0.15 0.08 0.19 0.10 0.06 

Survive Thresholding TP 54 100 23 56 206 62 
FP 30 83 38 38 88 11 
Precision 0.64 0.55 0.38 0.59 0.70 0.85 

Survive Thresholding and FDR TP 17 0 0 0 140 37 
FP 8 0 0 0 24 1 
Precision 0.68 N/A N/A N/A 0.85 0.97 

Abbreviations: TP - true positives; FP – false positives. 
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validity of our approach. For this we used a sample of patients with a 
monogenic form of SVD (CADASIL) with a high burden of disease, as a 
pure form of SVD to which we could compare the findings in the other 
samples with sporadic SVD (Di Donato et al., 2017). To identify con-
nections most affected in SVD, network-based statistics adjusted for age 
and sex was performed to compare the FA of each connection between 
patients and controls. Specifically, two-sample t-tests were performed 
for each connection and False Discorvery Rate (FDR) correction with 50 
thousand permutations was used to account for multiple comparisons. 
Connections with large effect sizes (Cohen’s d > 0.8) relative to controls 
that survive network thresholding and FDR in the CADASIL cohort were 
used as reference standard of SVD-related patterns of network injury. 

To estimate precision and sensitivity within each sporadic SVD 
cohort, NBS with the same parameters as described above was per-
formed to detect connections strongly affected in patients relative to 
controls. These affected connections were compared to those found in 
the CADASIL reference. Precision was defined as the ratio between true 
positives (TP; i.e., connections also affected in the reference standard) 
and the total number of connections detected: 

precision =
TP

TP + FP
(2)  

here, false positives (FP) are connections detected in sporadic SVD but 
not in the reference. Precision was estimated for the pooled dataset and 
all sporadic SVD cohort, before and after harmonization and thresh-
olding. The number of connections with large effect size that survive 
thresholding and FDR-correction was used as an indicator of sensitivity. 

3. Results 

3.1. Cross-site consistency of network architecture 

Fig. 1 shows group-level connectivity matrices containing connec-
tion probability for age-matched controls of each site, before and after 
harmonization and thresholding. Before thresholding and harmoniza-
tion, networks contained many connections with low probability (i.e., 
that were only reconstructed in a small proportion of subjects) (Fig. 1A). 
These low-probability connections were inconsistent and were recon-
structed in different network locations, resulting in large differences in 
probability across sites (relative cross-site difference: 34.7 %–46.8 %, 
right panel). Harmonization alone did not change the probability of 
connections nor the consistency across sites (Fig. 1B). This implies that 
on average the same tracts were reconstructed before and after harmo-
nization. This is illustrated in Supplementary Fig. S2, that shows a fibre 
bundle (e.g., corpus callosum) of one subject before and after harmo-
nization, where the same streamlines were reconstructed. Thresholding 
had a significant impact on the connection probability and their con-
sistency across sites since it removed low probability connections and 
retained connections with high probability (Fig. 1C and 1D). This 
resulted in more consistent network architectures across sites, with high- 
probability connections detected at the same network locations across 
sites (relative cross-site difference: 4.5 %–7.8 %). Since thresholding is 
by design applied after after tractography to create the connectivity 
matrices, it does not directly change the tractography results, but rather 
determines which edges (i.e. tracts) of the network are more consistently 
observed across subjects. 

Fig. 1. Consistency of network architecture (binary topology) between matched controls of different sites. Left: Connectivity matrices containing the probability of 
connections within each site (e.g., a connection with a probability of 0.2 is only detected in 20% of subjects of that group). The black background in the connectivity 
matrix means no connection is found between two nodes. Right: Relative difference between connectivity matrices of different sites. Results are displayed before 
harmonization and thresholding (A), after harmonization only (B), after thresholding only (C) and after combining the thresholding and harmonization (D). 
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Fig. 2 shows group-level FA-weighted connectivity matrices within 
each site, before and after harmonization and thresholding. FA values 
varied substantially across sites before harmonization, particularly for 
Hong Kong (relative cross-site difference up to 36.9 %, Fig. 2A). After 
harmonization, cross-site differences in FA across were minimized, even 
though the network still contained many low-probability connections 
(relative cross-site difference in FA: 10.8 %–20.5 %, Fig. 2B). Thresh-
olding alone did not remove differences in FA across sites, because even 
though the connections retained were more consistent in probability, 
the weights of these connections still differed across sites due to scanner- 
related differences (Fig. 2C). When applied together, thresholding and 
harmonization produced networks that only contained high-probability 
connections with minimal differences in FA across sites (Fig. 2D). The 
voxel-wise harmonization of FA-values can be appreciated looking at a 
specific reconstructed and thresholded tract (e.g., the corpus callosum in 
Supplementary Fig. S3). In conclusion harmonization produced more 
similar FA values across sites without changing the reconstruction of 
tracts. 

