
Research Article
Kernel Temporal Differences for Neural Decoding

Jihye Bae,1 Luis G. Sanchez Giraldo,1 Eric A. Pohlmeyer,2 Joseph T. Francis,3

Justin C. Sanchez,2 and José C. Príncipe1

1Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
2Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
3Department of Physiology and Pharmacology, Robert F. Furchgott Center for Neural & Behavioral Science,
SUNY Downstate Medical Center, Brooklyn, NY 11203, USA

Correspondence should be addressed to Jihye Bae; jbae1013@gmail.com

Received 8 September 2014; Revised 28 January 2015; Accepted 3 February 2015

Academic Editor: Daoqiang Zhang

Copyright © 2015 Jihye Bae et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study the feasibility and capability of the kernel temporal difference (KTD)(𝜆) algorithm for neural decoding. KTD(𝜆) is an
online, kernel-based learning algorithm, which has been introduced to estimate value functions in reinforcement learning. This
algorithm combines kernel-based representations with the temporal difference approach to learning. One of our key observations
is that by using strictly positive definite kernels, algorithm’s convergence can be guaranteed for policy evaluation. The algorithm’s
nonlinear functional approximation capabilities are shown in both simulations of policy evaluation and neural decoding problems
(policy improvement). KTD can handle high-dimensional neural states containing spatial-temporal information at a reasonable
computational complexity allowing real-time applications.When the algorithm seeks a propermapping between amonkey’s neural
states and desired positions of a computer cursor or a robot arm, in both open-loop and closed-loop experiments, it can effectively
learn the neural state to action mapping. Finally, a visualization of the coadaptation process between the decoder and the subject
shows the algorithm’s capabilities in reinforcement learning brain machine interfaces.

1. Introduction

Research in brain machine interfaces (BMIs) is a multidis-
ciplinary effort involving fields such as neurophysiology and
engineering. Developments in this area have a wide range
of applications, especially for subjects with neuromuscular
disabilities, for whom BMIs may become a significant aid.
Neural decoding ofmotor signals is one of themain tasks that
needs to be executed by the BMI.

Ideas from system theory can be used to frame the decod-
ing problem. Bypassing the body can be achieved by mod-
elling the transfer function from brain activity to limb
movement and utilizing the output of the properly trained
model to control a robotic device to implement the intention
of movement. The design of neural decoding systems has
been approached using machine learning methods. In order
to choose the appropriate learning method, factors such as
learning speed and stability help in determining the useful-
ness of a particular method.

Reinforcement learning brain machine interfaces
(RLBMI) [1] have been shown to be a promising avenue for
practical implementations. Fast adaptation under changing
environments and neural decoding capability of an agent
have been shown in [2, 3] using the actor-critic paradigm.
Adaptive classification of event-related potential (ERP) in
electroencephalography (EEG) using RL in BMI was pro-
posed in [4]. Moreover, partially observable Markov decision
processes (POMDPs) have been applied in the agent to
account for the uncertainty when decoding noisy brain
signals [5]. In a RLBMI, a computer agent and a user in the
environment cooperate and learn coadaptively. The decoder
learns how to correctly translate neural states into action
direction pairs that indicate the subject’s intent. In the agent,
the proper neural decoding of the motor signals is essential
to control an external device that interacts with the physical
environment.

However, to realize the advantages of RLBMIs in practice,
there are several challenges that need to be addressed.

Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2015, Article ID 481375, 17 pages
http://dx.doi.org/10.1155/2015/481375

http://dx.doi.org/10.1155/2015/481375


2 Computational Intelligence and Neuroscience

The neural decoder must be able to handle high-dimensional
neural states containing spatial-temporal information. The
mapping from neural states to actions must be flexible
enough to avoid making strong assumptions. Moreover,
the computational complexity of the decoder should be
reasonable such that real time implementations are feasible.

Temporal difference learning provides an efficient learn-
ing procedure that can be applied to reinforcement learn-
ing problems. In particular, TD(𝜆) [6] can be applied to
approximate a value function that is utilized to compute an
approximate solution to Bellman’s equation. The algorithm
allows incremental computation directly from new experi-
ence without having an associatedmodel of the environment.
This provides a means to efficiently handle high-dimensional
states and actions by using an adaptive technique for function
approximation that can be trained directly from the data.
Also, because TD learning allows system updates directly
from the sequence of states, online learning is possible
without having a desired signal at all times.

Note that TD(𝜆) and its variants (least squares TD(𝜆)
[7], recursive least squares TD [8], incremental least squares
TD(𝜆) [9], Gradient TD [10], and linear TD with gradient
correction [11]) have been mostly treated in the context of
parametric linear function approximation. This can become
a limiting factor in practical applications where little prior
knowledge can be incorporated. Therefore, here, our interest
focuses on a more general class of models with nonlinear
capabilities. In particular, we adopt a kernel-based function
approximation methodology.

Kernel methods are an appealing choice due to their
elegant way of dealing with nonlinear function approxima-
tion problems. Unlike most of the nonlinear variants of TD
algorithms which are prone to fall into local minima [12, 13],
the kernel based algorithms have nonlinear approximation
capabilities yet the cost function can be convex [14]. One of
the major appeals of kernel methods is the ability to handle
nonlinear operations on the data by an implicit mapping to
the so called feature space (reproducing kernel Hilbert space
(RKHS)) which is endowed with an inner product. A linear
operation in the RKHS corresponds to a nonlinear operation
in the input space. In addition, algorithms based on kernel
methods are still reasonably easy to compute based on the
kernel trick [14].

Temporal difference algorithms based on kernel expan-
sions have shown superior performance in nonlinear approx-
imation problems. The close relation between Gaussian pro-
cesses and kernel recursive least squares was exploited in
[15] to provide a Bayesian framework for temporal difference
learning. Similar work using kernel-based least squares tem-
poral difference learning with eligibilities (KLSTD(𝜆)) was
introduced in [16]. Unlike the Gaussian process temporal
difference algorithm (GPTD), KLSTD(𝜆) is not a probabilis-
tic approach. The idea in KLSTD is to extend LSTD(𝜆) [7]
using the concept of duality. However, the computational
complexity of KLSTD(𝜆) per time update is 𝑂(𝑛3) which
precludes its use for online learning.

An online kernel temporal difference learning algorithm
called kernel temporal differences (KTD)(𝜆) was proposed in

[17]. By using stochastic gradient updates, KTD(𝜆) reduces
the computational complexity from 𝑂(𝑛

3
) to 𝑂(𝑛

2
). This

reduction alongwith other capacity controlmechanisms such
as sparsification make real time implementations of KTD(𝜆)
feasible.

Even though nonparametric techniques are inherently of
growing structure, these techniques produce better solutions
than any other simple linear function approximation meth-
ods.This hasmotivated work onmethods that help overcome
scalability issues such as the growing filter size [18]. In the
context of kernel based TD algorithms, sparsification meth-
ods such as approximate linear dependence (ALD) [19] have
been applied to GPTD [15] and KLSTD [20]. A Quantization
approach proposed in [21] has been used in KTD(𝜆) [22]. In a
similar flavor, the kernel distance based online sparsification
method was proposed for a KTD algorithm in [23]. Note
that ALD is 𝑂(𝑛2) complexity, whereas quantization and
kernel distances are 𝑂(𝑛). The main difference between the
quantization approach and the kernel distance is the space
where the distances are computed. Quantization approach
uses criterion of input space distances whereas kernel dis-
tance computes them in the RKHS associated with the kernel
[23].

In this paper, we investigate kernel temporal differences
(KTD)(𝜆) [17] for neural decoding. We first show the advan-
tages of using kernel methods. Namely, we show that con-
vergence results of TD(𝜆) in policy evaluation carry over
KTD(𝜆) when the kernel is strictly positive definite. Examples
of the algorithm’s capability for nonlinear function approx-
imation are also presented. We apply the KTD algorithm
to neural decoding in open-loop and closed-loop RLBMI
experiments where the algorithm’s ability to find proper neu-
ral state to action map is verified. In addition, the trade off
between the value function estimation accuracy and compu-
tation complexity under growing filter size is studied. Finally,
we provide visualizations of the coadaptation between the
decoder and the subject highlighting the usefulness of
KTD(𝜆) for reinforcement learning brainmachine interfaces.

This paper starts with a general background on rein-
forcement learning which is given in Section 2. Section 3
introduces the KTD algorithm and provides its convergence
properties for policy evaluation.This algorithm is extended in
Section 4 to policy improvement using 𝑄-learning. Section 5
introduces some of the kernel sparsification methods for the
KTD algorithm that address the naturally growing structure
of kernel adaptive algorithms. Section 6 shows empirical
results on simulations for policy evaluation, and Section 7
presents experimental results and comparisons to other
methods in neural decoding using real data sets for both,
open-loop and closed-loop RLBMI frameworks. Conclusions
are provided in Section 8.

2. Reinforcement Learning Brain Machine
Interfaces and Value Functions

In reinforcement learning brainmachine interfaces (RLBMI),
a neural decoder interacts with environment over time
and adjusts its behavior to improve performance [1].



Computational Intelligence and Neuroscience 3

Action

Reward

State

State

Computer cursor/
robot arm

Target

Adaptive system

Kernel temporal 

TD error

Value 
function Policy

x(n)

Q

r(n + 1)

a(n + 1)

x(n + 1)

differences (𝜆)

BMI user’s
brain

Agent (BMI decoder)
Environment

Figure 1: The decoding structure of reinforcment learning model
in a brain machine interface using a 𝑄-learning based function
approximation algorithm.

The controller in the BMI can be considered as a neu-
ral decoder, and the environment includes the BMI user
(Figure 1).

Assuming the environment is a stochastic and stationary
process that satisfies the Markov condition, it is possible
to model the interaction between the learning agent and
the environment as a Markov decision process (MDP). For
the sake of simplicity, we assume the states and actions are
discrete, but they can also be continuous.

