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ABSTRACT
We examined RNA-Seq data on 211 biological samples from 24 different Arabidopsis
experiments carried out by different labs. We grouped the samples according to tissue
types, and in each of the groups, we identified genes that are stably expressed across
biological samples, treatment conditions, and experiments. We fit a Poisson log-
linear mixed-effect model to the read counts for each gene and decomposed the total
variance into between-sample, between-treatment and between-experiment variance
components. Identifying stably expressed genes is useful for count normalization and
differential expression analysis. The variance component analysis that we explore here
is a first step towards understanding the sources and nature of the RNA-Seq count
variation. When using a numerical measure to identify stably expressed genes, the
outcome depends onmultiple factors: the background sample set and the reference gene
set used for count normalization, the technology used for measuring gene expression,
and the specific numerical stability measure used. Since differential expression (DE) is
measured by relative frequencies, we argue that DE is a relative concept. We advocate
using an explicit reference gene set for count normalization to improve interpretability
of DE results, and recommend using a common reference gene set when analyzing
multiple RNA-Seq experiments to avoid potential inconsistent conclusions.

Subjects Bioinformatics, Computational Biology, Genetics, Genomics, Molecular Biology
Keywords Stably expressed gene, RNA-Seq, Numerical stability measure, Reference gene set

INTRODUCTION
RNA sequencing (RNA-Seq) has become the technology of choice for transcriptome
profiling over the last few years. The exponential growth in RNA-Seq studies have
produced a large amount of Arabidopsis thaliana (Arabidopsis) data under a variety of
experimental/environmental conditions. It is only natural to begin exploring how the
large amount of existing data sets can help the analysis of future data. In this paper, we
discuss identifying stably expressed genes from multiple existing RNA-Seq data sets based
on a numerical measure of stability. We envision that such identified stably expressed
genes could be used as a reference set or prior information for count normalization and
differential expression (DE) analysis of future RNA-Seq data sets obtained from similar
or comparable experiments. We also fit a random-effect model to the read counts for
each gene and decompose the total variance into between-sample, between-treatment and
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between-experiment variance components. The variance component analysis is a first step
towards understanding the sources and nature of the RNA-Seq count variation. To illustrate
our methods, we examined RNA-Seq data on 211 Arabidopsis samples from 24 different
experiments carried out by different labs and identified genes that were stably expressed
across biological samples, experimental or environmental conditions, and experiments
(labs).

A reference set of stably-expressed genes will be useful for count normalization. A key
task of RNA-Seq analysis is to detectDE genes under various experimental or environmental
conditions. Count normalization is needed to adjust for differences in sequencing depths
or library sizes (total numbers of mapped reads for each biological sample) due to chance
variation in sample preparation. In DE analysis, gene expression levels are often estimated
from relative read frequencies. For this reason, normalization is also needed to account
for the fact that non-differentially expressing genes may exhibit an apparent reduction or
increase in relative read frequencies due to the respective increased or decreased relative read
frequencies of truly differentially expressing genes. Many existing normalization methods,
such as the trimmed mean of M -values normalization method (TMM) (Robinson &
Oshlack, 2010) and Anders and Huber’s normalization (Anders & Huber, 2010), assume
that the majority of the genes within an experiment are not DE, and examine the sample
distribution of the fold changes between samples. If the experiment condition can affect
expression levels of more than half of the genes, many of the existing normalization
methods may be unreliable (Lovén et al., 2012; Wu et al., 2013). This difficulty could be
alleviated if one could identify a set of stably expressed genes whose expression levels are
known or expected to not vary much under different experimental conditions. Our idea is
to identify such a reference set based on a large number of existing data sets.

Our basic intuition is that a numerical quantification of expression stability—which
typically measures certain aspects of RNA-Seq count variation—can be more reliably
estimated by using more data sets. There is, however, a caveat to this idea: as pointed out
by Fernandes et al. (2008) andHruz et al. (2011), universally stably expressed genes may not
exist. Hruz et al. showed that a subset of stably expressed genes from a specific biological
context may have more variability than other genes if examined across a broader range of
samples and conditions. Many studies have shown that stably expressed genes are subject to
change from one experiment to another due to different experimental protocols, different
tissue types, or other varying conditions (Hong et al., 2010; Reid et al., 2006). The top 100
stably expressed genes in the Arabidopsis developmental series of Czechowski et al. (2005)
shared only 3 genes with the top 50 stably expressed genes identified from Arabidopsis seed
samples by Dekkers et al. (2012). In this study, we try to balance generality and specificity
by identifying different reference gene sets for different tissue types of Arabidopsis.