3.2. Sensitivity and precision to disease effects in SVD 

Fig. 3 describes patterns of connections affected in patients relative 
to controls, with results shown for individual samples with sporadic SVD 
(A), pooled data of all sporadic SVD samples before (B) and after 
harmonization (C) as well as for the reference CADASIL sample (D). For 
individual sites with sporadic SVD, different disease burdens were 
observed across sites -reflecting differences in patient populations- as 
indicated by the range of effect sizes between patients and controls. 
Utrecht and Zoom had the most connections with large effect sizes, 

whereas Singapore and Hong Kong had the lowest disease burden 
(Fig. 3A, second row). However, in all sites the majority of strongly 
affected connections were likely spurious as they were only present in 
few patients and controls (i.e., connections with low probability at group 
level). When unthresholded connections were compared to those found 
in the reference CADASIL sample, a large proportion were false posi-
tives, which resulted in low precision within sites before thresholding 
(precision: 0.08–0.19, Table 1). Thresholding drastically reduced the 
number of false positives and improved precision within sites, relative to 
the reference (precision: 0.38–0.64, Fig. 3A, third row). However, only a 
small proportion of connections retained after thresholding also 
remained significant after FDR-correction (25 connections in the Utrecht 
cohort), indicating low sensitivity within individual sites (Fig. 3A, fourth 
row). 

Regarding the pooled data before harmonization, effect sizes were 
inflated due to scanner-related differences in FA, resulting in >2/3 of all 
tested connections having large effect sizes (2271 connections with ef-
fect size > 0.8, Fig. 3B, first and second row). Moreover, the majority of 
these large effect sizes were found in low-probability connections, which 
resulted in low precision before thresholding, relative to the reference 
standard (precision: 0.06, Table 1). After thresholding, low probability 
connections were removed, resulting in improved precision (precision: 
0.70, Table 1). Compared to individual sites, more connections survived 
FDR-correction in the non-harmonized pooled data (164 connections, 
Fig. 3B, fourth row), due to the larger sample size. After harmonization, 
the effect sizes observed in the pooled data were no longer inflated by 
acquisition-related differences and were closer to the range of effect 
sizes observed in individual samples with sporadic SVD (Fig. 1C, first 
and second row). Thresholding removed low probability connections, 

Fig. 2. Consistency of network architecture (FA weight) between matched controls of different sites. Left: Connectivity matrix containing the average FA of con-
nections detected within each site. The black background in the connectivity matrix means no connection is found between two nodes. Right: Relative difference 
between connectivity matrices of different sites. Results are displayed between before harmonization and thresholding (A), after harmonization only (B), after 
thresholding only (C) and after combining thresholding and harmonization (D). 
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reducing the rate of false positives and improving precision (0.85). 
Sensitivity was apparently also improved since more connections sur-
vived FDR, as compared to individual sites (k = 38, Fig. 3C, fourth row). 

4. Discussion 

In a first study of its kind, using multicentre data of patients with SVD 
as an exemplar condition, we demonstrated that combining network 
thresholding and RISH harmonization improve consistency of dMRI- 
based brain networks across sites, while also increasing precision and 
sensitivity to detect connections affected in disease. Thresholding 
removed low probability connections improving the precision to detect 
connections most strongly affected within each cohort with sporadic 
SVD. Yet, individual sites showed low sensitivity to detect strongly 
affected connections, likely due to modest sample sizes, with only a 
small number of connections surviving FDR correction. Harmonization 
minimized cross-site differences in FA and enabled data pooling to 
achieve a large sample size and improve the sensitivity to detect strongly 
affected connections. When applied together, these two methods 
generated networks with more consistent sets of connections and more 
similar FA-weights across sites, while also achieving higher precision 
than individual sites. 