At time step 𝑛, the decoder receives the representation
of the user’s neural state 𝑥(𝑛) ∈ X as input. According to
this input, the decoder selects an action 𝑎(𝑛) ∈ A which
causes the state of the external device to change, namely, the
position of a cursor on a screen or a robot’s arm position.
Based on the updated position, the agent receives a reward
𝑟(𝑛 + 1) ∈ R. At the same time, the updated position of
the actuator will influence the user’s subsequent neural states;
that is, going from 𝑥(𝑛) to 𝑥(𝑛 + 1) because of the visual
feedback involved in the process. The new state 𝑥(𝑛 + 1)

follows the state transition probabilityP𝑎
𝑥𝑥
 given the action

𝑎(𝑛) and the current state 𝑥(𝑛). At the new state 𝑥(𝑛 + 1), the
process repeats; the decoder takes an action 𝑎(𝑛+1), and this
will result in a reward 𝑟(𝑛 + 2) and a state transition from
𝑥(𝑛+ 1) to 𝑥(𝑛+ 2). This process continues either indefinitely
or until a terminal state is reached depending on the process.

Note that the user has no direct access to actions, and the
decoder must interpret the user’s brain activity correctly to
facilitate the rewards. Also, both systems act symbiotically by
sharing the external device to complete their tasks. Through
iterations, both systems learn how to earn rewards based
on their joint behavior. This is how the two intelligent
systems (the decoder and the user) learn coadaptively, and the
closed loop feedback is created. This coadaptation allows for
continuous synergistic adaptation between the BMI decoder
and the user even in changing environments [1].

The value function is a measure of long-term perfor-
mance of an agent following a policy 𝜋 starting from a state
𝑥(𝑛). The state value function is defined as

𝑉
𝜋
(𝑥 (𝑛)) = 𝐸𝜋 [R (𝑛) | 𝑥 (𝑛)] , (1)

and action value function is given by

𝑄
𝜋
(𝑥 (𝑛) , 𝑎 (𝑛)) = 𝐸𝜋 [R (𝑛) | 𝑥 (𝑛) , 𝑎 (𝑛)] , (2)

whereR(𝑛) is known as the return. Here, we apply a common
choice for the return, the infinite-horizon discounted model

R (𝑛) =
∞

∑

𝑘=0

𝛾
𝑘
𝑟 (𝑛 + 𝑘 + 1) , 0 < 𝛾 < 1 (3)

that takes into account the rewards in the long run but weighs
them with a discount factor to prevent the function from
growing unbounded as 𝑘 → ∞ and provides mathematical
tractability [24].Note that our goal is to find a policy𝜋 : X →

A which maps a state 𝑥(𝑛) to an action 𝑎(𝑛). Estimating the
value function is an essential step towards finding a proper
policy.

3. Kernel Temporal Difference(𝜆)

In this section, we provide a brief introduction to kernel
methods followed by the derivation of the KTD algorithm
[17, 22]. One of the contributions of the present work is the
convergence analysis of KTD(𝜆) presented at the end of this
section.

3.1. Kernel Methods. Kernel methods are a family of algo-
rithms for which input data are nonlinearly map to a high-
dimensional feature space of vectors where linear operations
are carried out. Let X be a nonempty set. For a positive
definite function 𝜅 : X × X → R [14, 25], there exists a
Hilbert spaceH and a mapping 𝜙 : X → H such that

𝜅 (𝑥, 𝑦) = ⟨𝜙 (𝑥) , 𝜙 (𝑦)⟩ . (4)

The inner product in the high-dimensional feature space can
be calculated by evaluating the kernel function in the input
space. Here, H is called a reproducing kernel Hilbert space
(RKHS), for which the following property holds,

𝑓 (𝑥) = ⟨𝑓, 𝜙 (𝑥)⟩ = ⟨𝑓, 𝜅 (𝑥, ⋅)⟩ , ∀𝑓 ∈H. (5)

The mapping implied by the use of the kernel function
𝜅 can also be understood through Mercer’s Theorem [26].
The implicit map 𝜙 allows one to transform conventional
linear algorithms in the feature space to nonlinear systems
in the input space, and the kernel function 𝜅 provides an
implicit way to compute inner products in the RKHS without
explicitly dealing with the high-dimensional space.

3.2. Kernel Temporal Difference(𝜆). In the multistep pre-
diction problem, we consider a sequence of input-output
pairs (𝑥(1), 𝑑(1)), (𝑥(2), 𝑑(2)), . . . , (𝑥(𝑚), 𝑑(𝑚)), for which
the desired output 𝑑 is only available at time 𝑚 + 1.
Consequently, the system should produce a sequence of
predictions 𝑦(1), 𝑦(2), . . . , 𝑦(𝑚) based solely on the observed
input sequences before it gets access to the desired response.
In general, the predicted output is a function of all previous
inputs 𝑦(𝑛) = 𝑓(𝑥(1), 𝑥(2), . . . , 𝑥(𝑛)). Here, we assume that
𝑦(𝑛) = 𝑓(𝑥(𝑛)) for simplicity, and let the function 𝑓 belong
to a RKHSH.

In supervised learning, by treating the observed input
sequence and the desired prediction as a sequence of pairs



4 Computational Intelligence and Neuroscience

(𝑥(1), 𝑑), (𝑥(2), 𝑑), . . . , (𝑥(𝑚), 𝑑) andmaking𝑑 ≜ 𝑦(𝑚+1), we
can obtain the updates of function𝑓 after the whole sequence
of𝑚 inputs has been observed as

𝑓 ← 𝑓 +

𝑚

∑

𝑛=1

Δ𝑓
𝑛 (6)

= 𝑓 + 𝜂

𝑚

∑

𝑛=1

[𝑑 − 𝑓 (𝑥 (𝑛))] 𝜙 (𝑥 (𝑛)) . (7)

Here, Δ𝑓
𝑛
= 𝜂[𝑑 − ⟨𝑓, 𝜙(𝑥(𝑛))⟩]𝜙(𝑥(𝑛)) are the instantaneous

updates of the function𝑓 from input data based on the kernel
expansion (5).

The key observation to extend the supervised learning
approach to the TD method is that the difference between
desired and predicted output at time 𝑛 can be written as

𝑑 − 𝑦 (𝑛) =

𝑚

∑

𝑘=𝑛

(𝑦 (𝑘 + 1) − 𝑦 (𝑘)) , (8)

where 𝑦(𝑚 + 1) ≜ 𝑑. Using this expansion in terms of the
differences between sequential predictions, we can update the
system at each time step. By replacing the error 𝑑 − 𝑓(𝑥(𝑛))
in (7) using the relation with temporal differences (8) and
rearranging the equation as in [6], we obtain the following
update:

𝑓 ← 𝑓 + 𝜂

𝑚

∑

𝑛=1

[𝑓 (𝑥 (𝑛 + 1)) − 𝑓 (𝑥 (𝑛))]

𝑛

∑

𝑘=1

𝜙 (𝑥 (𝑘)) . (9)

In this case, all predictions are used equally. Using exponen-
tial weighting on recency yields the following update rule:

𝑓 ← 𝑓 + 𝜂

𝑚

∑

𝑛=1

[𝑓 (𝑥 (𝑛 + 1)) − 𝑓 (𝑥 (𝑛))]

𝑛

∑

𝑘=1

𝜆
𝑛−𝑘
𝜙 (𝑥 (𝑘)) .

(10)

Here, 𝜆 represent an eligibility trace rate that is added to the
averaging process over temporal differences to emphasize on
the most recently observed states and to efficiently deal with
delayed rewards.

The above update rule (10) is called kernel temporal
difference (KTD)(𝜆) [17].The difference between predictions
of sequential inputs is called temporal difference (TD) error,

𝑒TD (𝑛) = 𝑓 (𝑥 (𝑛 + 1)) − 𝑓 (𝑥 (𝑛)) . (11)

Note that the temporal differences 𝑓(𝑥(𝑛 + 1)) − 𝑓(𝑥(𝑛)) can
be rewritten using the kernel expansions as ⟨𝑓, 𝜙(𝑥(𝑛+ 1))⟩ −
⟨𝑓, 𝜙(𝑥(𝑛))⟩.This yields the instantaneous update of the func-
tion 𝑓 as Δ𝑓

𝑛
= 𝜂⟨𝑓, 𝜙(𝑥(𝑛+1))−𝜙(𝑥(𝑛))⟩∑

𝑛

𝑘=1
𝜆
𝑛−𝑘
𝜙(𝑥(𝑘)).

Using the RKHS properties, the evaluation of the function 𝑓
at a given 𝑥 can be calculated from the kernel expansion.

In reinforcement learning, the prediction 𝑦(𝑛) = 𝑓(𝑥(𝑛))
can be considered as the value function (1) or (2). This
is how the KTD algorithm provides a nonlinear function
approximation to Bellman’s equation. When the prediction
𝑦(𝑛) represents the state value function, the TD error (11)

is extended to the combination of a reward and sequential
value function predictions. For instance, in the case of policy
evaluation, the TD error is defined as

𝑒TD (𝑛) = 𝑟 (𝑛 + 1) + 𝛾𝑉 (𝑥 (𝑛 + 1)) − 𝑉 (𝑥 (𝑛)) . (12)

3.3. Convergence of Kernel Temporal Difference(𝜆). It has
been shown in [6, 27] that for an absorbing Markov chain,
TD(𝜆) converges with probability 1 under certain conditions.
Recall that the conventional TD algorithm assumes the
function class to be linearly parametrized satisfying𝑦 = 𝑤⊤𝑥.
KTD(𝜆) can be viewed as a linear function approximation in
the RKHS. Using this relation, convergence of KTD(𝜆) can
be obtained as an extension of the convergence guarantees
already established for TD(𝜆).

When 𝜆 = 1, by definition, the KTD(𝜆 = 1) procedure
is equivalent to the supervised learning method (7). KTD(1)
yields the same per-sequence weight changes as the least
square solution since (9) is derived directly from supervised
learning by replacing the error term in (8). Thus, the conver-
gence of KTD(1) can be established based on the convergence
of its equivalent supervised learning formulation, which was
proven in [25].

Proposition 1. TheKLMS algorithm converges asymptotically
in themean sense to the optimal solution under the “small-step-
size” condition.

Theorem 2. When the stepsize 𝜂
𝑛
satisfies 𝜂

𝑛
≥ 0, ∑∞

𝑛=1
𝜂
𝑛
=

∞ and ∑∞
𝑛=1

𝜂
2

𝑛
< ∞, KTD(1) converges asymptotically in the

mean sense to the least square solution.