We can also consider that when a normalization method is applied to a single data set,
it effectively specifies an implicit reference set of stably expressed genes (those genes that
have the least variation after normalization). From this perspective, we can view commonly
used normalization techniques as using an internally identified reference set of genes. In
contrast, what we are proposing is that one could alternatively identify a reference set
externally by looking at past data sets. The internally and externally identified reference
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gene sets will provide different contexts for the DE analysis: in other words, one can choose
to answer different scientific questions by using different reference sets. In any case, we
advocate making the reference set explicit during a DE analysis and using a common
reference set when analyzing multiple datasets.

We want to clarify that having stable gene expression is not equivalent to maintaining
a stable biological function. Often times, we may not understand the biological functions
of genes with numerically stable expression measures. From an operational point of
view, however, numerical stability is more tractable. In the pre-genomic era, the so-
called ‘‘house-keeping genes’’ were often considered to be candidate reference genes for
normalization (Andersen, Jensen & Orntoft, 2004; Bustin, 2002). House-keeping genes
are typically constitutive genes that maintain basic cellular function, and therefore are
expected to express at relatively constant levels in non-pathological situations. However,
many studies have shown that house-keeping genes are not necessarily stably expressed
according to numerical measures (a review can be found in Huggett et al. (2005) and
reference therein). For example, in the microarray analysis of Arabidopsis, Czechowski et
al. (2005) showed that traditional house-keeping genes such as ACT2, TUB6, EF-1α are not
stably expressed, and thus not good reference genes for normalization. Spike-in genes have
also been considered as reference genes for normalization, but Risso et al. (2014) showed
that spike-in genes are not necessarily stably expressed according numerical measures
either.

In this paper, we identify stably expressed genes from RNA-Seq data sets based on a
numerical measure—the sum of three variance components estimated from a mixed-effect
model. For microarray data, there have been many efforts to numerically find stably
expressed genes by quantifying the variation of measured expression levels across a large
number of microarray data sets. For example, Andersen, Jensen & Orntoft (2004) used
a linear mixed model to estimate the between-group and within-group variances from
expression profiles of microarray experiments, and then quantified expression stability by
combining the two variance components using a Bayesian formulation. Czechowski et al.
(2005) measured the expression stability of each gene using the coefficient of variation
(CV). Genes with lower CVs are considered more stably expressed. By investigating 721
arrays under 323 conditions throughout development, Czechowski et al. (2005) suggested
stably expressed (reference) genes under different experimental conditions for Arabidopsis.
Stamova et al. (2009), Dekkers et al. (2012), Gur-Dedeoglu et al. (2009), and Frericks & Esser
(2008) screened a large number of microarray data sets to identify stably expressed genes
in human blood, Arabidopsis seed, breast tumor tissues, and mice respectively. Validation
experiments (Czechowski et al., 2005; Dekkers et al., 2012; Huggett et al., 2005; Stamova et
al., 2009) showed that these genes are more stably expressed than traditional house-keeping
genes.

Our vision is that identifying stably expressed genes is the first step towards integrative
analysis of multiple RNA-Seq experiments. It will help to answer fundamental questions
related to comparability, reproducibility and replicability of RNA-Seq experiments.
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Table 1 Summary statistics for the three groups of Arabidopsis samples.

Group # Experiments # Treatments # Samples # Genes

Seedling 9 27 60 22,207
Leaf 5 28 60 20,967
Multi-tissue 10 39 91 23,611

MATERIALS & METHODS
In ‘RNA-Seq data collection and processing’, we describe the steps for collecting and
processing RNA-Seq data sets from Arabidopsis experiments. In ‘Count normalization’,
we discuss count normalization methods and how to apply them to a subset of stably
expressed genes. In ‘Poisson log-linear mixed-effects regression model and the total
variance measure of expression stability’, we introduce the generalized linear mixed model
(GLMM, McCulloch & Neuhaus, 2001) for estimating three variance components from
RNA-Seq data: the between-sample, between-treatment and between-experiment variances.
We define the total variance measure for expression stability as the sum of estimated
variance components. In ‘Other stability measures’, we review the CV and M -value
measures for gene expression stability.