4.1. Thresholding and harmonization improve network consistency 

Preceding our work, several studies have analysed brain networks of 
older adults and the impact of SVD on global and local network prop-
erties as well specific patterns of injury (Du et al., 2020; Lawrence et al., 
2018; Tuladhar et al., 2017). However, a frequently reported limitation 
in those studies is the low generalizability of results across datasets due 
to sample size or differences in network architecture (Smith et al., 
2019). Our results indeed demonstrate that the network architecture 
before thresholding can differ substantially across age-matched controls 
with minimal burden of white matter injury. Within different sites, 
networks contained many unreliable tracts which were only recon-
structed in a small proportion of subjects. These inconsistent tracts are 
likely a byproduct of cumulative errors during network reconstruction 
steps, especially in fiber tractography (de Reus and van den Heuvel, 
2013a; de Reus and van den Heuvel, 2013b). These tracts had a wide- 
range of lengths (10–300 mm), indicating that thresholding was not 
biased to only short or long-range connections (see Supplementary 
Fig. S1). While no ground-truth brain network has yet been established, 
it is well accepted that connections that describe underlying white 
matter pathways should be detected consistently across subjects, with 
small degree of interindividual variation (Roberts et al., 2017). As 
shown by our current results as well as previous work, introducing 

Fig. 3. Patterns of network injury within sites with sporadic SVD versus controls (A), pooled data before (B) and after (C) harmonization as well as a reference cohort 
of CADASIL patients versus controls (D). N = x;y indicates numbers of patients and controls per site or in the pooled cohort. K represents the number of connections 
tested in the histogram or shown in the brain network map. First row: Histogram of effect sizes, showing Cohen’s d for all connections tested between patients and 
controls. Red areas represent effect sizes > 0.8. Second row: Connections with large effect sizes (>0.8) for patients compared to controls. Third row: Connections with 
large effect sizes that survive network thresholding. Third row: Connections with large effect sizes that survive thresholding and FDR correction. After each step the 
patterns of connections of each site were compared with the thresholded and FDR-corrected CADASIL cohort shown in red (bottom right). The ratio of true positives, 
false positives and precision relative to the CADASIL cohort were calculated and shown in Table 1. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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thresholding as a step during network reconstruction removes low 
probability tracts and generates networks with more consistent archi-
tectures across datasets (Buchanan et al., 2020; Kurokawa et al., 2021; 
Messaritaki et al., 2019). We add to those results by showing that 
thresholding improves cross-site consistency in elderly subjects. We note 
that network thresholding is a higher-level step, since it is applied on the 
connectivity matrices and not on tractography itself. Therefore, it does 
not directly change the tractography results, but rather determines 
which edges of the network are more consistently observed across 
subjects. However the concept of thresholding (i.e., filtering noisy data) 
could also extend to other network reconstruction pipelines based on 
probabilistic tractography (Roberts et al., 2017). In this scenario, 
thresholding could be coupled with other established filtering strategies 
in probabilistic tractography (SIFT2, Smith et al., 2015). Of note, the 
same principles apply to functional connectomes where thresholding 
has been shown to increase edge-consistency across participants (Váša 
et al., 2017). 

A possible concern about thresholding is that removing connections 
from the network can be detrimental to the sensitivity to disease effects 
(van Wijk et al., 2010). Although we cannot formally test sensitivity, 
because we have no standard of which connections were truly affected in 
each of the samples with sporadic SVD, it is arguably desirable to 
establish disease effects over a more consistent network architecture, 
less affected by spurious tracts (de Brito Robalo et al., 2020). In this 
work we applied a thresholding method that not only removes low 
probability connections across subjects, but also ensures that fixed 
network density is achieved across sites (van den Heuvel and Sporns, 
2013). The stringency of thresholding remains arbitrary, but our own 
work and previous studies have shown that mid-range densities (≈15 %) 
reduces the number of false positives connections in networks recon-
structed with deterministic fibre tractography, while maintaining the 
well-known small-world structure of brain networks and sensitivity to 
disease effects (Hagmann et al., 2008; Robalo et al., 2020; Roberts et al., 
2017). 

Our results also demonstrated that dMRI harmonization improves 
the consistency of connection weights across sites. Before harmoniza-
tion, FA of reconstructed connections varied substantially between 
matched controls of different sites due to acquisition-related differences 
in the diffusion signal. Groups of healthy subjects that are matched for 
demographics should have similar diffusion profiles and therefore scalar 
diffusion metrics used for network weighting should not significantly 
differ across sites (Mirzaalian et al., 2015). RISH harmonization 
removed differences in the diffusion signal and produced networks with 
more similar FA across sites. The harmonization results shown in this 
study should be generalizable in other studies since it is applied at the 
beginning of the processing pipeline, prior to other methodological 
considerations. (e.g., FA, MD). Since the RISH method only requires a 
subset of matched subjects from each site as training subjects, it can be 
generalized to any multicentre cohort as long as training data is avail-
able. Importantly, researchers should be aware that subject matching is 
a challenging step, especially when dealing with elderly subjects or 
subjects with brain lesions. In those cases we recommend ensuring that 
brain lesions in the training data are comparable across sites, both in 
terms of location and severity. 