Proof. Since by (8) the sequence of TD errors can be replaced
by amultistep prediction with error 𝑒(𝑛) = 𝑑−𝑦(𝑛), the result
of Proposition 1 also applies to this case.

In the case of 𝜆 < 1, as shown by [27], the convergence
of linear TD(𝜆) can be proved based on the ordinary
differential equation (ODE) method introduced in [28]. This
result can be easily extended to KTD(𝜆) as follows. Let
us consider the Markov estimation problem as in [6]. An
absorbingMarkov chain can be described by the terminal and
nonterminal sets of states T and N, transition probabilities
𝑝
𝑖𝑗
between nonterminal states, the transition probabilities

𝑠
𝑖𝑗
from nonterminal states to terminal states, the vectors 𝑥

𝑖

representing the nonterminal states, the expected terminal
returns 𝑑

𝑗
from the 𝑗th terminal state, and the probabilities

𝜇
𝑖
of starting at state 𝑖. Given an initial state 𝑖 ∈ N, an

absorbing Markov chain generates an observation sequence
of 𝑚 vectors 𝑥

𝑖
1

, 𝑥
𝑖
2

, . . . , 𝑥
𝑖
𝑚

, where the last element 𝑥
𝑖
𝑚

of
the sequence corresponds to a terminal state 𝑖

𝑚
∈ T. The

expected outcome 𝑑 given a sequence starting at 𝑖 ∈ N is
given by

𝑒
∗

𝑖
≡ 𝐸 [𝑑 | 𝑖] (13)

= ∑

𝑗∈T

𝑠
𝑖𝑗
𝑑
𝑗
+ ∑

𝑗∈N

𝑝
𝑖𝑗
∑

𝑘∈T

𝑝
𝑗𝑘
𝑑
𝑘
+ ⋅ ⋅ ⋅ (14)



Computational Intelligence and Neuroscience 5

= [

∞

∑

𝑘=0

𝑄
𝑘
ℎ]

𝑖

= [(𝐼 − 𝑄)
−1
ℎ]
𝑖
, (15)

where [𝑥]
𝑖
denotes the 𝑖th element of the array 𝑥, 𝑄 is the

transition matrix with entries [𝑄]
𝑖𝑗
= 𝑝
𝑖𝑗
for 𝑖, 𝑗 ∈ N, and

[ℎ]
𝑖
= ∑
𝑗∈T 𝑠𝑖𝑗𝑑𝑗 for 𝑖 ∈ N. In linear TD(𝜆), a sequence

of vectors 𝑤
1
, 𝑤
2
, . . ., is generated. Each one of these vectors

𝑤
𝑛
is generated after having a complete observation sequence;

that is, a sequence staring at state 𝑖 ∈ N and ending at state
𝑗 ∈ T with the respective return 𝑑

𝑗
. Similar to linear TD(𝜆),

inKTD(𝜆)we have a sequence of functions𝑓
1
, 𝑓
2
, . . ., (vectors

in a RKHS) for which we can also write a linear update
of the mean estimates of terminal return after 𝑛 sequences
have been observed. If 𝑓

𝑛
is the actual function estimate after

sequence 𝑛, and 𝑓
𝑛+1

is the expected function estimate after
the next sequence, we have that

𝑓
𝑛+1

(𝑋) = 𝑓𝑛 (𝑋) + 𝜂𝑛+1H (𝑓
𝑛 (𝑋) − 𝑒

∗
) , (16)

where H = −K𝐷[𝐼 − (1 − 𝜆)𝑄(𝐼 − 𝜆𝑄)−1], [K]
𝑖𝑗
= 𝜅(𝑥

𝑖
, 𝑥
𝑗
)

with 𝑖, 𝑗 ∈ N, 𝐷 is a diagonal matrix and [𝐷]
𝑖𝑖
the expected

number of times the state 𝑖 is visited during a sequence, and
𝑓
𝑛
(𝑋) is a column vector of function evaluations of the state

representations such that [𝑓
𝑛
(𝑋)]
𝑖
= 𝑓
𝑛
(𝑥
𝑖
) = ⟨𝑓

𝑛
, 𝜙(𝑥
𝑖
)⟩.

Analogously to [27], the mean estimates in (16) converge
appropriately if H has a full set of eigenvalues with negative
real parts, for which we need K to be full rank. For the above
to be true, it is required the set of vectors {𝜙(𝑥

𝑖
)}
𝑖∈N to be

linearly independent in the RKHS. This is exactly the case
when the kernel 𝜅 is strictly positive definite as shown in the
following proposition.

Proposition 3. If 𝜅 : X×X → R is a strictly positive definite
kernel, for any finite set {𝑥

𝑖
}
𝑁

𝑖=1
⊆ X of distinct elements, the set

{𝜙(𝑥
𝑖
)} is linearly independent.

Proof. If 𝜅 is strictly positive definite, then∑𝛼
𝑖
𝛼
𝑗
𝜅(𝑥
𝑖
, 𝑥
𝑗
) > 0

for any set 𝑥
𝑖
where 𝑥

𝑖
̸= 𝑥
𝑗
, for all 𝑖 ̸= 𝑗, and any 𝛼

𝑖
∈ R

such that not all 𝛼
𝑖
= 0. Suppose there exists a set {𝑥

𝑖
} for

which {𝜙(𝑥
𝑖
)} are not linearly independent. Then, there must

be a set of coefficients 𝛼
𝑖
∈ R not all equal to zero such that

∑𝛼
𝑖
𝜙(𝑥
𝑖
) = 0, which implies that ‖∑𝛼

𝑖
𝜙(𝑥
𝑖
)‖
2
= 0

0 = ∑𝛼
𝑖
𝛼
𝑗
⟨𝜙 (𝑥
𝑖
) , 𝜙 (𝑥

𝑗
)⟩ = ∑𝛼

𝑖
𝛼
𝑗
𝜅 (𝑥
𝑖
, 𝑥
𝑗
) , (17)

which contradicts the assumption.

The following Theorem is the resulting extension of
Theorem 𝑇 in [27] to KTD(𝜆).

Theorem4. For any absorbingMarkov chain, for any distribu-
tion of starting probailities𝜇

𝑖
such that there are not inaccessible

states, for any outcome distributions with finite expected values
𝑑
𝑗
, for any strictly positive definite kernel 𝜅, and any set of

observation vectors {𝑥
𝑖
, 𝑖 ∈ N} such that 𝑥

𝑖
= 𝑥
𝑗
if and only if

𝑖 = 𝑗, there exists an 𝜖 > 0 such that, if 𝜂
𝑛
= 𝜂 where 0 < 𝜂 < 𝜖

and for any initial function estimate, the predictions of KTD(𝜆)
converge in expected value to the ideal predictions of (15). If 𝑓

𝑛

denotes the function estimate after experiencing 𝑛 sequences,
then

lim
𝑛→∞

𝐸 [𝑓
𝑛
(𝑥
𝑖
)] = 𝐸 [𝑑 | 𝑖] = [(𝐼 − 𝑄)

−1
ℎ]
𝑖
, ∀𝑖 ∈N.

(18)

4. 𝑄-Learning via Kernel Temporal
Differences(𝜆)

Since the value function represents the expected cumulative
rewards given a policy, the policy 𝜋 is better than the policy
𝜋
 when the policy 𝜋 gives greater expected return than the

policy 𝜋. In other words, 𝜋 ≥ 𝜋
 if and only if 𝑄𝜋(𝑥, 𝑎) ≥

𝑄
𝜋


(𝑥, 𝑎) for all 𝑥 ∈ X and 𝑎 ∈ A. Therefore, the optimal
action value function 𝑄 can be written as 𝑄∗(𝑥(𝑛), 𝑎(𝑛)) =
max
𝜋
𝑄
𝜋
(𝑥(𝑛), 𝑎(𝑛)). The estimation can be done online. To

maximize the expected reward 𝐸[𝑟(𝑛 + 1) | 𝑥(𝑛), 𝑎(𝑛), 𝑥(𝑛 +
1)], one-step 𝑄-learning update was introduced in [29],

𝑄 (𝑥 (𝑛) , 𝑎 (𝑛)) ← 𝑄 (𝑥 (𝑛) , 𝑎 (𝑛))

+ 𝜂 [𝑟 (𝑛 + 1) + 𝛾max
𝑎
𝑄 (𝑥 (𝑛 + 1) , 𝑎)

− 𝑄 (𝑥 (𝑛) , 𝑎 (𝑛))] .

(19)

At time 𝑛, an action 𝑎(𝑛) can be selected using methods such
as 𝜖-greedy or the Boltzmann distribution, which are popular
for exploration and exploitation trade-off [30].

When we consider the prediction 𝑦 as action value func-
tion 𝑄𝜋 with respect to a policy 𝜋, KTD(𝜆) can approximate
the value function𝑄𝜋 using a family of functions of the form

𝑄 (𝑥 (𝑛) , 𝑎 = 𝑖) = 𝑓 (𝑥 | 𝑎 = 𝑖) = ⟨𝑓, 𝜙 (𝑥 (𝑛))⟩ . (20)

Here, 𝑄(𝑥(𝑛), 𝑎 = 𝑖) denotes a state-action value given a
state 𝑥(𝑛) at time 𝑛 and a discrete action 𝑖. Therefore, the
update rule for𝑄-learning via kernel temporal difference (𝑄-
KTD)(𝜆) can be written as

𝑓 ← 𝑓 + 𝜂

𝑚

∑

𝑛=1

[𝑟 (𝑛 + 1) + 𝛾max
𝑎
𝑄 (𝑥 (𝑛 + 1) , 𝑎)

− 𝑄 (𝑥 (𝑛) , 𝑎 (𝑛))]

𝑛

∑

𝑘=1

𝜆
𝑛−𝑘
𝜙 (𝑥 (𝑘)) .