RNA-Seq data collection and processing
Overview of the RNA-Seq data sets
We examined RNA-Seq data from 49 Arabidopsis experiments stored on the NCBI GEO
repository (see more details below). After screening, we retained data from 211 biological
samples in 24 experiments. To illustrate our methods for finding stably expressed genes,
we divided the experiments into three groups: the seedling group contains 60 Arabidopsis
seedling samples from 9 experiments; the leaf group contains 60 Arabidopsis leaf samples
from 5 experiments; the multi-tissue group contains 91 samples from 10 experiments on
multiple tissue types (shoot apical, root tip, primary root, inflorescences and siliques,
hypocotyl, flower, carpels, aerial tissue, epidermis, seed). Table 1 summarizes the basic
information about the three groups (see Table S1 for more details).

To find stably expressed genes in each group, we processed the raw sequencing data
and summarized the results as count matrices of mapped RNA-Seq short reads (see details
below). We removed genes with low mean numbers (less than 3) of mapped read counts
for all experiments. Such genes tend to be more prone to sequencing noise, less interesting
to biologists, and also cause convergence issues when fitting statistical models. Many
other researchers (such as Anders et al., 2013) recommend removing such genes before
analyzing RNA-Seq data. The number of remaining genes in each group is also summarized
in Table 1. Figure 1 shows the numbers and overlap of the genes after this step.

Details of the data processing steps
The Gene Expression Omnibus (GEO) repository at National Center for Biotechnology
Information (NCBI, http://www.ncbi.nlm.nih.gov/) stores raw sequencing data from
a large number of RNA-Seq experiments. For this study, we restrict our attention to
Arabidopsis experiments satisfying the following conditions: 1. Ecotype = ‘‘Columbia’’
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Figure 1 The numbers and overlap of the genes in the three groups of Abrabidopsis samples after re-
moving genes with lowmean counts.

(we kept only the Columbia samples from experiments that compare Columbia samples
to other ecotypes); 2. There are at least two treatments and 2 biological replicates for
each treatment; 3. Library strategy = ‘‘RNA-Seq’’; 4. Library source = ‘‘transcriptomic’’;
5. Library selection = ‘‘cDNA’’; 6. Library layout = ‘‘Single end’’; 7. If there are repeated
measurements over time, we choose samples from one time point. We screened all the
Arabidopsis experiments available from the NCBI GEO repository up to May 31, 2015 and
downloaded raw RNA-Seq data (Sequence Read Archive files) from 49 experiments.

We assembled our own in-house pipeline to process all the raw RNA-Seq data: align the
raw RNA-Seq reads to the reference genome and summarize the read counts at the gene
level. In the GEO repository, the mapped read counts are unavailable for some experiments
and the available ones are from different processing pipelines. Our pipeline, implemented
using the software R (R Core Team, 2015), is summarized as follows:
1. Convert the Sequence Read Archive (SRA) files to FASTQ files using the NCBI SRA

Toolkit (Leinonen, Sugawara & Shumway (2010), version 2.3.5-2).
2. Download the reference genome

Arabidopsis_thaliana.TAIR10.22.dna.toplevel.fa

from the Ensembl plants FTP server (http://plants.ensembl.org/info/data/ftp/
index. html) and build index using build() function from Subread aligner (RSubread,
version 1.16.2, Liao, Smyth & Shi, 2013) in the software R (R Core Team, 2015). The
index allows fast retrieval of the sets of positions in the reference genome where the
short reads are more likely to align.