While alternative methods for harmonization exist (e.g. statistical 
harmonization with ComBat, Fortin et al., 2017, mega and meta anal-
ysis), it remains unclear how to couple them with connectivity analysis 
where several network weights can be used and different graph metrics 
are derived for further analysis. Contrary to meta and mega-analysis 
which combine statistical results from already processed data (e.g., ef-
fect sizes), the RISH method aims at creating a single large dataset, 
allowing any subsequent analysis (such as network analysis or FADTTS). 
When the data is available, RISH harmonization should be prioritized 
over meta and mega-analysis. Here, we used FA-weighted networks, 
since this metric has been widely used as outcome in network studies of 
SVD to examine contrasts between patients and controls or association 

with cognition (Heinen et al., 2018; Reijmer et al., 2016). A recent 
report (Schilling et al., 2021) suggests that variability in scanner hard-
ware and acquisition parameters is the largest source of uncertainty 
when performing fiber tractography with multi-site data. In our study, 
we did not observe large variability in brain networks before and after 
harmonization, which mainly impacted dMRI metrics of the connec-
tions, rather than their probability. This might imply that connection 
probability in brain connectivity is overall resistant to inter-scanner 
difference, especially when a relatively coarse-grained atlas is used to 
define the nodes (e.g. AAL atlas). On the other hand, data used in this 
work only included modest diffusion weightings, but the use of larger 
diffusion weightings – which is reccomended for accurate fiber trac-
tography (Tournier et al., 2008) – might further exacerbate hardware- 
driven differences. Overall, when harmonization was combined with 
thresholding, the resulting networks had more consistent connections 
across subjects and across sites and more similar FA-weights. Overall, 
when harmonization was combined with thresholding, the resulting 
networks had more consistent connections across subjects and across 
sites and more similar FA-weights. A thresholded and harmonized 
network is thus a more reliable basis from which patterns of injury in 
SVD can be identified. 

4.2. Thresholding and harmonization improve sensitivity and precision to 
effects of interest 

In the second part of this study, we examined the impact of thresh-
olding, harmonization and pooling on the sensitivity and precision to 
detect connections strongly affected in SVD. Our findings within spo-
radic SVD samples show that before thresholding there is low precision 
to detect relevant connections compared to the reference standard. This 
is in part due to the fact that large effect sizes were detected in low 
probability connections, which were absent in a large proportion of 
subjects, and likely represent artefacts. For these low probability con-
nections, the number of data points used for the t-tests in the NBS 
pipeline is even smaller than the already small sample size within sites 
(number of patients and controls). This resulted in many outlier con-
nections showing large effect sizes (>0.8). Thresholding removed a large 
proportion of false positive connections, ensuring that all large effect 
sizes were identified only for connections that were present in a large 
proportion of subjects (i.e., the actual sample size used for the t-test was 
closer to the group sample size). This resulted in higher precision to 
detect strongly affected connections. This finding is in line with previous 
research with healthy subjects from the UK biobank, which showed that 
connections retained in the network after thresholding are more 
strongly associated with biological effects of interest, such as age 
(Buchanan et al., 2020). 