(21)

We can see that the temporal difference (TD) error at time 𝑛
includes reward and action value function terms. For single-
step prediction problems (𝑚 = 1), (10) yields single updates
for 𝑄-KTD(𝜆) of the form:

𝑄
𝑖
(𝑥 (𝑛)) = 𝜂

𝑛−1

∑

𝑗=1

𝑒TD𝑖 (𝑗) 𝐼𝑘 (𝑗) 𝜅 ⟨𝑥 (𝑛) , 𝑥 (𝑗)⟩ . (22)

Here, 𝑄
𝑖
(𝑥(𝑛)) = 𝑄(𝑥(𝑛), 𝑎 = 𝑖) and 𝑒TD𝑖(𝑛) denotes the TD

error defined as 𝑒TD𝑖(𝑛) = 𝑟𝑖 + 𝛾𝑄𝑖𝑖(𝑥(𝑛 + 1)) − 𝑄𝑖(𝑥(𝑛)), and
𝐼
𝑘
(𝑛) is an indicator vector of size determined by the number



6 Computational Intelligence and Neuroscience

Calculate
rewardExploration

/
Exploitation

State
vector

Action
x(n)

x(n)

x(1)

x(2)

x(3)

x(n − 2)

x(n − 1)

Σ

Σ

Σ
Qi(x(n))

Reward, selected Q value

...

...

a(n) = 𝜂Σn
j=1𝜆

n−j
Ik(j)eTD(j)

Figure 2: The structure of 𝑄-learning via kernel temporal difference(𝜆).

of outputs (actions). Only the 𝑘th entry of the vector is set
to 1 and the other entries are set to 0. The selection of the
action unit 𝑘 at time 𝑛 can be based on a greedy method.
Therefore, only the weight (parameter vector) corresponding
to the winning action gets updated. Recall that the reward 𝑟

𝑖

corresponds to the action selected by the current policy with
input 𝑥(𝑛) because it is assumed that this action causes the
next input state 𝑥(𝑛 + 1).

The structure of 𝑄-learning via KTD(0) is shown in
Figure 2. The number of units (kernel evaluations) increases
as more input data arrives. Each added unit is centered at the
previous input locations 𝑥(1), 𝑥(2), . . . , 𝑥(𝑛 − 1).

In the reinforcement learning brain machine interface
(RLBMI) paradigm, kernel temporal difference(𝜆) helps
model the agent (see Figure 1). The action value function
𝑄 can be approximated using KTD(𝜆), for which the ker-
nel based representations enhance the functional mapping
capabilities of the system. Based on the estimated 𝑄 values,
a policy decides a proper action. Note that the policy cor-
responds to the learning policy which changes over time in
𝑄-learning.

5. Online Sparsification

One characteristic of nonparametric approaches is their
inherently growing structure which is usually linear in the
number of input data points. This rate of growth becomes
prohibitive for practical applications that handle increasing
amounts of incoming data over time. Various methods have
been proposed to alleviate this problem (see [31] and refer-
ences therein).Thesemethods, known as kernel sparsification
methods, can be applied to the KTD algorithm to control
the growth of the terms in the function expansion, also

known as filter size. Popular examples of kernel sparsification
methods are the approximate linear dependence (ALD) [19],
Surprise criterion [32], Quantization approach [21], and
the kernel distance based method [23]. The main idea of
sparsification is to only consider a reduced set of samples,
called the dictionary, to represent the function of interest.The
computational complexity ofALD is𝑂(𝑑2), where𝑑 is the size
of the dictionary. For the other methods mentioned above,
the complexity is 𝑂(𝑑).

Each of these methods has its own criterion to determine
whether an incoming sample should be added to the current
dictionary. The Surprise criterion [32] measures the subjec-
tive information of exemplar {𝑥, 𝑑} with respect to a learning
system Γ:

𝑆
Γ
(𝑥, 𝑑) = − ln𝑝 (𝑥, 𝑑 | Γ) . (23)

Only samples with high values of Surprise are considered as
candidates for the dictionary. In the case of the Quantization
approach introduced in [21], the distance between a new
input 𝑥(𝑛) and the existing dictionary elements 𝐶(𝑛 − 1) is
evaluated. The new input sample is added to the dictionary
if the distance between the new input 𝑥(𝑛) and the closest
element in 𝐶(𝑛 − 1),

min
𝑥
𝑖
∈𝐶(𝑛−1)

𝑥 (𝑛) − 𝑥𝑖
 > 𝜖𝑈, (24)

is larger than the Quantization size 𝜖
𝑈
. Otherwise, the new

input state 𝑥(𝑛) is absorbed by the closest existing unit. Very
similar to the quantization approach, the method presented
in [23] applies a distance threshold criterion in the RKHS.
The kernel distance based criterion given a state dictionary



Computational Intelligence and Neuroscience 7

𝐷(𝑛 − 1) adds a new unit when the new input state 𝑥(𝑛)
satisfies following condition;

min
𝑥
𝑖
∈𝐷(𝑛−1)

𝜙(𝑥(𝑛)) − 𝜙(𝑥𝑖)

2
> 𝜇
1
. (25)

For some kernels such as Gaussian, the Quantizationmethod
and the kernel distance based criterion can be shown to be
equivalent.

6. Simulations

Note that the KTD algorithm has been introduced for value
function estimation. To evaluate the algorithm’s nonlinear
capability, we first examine the performance of theKTD(𝜆) in
the problem of state value function estimation �̃� given a fixed
policy 𝜋. We carry out experiments on a simple illustrative
Markov chain initially described in [33]. This is a popular
experiment involving an episodic task to test TD learning
algorithms. The experiment is useful in illustrating linear as
well as nonlinear functions of the state representations and
shows how the state value function is estimated using the
adaptive system.

6.1. Linear Case. Even though we emphasize the capability
of KTD(𝜆) as a nonlinear function approximator, under
the appropriate kernel size, KTD(𝜆) should approximate
linear functions on a region of interest as well. To test its
efficacy, we observe the performance on a simple Markov
chain (Figure 3). There are 13 states numbered from 12 to
0. Each trial starts at state 12 and terminates at state 0.
Each state is represented by a 4-dimensional vector, and the
rewards are assigned in such a way that the value function
𝑉 is a linear function on the states; namely, 𝑉∗ takes the
values [0, −2, −4, . . . , −22, −24] at states [0, 1, 2, . . . , 11, 12].
In the case of 𝑉 = 𝑤

⊤
𝑥, the optimal weights are 𝑤∗ =

[−24, −16, −8, 0].
To assess the performance, the updated estimate of the

state value function �̃�(𝑥) is compared to the optimal value
function𝑉∗ at the end of each trial.This is done by computing
the RMS error of the value function over all states

RMS = √
1

𝑛
∑

𝑥∈X

(𝑉∗(𝑥) − �̃�(𝑥))
2

, (26)

where 𝑛 is the number of states, 𝑛 = 13.
Stepsize scheduling is applied as follows:

𝜂 (𝑛) = 𝜂
0

𝑎
0
+ 1

𝑎
0
+ 𝑛

, where 𝑛 = 1, 2, . . . , (27)

where 𝜂
0
is the initial stepsize, and 𝑎

0
is the annealing

factor which controls how fast the stepsize decreases. In this
experiment, 𝑎

0
= 100 is applied. Furthermore, we assume that

the policy 𝜋 is guaranteed to terminate, which means that the
value function 𝑉𝜋 is well-behaved without using a discount
factor 𝛾 in (3), that is, 𝛾 = 1.

In KTD(𝜆), we employ the Gaussian kernel:

𝜅 (𝑥 (𝑖) , 𝑥 (𝑗)) = exp(
−
𝑥(𝑖) − 𝑥(𝑗)


2

2ℎ2
) , (28)

Start
11 10

End

3 2 1· · ·

−3

−3

−3

−3

−3

−3

−3

−3

−3 −3

−3

−3

−3 −2
12 0

[1, 0, 0, 0]

[3/4, 1/4, 0, 0]

[0, 0, 3/4, 1/4][0, 0, 1/4, 3/4]

[0, 0, 1/2, 1/2] [0, 0, 0, 1]

[1/2, 1/2, 0, 0]

Figure 3: A 13-state Markov chain [33]. For states from 2 to 12,
the state transition probabilities are 0.5 and the corresponding
rewards are −3. State 1 has state transition probability of 1 to the
terminal state 0 and a reward of −2. States 12, 8, 4, and 0 have
the 4-dimensional state space representations [1, 0, 0, 0], [0, 1, 0, 0],
[0, 0, 1, 0], and [0, 0, 0, 1], respectively. The representations of the
other states are linear interpolations between the above vectors.

which is a universal kernel commonly encountered in prac-
tice. To find the optimal kernel size, we fix all the other free
parameters around median values, 𝜆 = 0.4 and 𝜂

0
= 0.5,

and the average RMS error over 10 Monte Carlo runs is
compared. For this specific experiment, smaller kernel sizes
yield better performance since the state representations are
finite. However, in general, applying too small kernel sizes
leads to over-fitting and slow learning. In particular, choosing
a very small kernel makes the algorithm behave very similar
to the table look up method. Thus, we choose the kernel size
ℎ = 0.2 to be the largest kernel size for which we obtain
similar mean RMS values as for smaller kernel sizes.

After fixing the kernel size to ℎ = 0.2, the experimental
evaluation of different combinations of eligibility trace rates
𝜆 and initial step sizes 𝜂

0
are observed. Figure 4 shows the

average performance over 10 Monte Carlo runs for 1000
trials.

All 𝜆 values with optimal stepsize show good approxima-
tion to 𝑉∗ after 1000 trials. Notice that KTD(𝜆 = 0) shows
slightly better performance than KTD(𝜆 = 1). This may be
attributed to the local nature ofKTDwhenusing theGaussian
kernel. In addition, varying the stepsize has a relatively small
effect on KTD(𝜆). The Gaussian kernel as well as other shift-
invariant kernels provide an implicit normalized update rule
which is known to be less sensitive to stepsize. Based on
Figure 4, the optimal eligibility trace rate and initial stepsize
value 𝜆 = 0.6 and 𝜂

0
= 0.3 are selected for KTD with kernel

size ℎ = 0.2.
The learning curve of KTD(𝜆) is compared to the con-

ventional TD algorithm, TD(𝜆). The optimal parameters
employed in both algorithms are based on the experimental
evaluation. In TD(𝜆), 𝜆 = 1 and 𝜂

0
= 0.1 are applied. The

RMS error is averaged over 50 Monte Carlo runs for 1000
trials. Comparative learning curves are given in Figure 5.