3. Align short reads in FASTQ files to the Arabidopsis reference genome using the align()
function from Rsubread.

4. Summarize the read counts at the gene level using the featureCounts() function
from the Subread aligner and store the read counts as data matrix. The annotation file

Arabidopsis_thaliana.TAIR10.22.gtf
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is downloaded from Ensembl plants FTP server. To keep the pipeline simple, we did
not count multi-mapping or multi-overlapping reads. One potential challenge when
dealing with multi-mapping reads is that existing methods will assign reads to different
gene features proportionally and probabilistically, it is unclear to us how to handle the
additional uncertainty associated with such a process (see, e.g., Anders, Pyl & Huber
(2014)). DE analysis of multiple mapped reads often requires special method.
Subread aligner is a recently developed sequence mapping tool that adopts a seed-and-

vote paradigm to map the RNA-Seq short reads to the genome. It breaks each short read
into a series of overlapping segments called subreads and uses the subreads to vote on the
optimal genome location of the original read. The subreads are shorter and can be mapped
to the genome much faster. Compared to other aligners such as Bowite 2 (Langmead
& Salzberg, 2012) or BWA (Li & Durbin, 2009), Subread aligner is both faster and more
accurate (Liao, Smyth & Shi, 2013). We compared results from the above pipeline to results
from a pipeline described in Anders et al. (2013) over several RNA-Seq experiment data,
and Rsubread was more than three times faster and successfully mapped more reads to
the reference genome. For researchers familiar with R, it also has the advantage that it is
completely implemented in R.

We divided the experiments into three groups as summarized in Table 1. As an additional
data quality control measure, we keep an experiment only when it has mapping quality
(number of successfully mapped reads divided by total number of reads) ≥ 50% for all
samples. Then within each group, we computed an initial set of normalization factors from
all samples combined using themethod described in ‘Count normalization’. An experiment
is retained only when the normalization factors of all samples in the experiment are between
0.50 and 1.50. If the initial estimated normalization factor is too different from 1 for a
sample, it often indicates that the read counts distribution in the corresponding sample is
markedly different from the distributions of the rest of the samples. Such samples demand
additional attention before being incorporated in the studies that we intend to do.

Count normalization
As explained in the introduction, count normalization is needed when analyzing RNA-Seq
data to (1) adjust for differences in sequencing depths or library sizes; (2) to adjust for the
apparent changes in relative read frequencies of non-DE genes that occur as a consequence
of changes in relative read frequencies of truly DE genes.

For the second type of adjustment, we follow Anders and Huber’s method (Anders &
Huber, 2010) for estimating normalization factors. Let yij denote the read count for ith
gene of the jth sample (m genes and n samples in total). We first create a pseudo-reference
sample where each gene’s expression value is the geometric mean expression over all real
samples for that gene,

yi,0= (
n∏

j=1

yi,j)1/n,i= 1,...,m. (1)
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Next we calculate the median fold-change in relative frequency between each sample j and
the pseudo-reference sample,

R′j =median
(
y1,j/Nj

y1,0/N0
,...,

ym,j/Nj

ym,0/N0

)
, (2)

where Nj is the library size for sample j (the sum of RNA-Seq counts mapped to all genes
retained in each sample). Finally, the normalization factor Rj for sample j is calculated as

Rj =
R′j

(
∏n

j=1R
′

j)1/n
. (3)

Using the estimated normalization factors, the relative frequencies will be computed
as yij/NjRj , which we will call the normalized relative frequency for gene i in sample j.
The assumption made here is that the median fold change between normalized relative
frequencies in two samples should be 1. In other words, this normalizationmethod assumes
that the majority of genes are not DE. The NBPSeq package (Di, Schafer & Di, 2013) has
an inbuilt function for this procedure and it will be used for count normalization in this
paper. With the estimates from Eq. (3), we see that the median fold change in normalized
relative frequencies between each sample and the pseudo-reference sample will be set to 1:

median
(
y1,j/NjRj

y1,0/N0R0
,...,

ym,j/NjRj

ym,0/N0R0

)
= 1, (4)

where R0= (
∏n

j=1R
′

j)
−1/n.

We can apply Eq. (2) to a subset of reference genes to estimate normalization factors. In
doing so, effectively, the median fold change in Eq. (4) among the reference genes will be
set to 1 in each sample j. Other normalization methods may make different assumptions
than Anders and Huber’s, but some assumptions of a similar nature seem unavoidable. For
example, the TMM method of Robinson & Oshlack (2010) is based on a similar principle:
assuming the majority of the genes are not DE. The TMM method can be applied to a
subset of genes selected based on an initial screening of mean expression level and fold
changes. In TMMmethod, one can also specify certain quantile (instead of the median) of
the fold changes to be 1.