Within each site, sensitivity was very low since few connections 
remained significant after FDR-correction. Significant connections were 
only retained in the Utrecht cohort, which had relatively high disease 
burden and a substantial sample size. In all other sites, no significantly 
different connection between patients and controls remained after FDR, 
likely due to limited sample size. For example, the Zoom Cohort had 
effect sizes relatively similar to Utrecht. For example, the Zoom Cohort 
had relatively similar effect sizes as Utrecht, but a limited sample small 
size to detect significant connections. On the other hand, Singapore had 
the largest sample size from all sites but since patients were community- 
duelling individuals with lower disease burden and more subtle effect 
sizes, but no connection survived FDR. So far, most network analysis 
studies in SVD employed limited sample sizes, with the exception of a 
recent work with 930 subjects that identified key connections disrupted 
in SVD, comprising interhemispheric connections as well as connections 
between subcortical and frontal brain regions (Petersen et al., 2020). An 
application of network localisation of SVD-related injury could be to 
help understanding how diffuse and/or focal damage in certain brain 
areas affects cognitive function (Biesbroek et al., 2018). If these findings 
are to be translated in more applied settings, they should be validated 
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with large multicentre datasets and generalized across centers. With our 
pooled analysis we demonstrated that combining multicentre data to 
achieve a larger sample size can improve the sensitivity to detect con-
nections affected in SVD, which would not have been possible using 
single center data. Importantly, our results clearly show that this should 
only be performed after harmonization to avoid introducing bias in ef-
fect sizes, in analogy to previous studies on diffusion tensor imaging 
metrics (Cetin-Karayumak et al., 2020; de Brito Robalo et al., 2021). 
When the data was pooled without harmonization, effect sizes were 
much larger than those observed within individual sites, which is likely 
erroneous. Consequently, >2/3 of all the tested connections had an ef-
fect size >0.8, which originates from acquisition-related differences in 
FA across sites, combined with imbalance in proportions of controls and 
patients in the samples. Even though more “affected connections” were 
detected, these were mostly false positives, resulting in low precision. Of 
note, without harmonization, the opposite scenario could also be 
possible, i.e., where pooling data results in a loss of effect size rather 
than inflation, depending on patient and control sampling and whether 
scanner effects produce higher or lower FA values for one site, relative to 
another. To avoid these detrimental scenarios, it is crucial that harmo-
nization is performed prior to data pooling to ensure that the detected 
differences are not driven by acquisition-related differences across sites 
but by the increased power of a larger sample size. In summary, when 
applied together, thresholding, harmonization and pooling improved 
sensitivity to detect connections affected in sporadic SVD with higher 
precision than individual sites. 

5. Limitations and future outlook 

A limitation of our study is the lack of a ground-truth for patterns of 
injured connections in SVD. By defining the CADASIL sample as model 
for patterns of network injury in SVD, we created a reference standard to 
compare the findings in patients with sporadic SVD from each site to. We 
realize that patterns of injury observed in CADASIL do not represent an 
actual ground-truth of network injury in sporadic SVD, but rather 
represent a typical example of most severely affected tracts to support 
our analyses. Using this reference standard, we focused on improving 
processing steps to identify network injury. Of note, at this stage we did 
not aim to obtain novel insight into actual SVD disease effects. 
Accordingly, we did not harmonize patient selection for particular dis-
ease stages, risk profiles, or outcomes. Our selection was primarily based 
on white matter lesion burden. Future studies could use the techniques 
demonstrated here to further characterize the actual patterns of dis-
rupted connections in patients with SVD and their functional impact. 
This should also entail more rigorous selection of patients and controls, 
considering parameters such as risk factors, comorbidities or clinical 
diagnosis (e.g., mild cognitive impairment; dementia). Furthermore, 
recently developed techniques such as machine learning and classifica-
tion algorithms could benefit from large sample sizes gained by 
harmonizing multicentre data. In future studies it could be of interest to 
use classifiers to determine which patients are likely to have cognitive 
decline over time based on network metrics or which white matter tracts 
can predict change in specific cognitive domains. For such studies to be 
feasible it is important to have a large test sample to train the classifier 
and to perform validation. 

Our study was also limited to datasets with lower quality (e.g., lower 
angular resolution) as compared to other connectivity studies in healthy 
young adults (Sotiropoulos et al., 2013), but on the other hand reflects 
the reality in a clinical setting. Another point to consider from a tech-
nical perspective, is that network reconstruction involves many meth-
odological choices which could not all be tested in this study, and are 
topics of debate (e.g., registration methods, tractography algorithm, 
parcellation schemes, Yeh et al., 2021). Finally, we examined network 
consistency based on primary features of network architecture (e.g., 
connection probability and connection weight), but topological metrics 
derived from graph theory should also be investigated in future analyses 

(Bullmore and Sporns, 2009). 

6. Conclusion 

Using multicentre dataset of patients with SVD, we demonstrated 
that sensitivity and precision to detect disease effects in specific network 
connections can be improved by thresholding, harmonization and 
pooling. Future studies that investigate network localisation of SVD- 
related injury, or other diseases, and associations with brain function 
should introduce thresholding as part of the processing pipeline, to 
ensure that disease effects are evaluated over a network with a more 
consistent architectures and fewer positives. Furthermore, since effect 
sizes are likely to be subtle, large sample sizes should be used to study 
these effects. We provide proof of concept that harmonization facilitates 
pooling of large multicentre datasets to achieve this goal. 
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