In this experiment, we confirm the ability of KTD(𝜆) to
handle the function approximation problem when the fixed
policy yields a state value function that is linear in the state
representation. Both algorithms reach the mean RMS value
of around 0.06. As we expected, TD(𝜆) converges faster to the
optimal solution because of the linear nature of the problem.
KTD(𝜆) converges slower than TD(𝜆), but it is also able
to approximate the value function properly. In this sense,



8 Computational Intelligence and Neuroscience

𝜂0 = 0.1

𝜂0 = 0.2

𝜂0 = 0.3

𝜂0 = 0.4

𝜂0 = 0.5

𝜂0 = 0.6

𝜂0 = 0.7

𝜂0 = 0.8

𝜂0 = 0.9

0 0.2 0.4 0.6 0.8 1

𝜆

RM
S 

er
ro

r o
f v

al
ue

 fu
nc

tio
n 

ov
er

 al
l s

ta
te

s

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

Figure 4: Performance comparison over different combinations of
eligibility trace rates 𝜆 and initial step sizes 𝜂

0
in KTD(𝜆) with ℎ =

0.2. The vertical line segments contain the mean RMS value after
100 trials (top marker), 500 trials (middle marker), and 1000 trials
(bottom marker).

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trial number

RM
S 

er
ro

r o
f v

al
ue

 fu
nc

tio
n 

ov
er

 al
l s

ta
te

s

KTD
TD

Figure 5: Learning curve of KTD(𝜆) and TD(𝜆). The solid line
shows the mean RMS error, and the dashed line shows the +/−
standard deviations over 50Monte Carlo runs.

the KTD algorithm is open to wider class of problems than
its linear counterpart.

6.2. Nonlinear Case. Previous section show the performances
of KTD(𝜆) on the problem of estimating a state value

Start
11 10

End

3 2 112 0· · ·

[1, 0, 0, 0]

[3/4, 1/4, 0, 0]

[1/2, 1/2, 0, 0] [0, 0, 3/4, 1/4][0, 0, 1/4, 3/4]

[0, 0, 1/2, 1/2] [0, 0, 0, 1]

−8

−8

−4 −4

−4

−2 −2

−2−2

−1

−1

−0.5

−0.5 −0.2

Figure 6: A 13-state Markov chain. In states from 2 to 12, each state
transition has probability 0.5, and state 1 has transition probability
1 to the absorbing state 0. Note that optimal state value functions
can be represented as a nonlinear function of the states, and
corresponding reward values are assigned to each state.

function, which is a linear function of the given state repre-
sentation. The same problem can be turned into a nonlinear
one bymodifying the reward values in the chain such that the
resulting state value function𝑉∗ is no longer a linear function
of the states.

The number of states and the state representations remain
the same as in the previous section. However, the optimal
value function 𝑉

∗ becomes nonlinear with respect to
the representation of the states; namely,𝑉∗ = [0 −0.2 −0.6

− 1.4 − 3 − 6.2 − 12.6 − 13.4 − 13.5 − 14.45 − 15.975

− 19.2125 − 25.5938] for states 0 to 12. This implies that the
reward values for each state are different from the ones given
for the linear case (Figure 6).

Again, to evaluate the performance, after each trial is
completed, the estimated state value �̃� is compared to the
optimal state value 𝑉∗ using RMS error (26). For KTD(𝜆),
the Gaussian kernel (28) is applied and kernel size ℎ = 0.2 is
chosen. Figure 7 shows the average RMS error over 10Monte
Carlo runs for 1000 trials.

The combination of 𝜆 = 0.4 and 𝜂
0
= 0.3 shows the best

performance, but the 𝜆 = 0 case also shows good perfor-
mances. Unlike TD(𝜆) [6], there is no dominant value for 𝜆
in KTD(𝜆). Recall that it has been proved that convergence
is guaranteed for linearly independent representations of the
states, which is automatically fulfilled in KTD(𝜆) when the
kernel is strictly positive definite. Therefore, the differences
are rather due to the convergence speed controlled by the
interaction between the step size and the elegibilty trace.

The average RMS error over 50Monte Carlo runs is com-
pared with Gaussian process temporal difference (GPTD)
[15] and TD(𝜆) in Figure 8.The purpose of GPTD implemen-
tation is to have comparison among kernelized value function
approximations. Here, the applied optimal parameters for
KTD(𝜆) are 𝜆 = 0.4, 𝜂

0
= 0.3, and ℎ = 0.2, for GPTD, 𝜆 = 1,

𝜎
2
= 0.5, and ℎ = 0.2, and for TD(𝜆), 𝜆 = 0.8 and 𝜂

0
= 0.1.

The linear function approximation, TD(𝜆) (blue line),
cannot estimate the optimal state values. KTD(𝜆) outper-
forms the linear algorithm as expected since the Gaussian
kernel is strictly positive definite. GPTD also learns the target
state values, but the system fails to reach as low error values
as KTD. GPTD is sensitive to the selection of the covariance
value in the noise,𝜎2; if the value is small, the system becomes
unstable, and larger values cause the the learning to slow
down. GPTD models the residuals, the difference between



Computational Intelligence and Neuroscience 9

𝜂0 = 0.1

𝜂0 = 0.2

𝜂0 = 0.3

𝜂0 = 0.4

𝜂0 = 0.5

𝜂0 = 0.6

𝜂0 = 0.7

𝜂0 = 0.8

𝜂0 = 0.9

0 0.2 0.4 0.6 0.8 1

𝜆

RM
S 

er
ro

r o
f v

al
ue

 fu
nc

tio
n 

ov
er

 al
l s

ta
te

s

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

Figure 7: Performance comparison over different combinations of
𝜆 and the initial stepsize 𝜂

0
in KTD(𝜆) with ℎ = 0.2. The plotted

segment is the mean RMS value after 100 trials (top segment), 500
trials (middle segment), and 1000 trials (bottom segment).

0

1

2

3

Trial number

RM
S 

er
ro

r o
f v

al
ue

 fu
nc

tio
n 

ov
er

 al
l s

ta
te

s

KTD
GPTD
TD

2.5

1.5

0.5

101 102 103

Figure 8: Learning curves of KTD(𝜆), GPTD, and TD(𝜆).The solid
lines show the mean RMS error, and the dashed lines represent the
(+/−) standard deviation over 50Monte Carlo runs.

expected return and actual return, as a Gaussian process.
This assumption does not hold true for the Markov chain in
Figure 6. As we can observe in Figure 8, KTD(𝜆) reaches to
the mean value around 0.07, and the mean value of GPTD
and TD(𝜆) are around 0.2 and 1.8, respectively.

In the synthetic examples, we presented experimental
results to approximate the state value function under a fixed
policy. We observed that KTD(𝜆) performs well on both
linear and nonlinear function approximation problems. In
addition, in the previous section, we showed how the linear
independence of the input state representations can affect
the performance of algorithms. The use of strictly positive
definite kernels in KTD(𝜆) implies the linear independence
condition, and thus this algorithm converges for all 𝜆 ∈ [0, 1].
In the following section, we will apply the extended KTD
algorithm to estimate the action value function which can be
employed in finding a proper control policy for RLBMI tasks.

7. Experimental Results on Neural Decoding

In our RLBMI experiments, we map the monkey’s neural
signal to action-directions (computer cursor/robot arm posi-
tion). The agent starts at a naive state, but the subject has
been trained to receive rewards from the environment. Once
it reaches the assigned target, the system and the subject
earn a reward, and the agent updates its neural state decoder.
Through iteration, the agent learns how to correctly translate
neural states into action-directions.

7.1. Open-Loop RLBMI. In open-loop RLBMI experiments,
the output of the agent does not directly change the state
of the environment because this is done with prerecorded
data. The external device is updated based only on the actual
monkey’s physical response. In this sense, we only consider
the monkey’s neural state from successful trials to train the
agent.The goal of these experiments is to evaluate the system’s
capability to predict the proper state to actionmapping based
on the monkey’s neural states and to assess the viability of
further closed-loop experiments.

7.1.1. Environment. The data employed in these experiments
is provided by SUNY Downstate Medical Center. A female
bonnet macaque is trained for a center-out reaching task
allowing 8 action-directions. After the subject attains about
80% success rate, microelectrode arrays are implanted in
the motor cortex (M1). Animal surgery is performed under
the Institutional Animal Care and Use Committee (IACUC)
regulations and assisted by theDivision of LaboratoryAnimal
Resources (DLAT) at SUNY Downstate Medical Center.

From 96-channel recordings, a set of 185 units are
obtained after sorting. The neural states are represented by
the firing rates of each unit on 100ms window. There is a set
of 8 possible targets and action directions. Every trial starts
at the center point, and the distance from the center to each
target is 4 cm; anythingwithin a radius of 1 cm from the target
point is considered as a valid reach.

7.1.2. Agent. In the agent, 𝑄-learning via kernel temporal
difference (𝑄-KTD)(𝜆) is applied to neural decoding. For 𝑄-
KTD(𝜆), we employ theGaussian kernel (28). After the neural
states are preprocessed by normalizing their dynamic range
to lie between −1 and 1, they are input to the system. Based
on the preprocessed neural states, the system predicts which



10 Computational Intelligence and Neuroscience

Table 1: Average success rates of 𝑄-KTD in open-loop RLBMI.

Epochs 1 2 3 4 5 6 7
2 target 0.44 0.96 0.99 0.99 0.97 0.99 0.99
4 target 0.41 0.73 0.76 0.95 0.99 0.99 0.99
8 target 0.32 0.65 0.79 0.89 0.96 0.98 0.98

direction the computer cursor will move. Each output unit
represents one of the 8 possible directions, and among the 8
outputs one action is selected by the 𝜖-greedy method [34].
The action corresponding to the unit with the highest𝑄 value
gets selected with probability 1 − 𝜖. Otherwise, any other
action is selected at random.The performance is evaluated by
checking whether the updated position reaches the assigned
target, and depending on the updated position, a reward value
is assigned to the system.

7.1.3. Results on Single Step Tasks. Here, the targets should be
reached within a single step; rewards from the environment
are received after a single step, and one action is performed
by the agent per trial. The assignment of reward is based on
the 1-0 distance to the target, that is, dist(𝑥, 𝑑) = 0 if 𝑥 = 𝑑,
and dist(𝑥, 𝑑) = 1, otherwise. Once the cursor reaches the
assigned target, the agent gets a positive reward +0.6, else it
receives negative reward −0.6 [35]. Exploration rate 𝜖 = 0.01
and discount factor 𝛾 = 0.9 are applied. Also, we consider 𝜆 =
0 since our experiment performs single step updates per trial.
In this experiment, the firing rates of the 185 units on 100ms
windows are time-embedded using 6th order tap delay. This
creates a representation spacewhere each state is a vectorwith
1295 dimensions.