In this paper, we will identify stably expressed genes from multiple data sets based on
numerical measure and use them as reference for estimating normalization factors (from
Eqs. (2) and (3)). However, to identify the stably expressed genes, we first need a set of
initially estimated normalization factors. To tackle this circular dependence, we use a
one-step iteration method to estimate the normalization factors:
1. First, we use all the genes to calculate the initial normalization factors;
2. Then, we fit a GLMM to each gene and estimate the total variance measure,

incorporating the initial normalization factors as an offset term (see ‘Poisson log-linear
mixed-effects regression model and the total variance measure of expression stability’);

3. Next, we select the top 1,000 stably expressed genes based on the total variance measure
estimated from step 2 above, and use them as reference genes to recalculate the
normalization factors.
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In practice, this one-step method seems to be adequate and further iterations will only
slightly change the set of 1,000 stably expressed genes. For example, for the multi-tissue
group of experiments, if we were to run one more iteration of steps 2 and 3, there would
be 946 overlapping genes between the top 1,000 genes from the first iteration and those
from the second iteration.

Poisson log-linear mixed-effects regression model and the total
variance measure of expression stability
We fit a Poisson log-linear mixed-effects regression model to the RNA-Seq counts mapped
to each gene and measure gene expression stability using a total variance measure. Let Yijkl
be the number of RNA-Seq reads mapped to gene i in sample j from treatment group k in
experiment l . We will fit regression models to each gene separately and suppress subscript
i from the model equations. For each gene, we fit a Poisson log-linear mixed-effects
regression model

Yjkl ∼Poisson(µjkl), (5)

log(µjkl)= log(RjklNjkl)+ξ+αl+βk(l)+εjkl , (6)

which is a specific type of generalized linear mixed model (GLMM,McCulloch & Neuhaus,
(2001)). In Eq. (6), Njkl and Rjkl are the library size and normalization factor discussed
in ‘Count normalization’. We will call RjklNjkl the normalized library size. The parameter
ξ is a fixed-effect term for the baseline log mean of the relative counts (counts divided by
the normalized library sizes). The values α, β, and ε represent the experiment effect, the
treatment effect (nested within each experiment), and the sample effect respectively. We
view α, β and ε as random effects and assume that they are independent and follow normal
distributions:

αl ∼N (0,σ 2
experiment),βk(l)∼N (0,σ 2

treatment),εjkl ∼N (0,σ 2
sample), (7)

where σ 2
experiment, σ

2
treatment and σ

2
sample are called variance-components—they quantify the

overall variances of the corresponding random effect terms.
The sample effect ε represents the extra-Poisson variation in read counts among

samples in the same treatment group and σ 2
sample plays a similar role as the over-dispersion

parameter in a negative binomial model (Anders & Huber, 2010; Di et al., 2011). The
experiment effect, α, accounts for all sources of variation at the experiment level, including
differences in lab personnel and conditions, day light hours, age of the plants, temperature,
sequencing platform, andother unidentified sources. The contributions from these different
experiment-level sources are often difficult to separate statistically. We treat the experiment
effect α as a random effect because we view the collected experiments as a random sample
from the pool of all Arabidopsis RNA-Seq experiments. We also treat the treatment effect
β as a random effect. In a DE test, β is usually considered as a fixed-effect term. Here
for evaluation of expression stability, we are not interested in the specific levels of the
individual β’s and focus more on the overall variation of β under a range of treatment
types.
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We define the stability measure as the estimated total variance,

σ̂ 2
= σ̂ 2

sample+ σ̂
2
treatment+ σ̂

2
experiment. (8)

The parameters (ξ,σ 2
experiment,σ

2
treatment,σ

2
sample) are estimated using the glmer() function

of the R package lme4 (Bates, Mächler & Bolker (2015), version 1.1.7), which uses a
Gaussian-Hermite quadrature to approximate the likelihood function. We rank all the
genes according to their values of σ̂ 2 in increasing order (smallest first), and consider
highly ranked (e.g., top 1,000) genes to be stably expressed.