We start with the simplest version of the problem by
considering only 2-targets (right and left). The total number
of trials is 43 for the 2-targets. For 𝑄-KTD, the kernel size ℎ
is heuristically chosen based on the distribution of the mean
squared distances between pairs of input states; let 𝑠 = 𝐸[‖𝑥

𝑖
−

𝑥
𝑗
‖
2
], then ℎ = √𝑠/2. For this particular data set, the above

heuristic gives a kernel size ℎ = 7. The stepsize 𝜂 = 0.3 is
selected based on the stability bound that was derived for the
kernel least mean square algorithm [25],

𝜂 <
𝑁

tr [𝐺
𝜙
]
=

𝑁

∑
𝑁

𝑗=1
𝜅 (𝑥 (𝑗) , 𝑥 (𝑗))

= 1, (29)

where 𝐺
𝜙
is the gram matrix. After 43 trials, we count the

number of trials which received a positive reward, and the
success rate is averaged over 50 Monte Carlo runs. The
performance of the 𝑄-KTD algorithm is compared with 𝑄-
learning via time delayed neural net (𝑄-TDNN) and the
online selective kernel-based temporal difference learning
algorithm (𝑄-OSKTD) [23] in Figure 9. Note that TDNN
is a conventional approach to function approximation and
has already been applied to RLBMI experiments for neural
decoding [1, 2]. OSKTD is a kernel-based temporal difference
algorithm emphasizing on the online sparsifications.

Both 𝑄-KTD and 𝑄-OSKTD reach around 100% success
rate after 2 epochs. In contrast, the average success rate
of 𝑄-TDNN slowly increases yet never reaches the same

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epochs

Su
cc

es
s r

at
es

Q-TDNN
Q-OSKTD
Q-KTD

Figure 9: The comparison of average learning curves from 50

Monte Carlo runs among 𝑄-TDNN, 𝑄-OSKTD, and 𝑄-KTD. Solid
lines show the mean success rates and the dashed lines show the
confidence interval based on one standard deviation.

performance as 𝑄-KTD. In the case of 𝑄-OSKTD, the value
function updates require one more parameter 𝜇

2
to decide

the subspace. To validate the algorithm’s capability to estimate
proper policy, we set the sparsified dictionary as the same
size as the number of sample observations. In 𝑄-OSKTD,
we observed that the subspace selection parameter plays an
important role in terms of the speed of learning. It turns out
that for the above experiment, smaller subspaces allow faster
learning. In the extreme case of 𝑄-OSKTD, where only the
current state is affected, the updates become equivalent to the
update rule of 𝑄-KTD.

Since all the experimental parameters are fixed over 50
Monte Carlo runs, the confidence interval for 𝑄-KTD can
be simply associated with the random effects introduced
by the 𝜖-greedy method employed for action selection with
exploration, thus, the narrow interval. However, with 𝑄-
TDNN a larger variation of performance is observed, which
shows how the initialization, due to local minima, influences
the success of learning; it is observed that 𝑄-TDNN is able
to approximate the 𝑄-KTD performance, but most of the
times, the system falls on local minima. This highlights one
of the advantages of KTD compared to TDNN, which is the
insensitivity to initialization.

Table 1 shows average success rates over 50 Monte Carlo
runs with respect to different number of targets. The first



Computational Intelligence and Neuroscience 11

0 5 10 15 20 25 30 35 40 45
0

1

Final filter size

Av
er

ag
e s

uc
ce

ss
 ra

te
s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 10: Average success rates over 50 Monte Carlo runs with
respect to different filter sizes. The vertical line segments are the
mean success rates after 1 epoch (bottommarkers), 2 epochs (middle
markers), and 20 epochs (top markers).

row corresponds to the mean success rates displayed on
Figure 9 (red solid line).This is included in the Table 1 to ease
comparisonwith 4 and 8-target experiments.The 4 target task
involves reaching right, up, left and down positions from the
center. Note that in all tasks, 8 directions are allowed at each
step. The standard deviation of each epoch is around 0.02.

One characteristic of nonparametric approaches is the
growing filter structure. Here, we observe how filter size
influences the overall performance in 𝑄-KTD by applying
Surprise criterion [32] and Quantization [21] methods. In
the case of the 2-target center-out reaching task, we should
expect the filter size to become as large as 861 units after
20 epochs without any control of the filter size. Using the
Surprise criterion, the filter size can be reduced to 87 centers
with acceptable performance. However, Quantization allows
the filter size to be reduced to 10 units while maintaining
performance above 90% for success rates. Figure 10 shows
the effect of filter size in the 2-target experiment using
the Quantization approach. For filter sizes as small as 10
units, the average success rates remain stable. With 10 units,
the algorithm shows similar learning speed to the linearly
growing filter size, with success rates above 90%. Note that
quantization limits the capacity of the kernel filter since less
units than samples are employed and thus it helps to avoid
over-fitting.

In the 2-target center-out reaching task, quantized 𝑄-
KTD shows satisfactory results in terms of initialization and
computational cost. Further analysis of 𝑄-KTD is conducted
on a larger number of targets. We increase the number of
targets from 2 to 8. All experimental parameters are kept
the same as for the 2-target experiment. The only change is
step-size 𝜂 = 0.5. The 178 trials are applied for the 8-target
reaching task.

To gain more insight about the algorithm, we observe
the interplay between Quantization size 𝜖

𝑈
and kernel size ℎ.

Based on the distribution of squared distances between pairs

0 1 2 3 4 5 6 7
0

1

Kernel sizes

Su
cc

es
s r

at
es

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Final filter size = 178

Final filter size = 133

Final filter size = 87

Final filter size = 32

Figure 11: The effect of filter size control on 8-target single-step
center-out reaching task. The average success rates are computed
over 50Monte Carlo runs after the 10th epoch.

of input states, various kernel sizes (ℎ = 0.5, 1, 1.5, 2, 3, 5, 7)
andQuantization sizes (𝜖

𝑈
= 1, 110, 120, 130) are considered.

The corresponding success rates for final filter sizes of 178,
133, 87, and 32 are displayed in Figure 11.

With a final filter size of 178 (blue line), the success rates
are superior to any other filter sizes for every kernel sizes
tested, since it contains all input information. Especially for
small kernel sizes (ℎ ≤ 2), success rates above 96% are
observed.Moreover, note that even after reduction of the state
information (red line), the system still produces acceptable
success rates for kernel sizes ranging from 0.5 to 2 (around
90% success rates).

Among the best performing kernel sizes, we favor the
largest one since it provides better generalization guarantees.
In this sense, a kernel size ℎ = 2 can be selected since this is
the largest kernel size that considerably reduces the filter size
and yields a neural state to actionmapping that performs well
(around 90% of success rates). In the case of kernel size ℎ = 2
with final filter size of 178, the system reaches 100% success
rates after 6 epochs with a maximum variance of 4%. As
we can see from the number of units, higher representation
capacity is required to obtain the desired performance as the
task becomes more complex. Nevertheless, results on the 8-
target center-out reaching task show that the method can
effectively learn the brain state-action mapping for this task
with a reasonable complexity.

7.1.4. Results on Multistep Tasks. Here, we develop a more
realistic scenario; we extend the task to multistep and mul-
titarget experiments. This case allows us to explore the role
of the eligibility traces in 𝑄-KTD(𝜆). The price paid for this
extension is that now, the eligibility trace rate 𝜆 selection
needs to be carried out according to the best observed
performance. Testing based on the same experimental set



12 Computational Intelligence and Neuroscience

0 1 2 3 4 5
18

19

20

21

22

23

24

25

26

27

28

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−1−2−3−4−5

X

Y

−0.6

Figure 12: Reward distribution for right target. The black diamond
is the initial position, and the purple diamond shows the possible
directions including the assigned target direction (red diamond).

up employed for the single step task, that is, a discrete
reward value is assigned at the target, causes extremely slow
learning since not enough guidance is given. The system
requires long periods of exploration until it actually reaches
the target. Therefore, we employ a continuous reward distri-
bution around the selected target defined by the following
expression:

𝑟 (𝑠) =
{

{

{

𝑝reward𝐺 (𝑠) if 𝐺 (𝑠) > 0.1,

𝑛reward if 𝐺 (𝑠) ≤ 0.1,
(30)

where𝐺(𝑠) = exp[(𝑠−𝜇)⊤C−1
𝜃
(𝑠−𝜇)], 𝑠 ∈ R2 is the position of

the cursor, 𝑝reward = 1, and 𝑛reward = −0.6. The mean vector 𝜇
corresponds to the selected target location and the covariance
matrix,

C
𝜃
= R
𝜃
(
7.5 0

0 0.1
)R⊤
𝜃
, R

𝜃
= (

cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

) , (31)

which depends on the angle 𝜃 of the selected target as follows:
for target index one and five, the angle is 0, two and six are for
−𝜋/4, three and seven are for 𝜋/2, and four and eight are for
𝜋/4. (Here, the target indexes follow the location depicted on
Figure 6 in [22].) Figure 12 shows the reward distribution for
target index one. The same form of distribution is applied to
the other directions centred at the assigned target point.

Once the system reaches the assigned target, the system
earns a maximum reward of +1 and receives partial rewards
according to (30) during the approaching stage. When the
system earns the maximum reward, the trial is classified as
a successful trial. The maximum number of steps per trial
is limited such that the cursor must approach the target in a
straight line trajectory. Here, we also control the complexity
of the task by allowing different number of targets and steps.
Namely, 2-step 4-target (right, up, left, and down) and 4-step

3-target (right, up, and down) experiments are performed.
Increasing the number of steps per trial amounts to making
smaller jumps according to each action. After each epoch,
the number of successful trials is counted for each target
direction. Figure 13 shows the learning curves for each target
and the average success rates.

Larger number of steps results in lower success rates.
However, the two cases (two and four steps) obtain an
average success rate above 60%for 1 epoch.Theperformances
show all directions can achieve success rates above 70%
after convergence, which encourage the application of the
algorithm to online scenarios.