Normal models (Eq. (7)) are commonly assumed for the random effects in the GLMM
settings. The normality assumption is likely a simplification of reality, yet it is a good
starting point and should be adequate for finding genes with low total variation—the
stably expressed ones.

Other stability measures
The assessment of gene expression stability depends on the specific stability measure used.
Czechowski et al. (2005) and Dekkers et al. (2012) used the coefficient of variation (CV)
measure, computed as standard deviation divided by mean, to find stably expressed genes
from microarray data.

The M -value in geNorm (Vandesompele et al., 2002) is a well-cited measure. For a set
of m0 genes, the M -value measure works as follows: First, the pairwise variation between
gene i1 and gene i2 is calculated as the standard deviation of the log fold changes between
their expression levels across all the n samples:

Vi1,i2 = st .dev
{
log
(
y1,i1
y1,i2

)
,...,log

(
yn,i1
yn,i2

)}
.

Next, the M -value for gene i is defined as the average pairwise variation between gene i
and all other genes

Mi=

∑
k 6=iVi,k

m0−1
.

In the Results section, we compare the M -value to the total variance measure on
RNA-Seq data from the multi-tissue group experiments, and compare the stably expressed
genes identified from these two measures to those identified from microarray data using
the CV measure.

RESULTS
In ‘Stably expressed genes’, we summarize the stably expressed genes identified from
three different experiment groups and emphasize that stability is context dependent.
In ‘RNA-Seq data collection and processing’, we show that traditional house-keeping
genes are not necessarily stably expressed according to our numerical measure, and that
microarray data and RNA-Seq data may often give different sets of stably expressed genes.
In ‘Factors affecting stability ranking’, we further demonstrate that when using a numerical
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Figure 2 Histograms of the mean CPM (see Eq. (9)) for the top 1,000 most stably expressed genes iden-
tified from the seedling (A), leaf (B) andmulti-tissue (C) groups using the total variance measure σ̂2.
The mean CPM is computed over all samples within each respective group. Note that the x and y axis
scales differ between the three plots.

measure to quantify gene expression stability, the outcome will depend on the specific
numeric measure used. These points should be intuitive, but they are not often emphasized
in practice. In ‘Sources of variation’, we discuss results from our variance component
analysis. In ‘Reference gene set for normalization’, we discuss how to use the identified
stably expressed genes for count normalization.

Stably Expressed Genes
Using the total variance, σ̂ 2, from the GLMM (see Eq. (6) in ‘Poisson log-linear mixed-
effects regression model and the total variance measure of expression stability’) as a
stability measure, we identified stably expressed genes from the three groups of experiments
described in ‘RNA-Seq data collection and processing’: the group of seedling experiments,
the group of leaf experiments, and the group of experiments on different tissue types (see
Table 1 for a summary). As we mentioned in the Introduction, absolutely stably expressed
genes may not exist. Choosing different sample sets as reference allows us to identify stably
expressed genes for different biological contexts.

In Tables S2–S4, we summarize the top 1,000 most stably expressed genes in each group.
In Fig. 2, we provide the histograms of the mean Count Per Million (CPM) for the 1,000
most stably expressed genes identified in each group. For each gene, the CPM is computed
as

count×106

normalized library size
(9)

in each sample and the mean is computed over all samples.
The lists of the top 1,000 genes in the three groups share 104 genes in common

(see Table S5 for more details). These genes are stably expressed under a wide range of
experimental conditions and in different tissue types, and thus may be worth further
study. This list of 104 genes has significant overlap with the top 100 stably expressed genes
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identified by Czechowski et al. (2005) from a developmental series of microarray samples:
9 out of these 104 genes (see Table S6 for details),