7.2. Closed-Loop RLBMI Experiments. In closed loop RLBMI
experiments, the behavioral task is a reaching task using a
robotic arm. The decoder controls the robot arm’s action
direction by predicting the monkey’s intent based on its
neuronal activity. If the robot arm reaches the assigned target,
a reward is given to both the monkey (food reward) and
the decoder (positive value). Notice that the two intelligent
systems learn coadaptively to accomplish the goal. These
experiments are conducted in cooperation with the Neu-
roprosthetics Research Group at the University of Miami.
The performance is evaluated in terms of task completion
accuracy and speed. Furthermore, we provide amethodology
to tease apart the influence of each one of the systems of the
RLBMI in the overall performance.

7.2.1. Environment. During pretraining, a marmoset monkey
was trained to perform a target reaching task, namely,moving
a robot arm to two spatial locations denoted as A trial and B
trial. The monkey was taught to associate changes in motor
activity during A trials and produce static motor responses
during B trials. Once a target is assigned, a beep signals
the start of the trial. To control the robot during the user
training phase, the monkey is required to steadily place its
hand on a touch pad for 700∼1200ms.This action produces a
go beep that is followed by the activation of one of the two
target LEDs (A trial: red light for left direction or B trial:
green light for right direction).The robot arm goes to a home
position, namely, the center position between the two targets.
Its gripper shows an object (food reward such as waxworm
or marshmallow for A trial and undesirable object (wooden
bead) for B trial). To move the robot to the A location,
the monkey needed to reach out and touch a sensor within
2000ms, and to make the robot reach to the B target, the
monkey needed to keep its arm motionless on the touch pad
for 2500ms.When the monkey successfully moved the robot
to the correct target, the target LEDs would blink and the
monkey would receive a food reward (for both the A and B
targets).

After the monkey is trained to perform the assigned
task properly, a microelectrode array (16-channel tungsten
microelectrode arrays, Tucker Davis Technologies, FL) is
surgically implanted under isoflurane anesthesia and sterile
conditions. Neural states from the motor cortex (M1) are
recorded. These neural states become the inputs to the
neural decoder. All surgical and animal care procedures were



Computational Intelligence and Neuroscience 13

0 2 4 6 8 10
0

1

Epochs

Average
Right
Up

Left
Down

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Su
cc

es
s r

at
es

(a) 2-step 4-target

0 2 4 6 8 10
0

1

Epochs

Su
cc

es
s r

at
es

Average
Right Up

Down

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) 4-step 3-target

Figure 13: The learning curves for multistep multitarget tasks.

consistent with the National Research Council Guide for the
Care and Use of Laboratory Animals and were approved by
the University of Miami Institutional Animal Care and Use
Committee.

In the closed-loop experiments, after the initial holding
time that produces the go beep, the robotic arm’s position
is updated based solely on the monkey’s neural states.
Differently from the user pretraining sessions, the monkey
is not required to perform any movement. During the real-
time experiment, 14 neurons are obtained from 10 electrodes.
The neural states are represented by the firing rates on a 2 sec
window following the go signal.

7.2.2. Agent. For the BMI decoder, we use 𝑄-learning via
kernel Temporal Differences (𝑄-KTD)(𝜆). One big differ-
ence between open-loop and closed-loop applications is the
amount of accessible data; in the closed-loop experiments, we
can only get information about the neural states that have
been observed up to the present. However, in the previous
offline experiments, normalization and kernel selection were
conducted offline based on the entire data set. It is not
possible to apply the same method to the online setting
since we only have information about the input states up
to the present time. Normalization is a scaling procedure
that interplays with the choice of the kernel size. Proper
selection of the kernel size brings proper scaling to the data.
Thus, in contrast to the previous open-loop experiments,
normalization of the input neural states is not applied, and
the kernel size is automatically selected given the inputs.

The Gaussian kernel (28) is employed, and the kernel size
ℎ is automatically selected based on the history of inputs.Note
that in the closed-loop experiments, the dynamic range of
states varies from experiment to experiment. Consequently,

the kernel size needs to be re-adjusted each time a new exper-
iment takes place, and it cannot be determined beforehand.
At each time, the distances between the current state and the
previously observed states are computed to obtain the output
values,𝑄 in this case.Therefore, we use the distance values to
select the kernel size as follows:

ℎtemp (𝑛) = √
1

2 (𝑛 − 1)

𝑛−1

∑

𝑖=1

‖𝑥 (𝑖) − 𝑥 (𝑛)‖
2
,

ℎ (𝑛) =
1

𝑛
[

𝑛−1

∑

𝑖=1

ℎ (𝑖) + ℎtemp (𝑛)] .

(32)

Using the squared distance between pairs of previously seen
input states, we can obtain an estimate of the mean distance.
This value is also averaged along with past kernel sizes to
obtain the current kernel size.

Moreover, we consider 𝛾 = 1 and 𝜆 = 0 since our
experiments perform single step trials. Stepsize 𝜂 = 0.5 is
applied. The output represents the 2 possible directions (left
and right), and the robot arm moves based on the estimated
output from the decoder.

7.2.3. Results. Theoverall performance is evaluated by check-
ing whether the robot arm reaches the assigned target. Once
the robot arm reaches the target, the decoder gets a positive
reward +1, otherwise, it receives negative reward −1.

Table 2 shows the decoder performance over 4 days in
terms of success rates. Each day corresponds to a separate
experiment. In Day 1, the experiment has a total of 20 trials
(10A trials and 10 B trials).The overall success rate was 90%.
Only the first trial for each target was incorrectly assigned.



14 Computational Intelligence and Neuroscience

0 5 10 15 20

0

1

A trial
B trial

A trial
B trial

A trial
B trial

0 5 10 15 20

0

1

TD
 er

ro
r

A trial
B trial

A trial
B trial

A trial
B trial

0 5 10 15 20

0

1

Trial numbers

0

1

0 10 20 30 40 50

0

1

TD
 er

ro
r

0 10 20 30 40 50

0

1

Trial numbers

Trial numbers Trial numbers

Trial numbers Trial numbers
0 10 20 30 40 50

−1

−1

−1

−1

−1

Q
va

lu
e

Q
va

lu
e 0.5

−0.5

−2
S(
1)
/F

(−
1)

in
de

x

S(
1)
/F

(−
1)

in
de

x

Figure 14: Performance of 𝑄-learning via KTD in the closed loop RLBMI controlled by a monkey for Day 1 (left) and Day 3 (right); the
success (+1) index and failure (−1) index of each trial (top), the change of TD error (middle), and the change of 𝑄-values (down).

Table 2: Success rates of 𝑄-KTD in closed-loop RLBMI.

Total trial numbers
(total A, B trial)

Success rates
(%)

Day 1 20 (10, 10) 90.00
Day 2 32 (26, 26) 84.38
Day 3 53 (37, 36) 77.36
Day 4 52 (37, 35) 78.85

Note that at each day, the same experimental set up
was utilized. The decoder was initialized in the same way at
each day. We did not use pretrained parameters to initialize
the system. To understand the variation of the success rates
across days, we look at the performance of Day 1 and

Day 3. Figure 14 shows the decoder performance for the 2
experiments.

Although the success rate for Day 3 is not as high as
Day 1, both experiments show that the algorithm learns an
appropriate neural state to action map. Even though there
is variation among the neural states within each day, the
decoder adapts well to minimize the TD error, and the 𝑄-
values converge to the desired values for each action. Because
this is a single step task and the reward +1 is assigned for a
successful trial, it is desired for the estimated action value 𝑄
to be close to +1.

It is observed that the TD error and 𝑄-values oscillate.
The drastic change of TD error or𝑄-value corresponds to the
missed trials. The overall performance can be evaluated by
checking whether the robot arm reaches the desired target



Computational Intelligence and Neuroscience 15

0 20 40 60 80

0

20

First component

Se
co

nd
 co

m
po

ne
nt −20

−40

−60

−20−40−60

−80

−100

−120

(a) After 3 trials

0

0

50 100 150 200

20

First component

Se
co

nd
 co

m
po

ne
nt

−20

−40

−60

−80

−100

−120

−140

−160

−180

−50

(b) After 3 trials

First component

Se
co

nd
 co

m
po

ne
nt

0 20 40 60 80

0

20

−20

−40

−60

−20−40−60

−80

−100

−120

(c) After 10 trials

0

0

50 100 150 200

20

First component

Se
co

nd
 co

m
po

ne
nt

−20

−40

−60

−80

−100

−120

−140

−160

−180

−50

(d) After 30 trials

0

First component

Se
co

nd
 co

m
po

ne
nt

0 20 40 60 80

20

−20

−40

−60

−20−40−60

−80

−100

−120

Policy
A trial
B trial

(e) After 20 trials

0

0

50 100 150 200

20

First component

Se
co

nd
 co

m
po

ne
nt

−20

−40

−60

−80

−100

−120

−140

−160

−180

−50

Policy
A trial
B trial

(f) After 57 trials

Figure 15: Estimated policy for the projected neural states from Day 1 (left) and Day 3 (right). The failed trials during the closed loop
experiment are marked as red stars (missed A trials) and green dots (missed B trials).



16 Computational Intelligence and Neuroscience

(the top plots in Figure 14). However, this assessment does
not show what causes the change in the system values. In
addition, it is hard to know how the two separate intelligent
systems interact during learning and how neural states affect
the overall performance.

Under the coadaptation scenario in the RLBMI archi-
tecture, it is obvious that if one system does not perform
properly, it will cause detrimental effects on the performance
of the other system. If the BMI decoder does not give
proper updates to the robotic device, it will confuse the user
conducting the task, and if the user gives improper state
information or the translation is wrong, the resulting update
may fail even though the BMI decoder was able to find the
optimal mapping function.

Using the proposed methodology introduced in [36], we
can observe how the decoder effectively learns a good state to
action mapping, and how neural states affect the prediction
performance. Figure 15 shows how each participant (the
agent and the user) influences the overall performance in
both successful and missed trials, and how the agent adapts
the environment. By applying principal component analysis
(PCA), the high-dimensional neural states can be visualized
in two dimensions using the first two largest principal
components. In this two-dimensional space of projected
neural states, we can visualize the estimated policy, as well.

We observe the behavior of two systems at the beginning,
intermediate, and final stages of the experiment by using
the neural states that have been observed as well as the
learned decoder up to the given stage. It is evident that the
decoder can predict nonlinear policies. Day 1 (left column
in Figure 15) shows that the neural states from the two
classes are well separable. It was noted during Day 3 that
the monkey seemed less engaged in the task than in Day
1. This suggests the possibility that during some trials the
monkey was distracted and may not have been producing a
consistent set of neural outputs. We are also able to see this
phenomenon from the plots (right column in Figure 15). We
can see that most of the neural states that were misclassified
appear to be closer to the states corresponding to the opposite
target in the projected state space. However, the estimated
policy shows that the system effectively learns. Note that the
initially misclassified A trials (red stars in Figure 15(d) which
are located near the estimated policy boundary) are assigned
to the right direction when learning has been accomplished
(Figure 15(f)). It is a remarkable fact that the system adapts to
the environment online.

8. Conclusions

The advantages of KTD(𝜆) in neural decoding problems were
observed. The key observations of this kernel-based learning
algorithm are its capabilities for nonlinear function approx-
imation and its convergence guarantees. We also examined
the capability of the extended KTD algorithm (𝑄-KTD(𝜆))
in both open-loop and closed-loop reinforcement learning
brain machine interface (RLBMI) experiments to perform
reaching tasks.

In open-loop experiments, results showed that 𝑄-
KTD(𝜆) can effectively learn the brain state-action mapping
and offer performance advantages over conventional non-
linear function approximation methods such as time-delay
neural nets. We observed that 𝑄-KTD(𝜆) overcomes main
issues of conventional nonlinear function approximation
methods such as local minima and proper initialization.

Results on closed-loop RLBMI experiments showed that
the algorithm succeeds in finding a proper mapping between
neural states and desired actions. Its advantages are that it
does not depend on the initialization neither require any
prior information about input states. Also, parameters can
be chosen on the fly based on the observed input states.
Moreover, we observed how the two intelligent systems coa-
daptively learn in an online reaching task.The results showed
that KTD is powerful for practical applications due to its
nonlinear approximation capabilities in online learning.

The observation and analysis of KTD(𝜆) give us a basic
idea of how this algorithm behaves. However, in the case
of 𝑄-KTD(𝜆), the convergence analysis remains challenging
since 𝑄-learning contains both a learning policy and a
greedy policy. For 𝑄-KTD(𝜆), the convergence proof for
𝑄-learning using temporal difference (TD)(𝜆) with linear
function approximation in [37] can provide a basic intuition
for the role of function approximation on the convergence of
𝑄-learning.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Thiswork is partially supported byDARPAContractN66001-
10-C-2008. The authors would like to thank Pratik Chhatbar
and Brandi Marsh for collecting the center-out reaching task
data for the open loop experiments.

References

[1] J. DiGiovanna, B. Mahmoudi, J. Fortes, J. C. Principe, and J.
C. Sanchez, “Coadaptive brain-machine interface via reinforce-
ment learning,” IEEE Transactions on Biomedical Engineering,
vol. 56, no. 1, pp. 54–64, 2009.

[2] B.Mahmoudi, Integrating robotic actionwith biologic perception:
a brainmachine symbiosis theory [Ph.D. dissertation], University
of Florida, Gainesville, Fla, USA, 2010.

[3] E. A. Pohlmeyer, B. Mahmoudi, S. Geng, N. W. Prins, and J. C.
Sanchez, “Using reinforcement learning to provide stable brain-
machine interface control despite neural input reorganization,”
PLoS ONE, vol. 9, no. 1, Article ID e87253, 2014.

[4] S. Matsuzaki, Y. Shiina, and Y. Wada, “Adaptive classification
for brainmachine interface with reinforcement learning,” in
Proceedings of the 18th International Conference on Neural
Information Processing, vol. 7062, pp. 360–369, Shanghai, China,
November 2011.

[5] M. J. Bryan, S. A. Martin, W. Cheung, and R. P. N. Rao,
“Probabilistic co-adaptive brain-computer interfacing,” Journal
of Neural Engineering, vol. 10, no. 6, Article ID 066008, 2013.



Computational Intelligence and Neuroscience 17

[6] R. S. Sutton, “Learning to predict by the methods of temporal
differences,”Machine Learning, vol. 3, no. 1, pp. 9–44, 1988.

[7] J. A. Boyan, Learning evaluation functions for global optimiza-
tion [Ph.D. dissertation], Carnegie Mellon University, 1998.

[8] S. J. Bradtke and A. G. Barto, “Linear least-squares algorithms
for temporal difference learning,”Machine Learning, vol. 22, pp.
33–57, 1996.

[9] A. Geramifard, M. Bowling, M. Zinkevich, and R. S. Sutton,
“ilstd: eligibility traces and convergence analysis,” in Advances
in Neural Information Processing Systems, pp. 441–448, 2007.

[10] R. S. Sutton, C. Szepesvári, and H. R. Maei, “A convergent
O(n) algorithm for off-policy temporal-difference learningwith
linear function approximation,” in Proceedings of the 22nd
Annual Conference on Neural Information Processing Systems
(NIPS ’08), pp. 1609–1616, MIT Press, December 2008.

[11] R. S. Sutton, H. R. Maei, D. Precup et al., “Fast gradient-
descent methods for temporal-difference learning with linear
function approximation,” in Proceeding of the 26th International
Conference On Machine Learning (ICML ’09), pp. 993–1000,
June 2009.

[12] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-
difference learning with function approximation,” IEEE Trans-
actions on Automatic Control, vol. 42, no. 5, pp. 674–690, 1997.

[13] S. Haykin, Neural Networks and Learning Machines, Prentice
Hall, 2009.

[14] B. Scholkopf and A. J. Smola, Learning with Kernels, MIT Press,
2002.

[15] Y. Engel,Algorithms and representations for reinforcement learn-
ing [Ph.D. dissertation], Hebrew University, 2005.

[16] X. Xu, T. Xie, D. Hu, and X. Lu, “Kernel least-squares temporal
difference learning,” International Journal of Information Tech-
nology, vol. 11, no. 9, pp. 54–63, 2005.

[17] J. Bae, P. Chhatbar, J. T. Francis, J. C. Sanchez, and J. C. Principe,
“Reinforcement learning via kernel temporal difference,” in
Proceedings of the 33rd Annual International Conference of the
IEEE onEngineering inMedicine andBiology Society (EMBC '11),
pp. 5662–5665, 2011.

[18] S. Zhao, From fixed to adaptive budget robust kernel adaptive
filtering [Ph.D. dissertation], University of Florida, Gainesville,
Fla, USA, 2012.

[19] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-
squares algorithm,” IEEE Transactions on Signal Processing, vol.
52, no. 8, pp. 2275–2285, 2004.

[20] X. Xu, “A sparse kernel-based least-squares temporal difference
algorithms for reinforcement learning,” inProceedings of the 2nd
International Conference on Natural Computation, vol. 4221, pp.
47–56, 2006.

[21] B. Chen, S. Zhao, P. Zhu, and J. C. Principe, “Quantized kernel
least mean square algorithm,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 23, no. 1, pp. 22–32, 2012.

[22] J. Bae, L. S. Giraldo, P. Chhatbar, J. T. Francis, J. C. Sanchez,
and J. C. Principe, “Stochastic kernel temporal difference for
reinforcement learning,” in Proceedings of the 21st IEEE Inter-
national Workshop on Machine Learning for Signal Processing
(MLSP ’11), pp. 1–6, IEEE, September 2011.

[23] X. Chen, Y. Gao, and R. Wang, “Online selective kernel-based
temporal difference learning,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 24, no. 12, pp. 1944–1956,
2013.

[24] R. S. Rao and A. G. Barto, Reinforcement Learning: An Introduc-
tion, MIT Press, New York, NY, USA, 1998.

[25] W. Liu, J. C. Principe, and S. Haykin, Kernel Adaptive Filtering:
A Comprehensive Introduction, Wiley, 2010.

[26] J. Mercer, “Functions of positive and negative type, and their
connection with the theory of integral equations,” Philosophical
Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, vol. 209, pp. 415–446, 1909.

[27] P. Dayan and T. J. Sejnowski, “TD(𝜆) converges with probability
1,”Machine Learning, vol. 14, no. 3, pp. 295–301, 1994.

[28] H. J. Kushner andD. S. Clark, Stochastic ApproximationMethods
for Constrained and Unconstrained Systems, vol. 26 of Applied
Mathematical Sciences, Springer, New York, NY, USA, 1978.

[29] C. J. C. H. Watkins, Learning from delayed rewards [Ph.D.
dissertation], King’s College, London, UK, 1989.

[30] C. Szepesvari, Algorithms for Reinforcement Learning, edited by
R. J. Branchman and T. Dietterich, Morgan & Slaypool, 2010.

[31] S. Zhao, B. Chen, P. Zhu, and J. C. Pŕıncipe, “Fixed budget
quantized kernel least-mean-square algorithm,” Signal Process-
ing, vol. 93, no. 9, pp. 2759–2770, 2013.

[32] W. Liu, I. Park, and J. C. Pŕıncipe, “An information theoretic
approach of designing sparse kernel adaptive filters,” IEEE
Transactions on Neural Networks, vol. 20, no. 12, pp. 1950–1961,
2009.

[33] J. A. Boyan, “Technical update: least-squares temporal differ-
ence learning,”Machine Learning, vol. 49, pp. 233–246, 2002.

[34] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine
Learning, vol. 8, no. 3-4, pp. 279–292, 1992.

[35] J. C. Sanchez, A. Tarigoppula, J. S. Choi et al., “Control of a
center-out reaching task using a reinforcement learning Brain-
Machine Interface,” in Proceedings of the 5th International
IEEE/EMBS Conference on Neural Engineering (NER ’11), pp.
525–528, May 2011.

[36] J. Bae, L. G. Sanchez Giraldo, E. A. Pohlmeyer, J. C. Sanchez,
and J. C. Principe, “A new method of concurrently visualizing
states, values, and actions in reinforcement based brainmachine
interfaces,” in Proceedings of the 35th Annual International
Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC ’13), pp. 5402–5405, July 2013.

[37] F. S. Melo, S. P. Meyn, and M. I. Ribeiro, “An analysis
of reinforcement learning with function approximation,” in
Proceedings of the 25th International Conference on Machine
Learning, pp. 664–671, July 2008.