AT1G13320, AT1G54080, AT2G20790, AT2G32170,

AT3G10330, AT4G24550, AT5G26760, AT5G46210, AT5G46630,

appeared in the list of the top 100 stably expressed genes out of 14,000 genes they examined
(the probability is 4.8× 10−9 for a list of 104 genes randomly selected from a set of
14,000 genes to have an overlap of size 9 or more with a pre-selected list of 100 genes). In
particular, one gene, AT1G13320, is in all but one of the ten lists of top 500 stably expressed
genes identified by Czechowski et al. (2005) for different experimental and experimental
conditions (the only exception is the set of diurnal series), and is also identified by Hong et
al. (2010) as a stably expressed gene under all but one of the six experimental conditions
they examined. This gene is ranked 159 (top 0.7%), 112 (top 0.5%), 513 (top 2.2%) in
the three groups we examined, respectively, according to our stability measure. This gene
is a subunit of protein phosphatase type 2A complex and is involved in regulation of
phosphorylation and regulation of protein phosphatase type 2A activity. It has been used
as a reference gene for normalization in many papers (e.g., Baron, Schroeder & Stasolla
(2012); Bournier et al. (2013); these two papers cited Czechowski et al. (2005) as reference).

Comparison to house-keeping genes and stably expressed genes
identified from microarray data
Czechowski et al. (2005) discussed the expression stability of house-keeping genes and
showed that the house-keeping genes are not stably expressed according to their numerical
measure. In particular, they compared the expression profiles of five traditional house-
keeping genes (AT1G13440, AT3G18780, AT4G05320, AT5G12250, AT5G60390) and
five genes (AT1G13320, AT5G59830, AT2G28390, AT4G33380 and AT4G34270) that
they identified as stably expressed according to the CV measure from a developmental
series of microarray experiments (see Fig.1 of that paper). In Fig. 3, we compare the
expression profiles of these 10 genes from Czechowski et al. (2005) to the expression
profiles of five genes (AT1G64840, AT1G75420, AT2G32910, AT3G51310, AT5G48340)
that we randomly selected from the top 100 most stably expressed genes identified from
the multi-tissue group RNA-Seq data according the total variance σ̂ 2. For each of the 15
genes, Fig. 3 shows the expression levels measured in CPM over 91 samples in the eight
experiments in the multi-tissue group, and Table 2 summarizes the variance components
estimated from the GLMM in ‘Poisson log-linear mixed-effects regression model and the
total variance measure of expression stability’.

The five house-keeping genes show large total variation with all three variance-
components relatively large as compared to the other 10 genes. This is consistent with
Czechowski’s observation that house-keeping genes are not necessarily stably expressed
according to a numerical measure. Three of the five stably-expressed genes identified by
Czechowski et al. (2005) are among the top 1,000 stably-expressed genes according to our
stability measure, the total variance σ̂ 2. Czechowski et al. (2005) identified those five genes
from microarray data and different experiments. It is not too surprising those genes might
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Figure 3 Expression profiles of 15 genes—as measured by RNA-Seq CPM—across 91 samples in the
multi-tissue group. The 15 genes include (from top to bottom) (A) five stably expressed genes (randomly
selected out of the top 100) identified from the multi-tissue group RNA-Seq data using the total variance
measure σ̂ 2, (B) five stably expressed identified by Czechowski et al. (2005) according to the CV measure
from a developmental series of microarray experiments, and (C) five traditional house-keeping genes
(HKG) discussed in Czechowski et al. (2005).

not be themost stable in RNA-Seq experiments: the two technologies differ inmany aspects
including coverage and sensitivity.

The house-keeping genes identified in Czechowski et al. (2005) tend to have higher CPM.
This is partly due to a selection preference: the authors there intentionally found genes with
higher CPM for use as references so that they can be observed in most of the experiments.
As we will explain later, we suggest using a collection of 100–1,000 genes as reference gene
set for normalization, we did not specifically target for genes with high CPM.
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Table 2 Variance components estimated from the multi-tissue group RNA-Seq data for the 15 genes in
Fig. 3 (identified from different sources). Columns 3–5 are the estimated variance components. Column
6 lists the stability ranking according to the total variance σ̂ 2 in the multi-tissue group.

Source Gene Betweeen-sample Between-treatment Between-experiment Rank

AT1G75420 0.0012 0.0014 0.0050 5
AT5G48340 0.0042 0.0019 0.0074 46
AT2G32910 0.0007 0.0019 0.0113 53
AT1G64840 0.0051 0.0008 0.0095 72

RNA-Seq

AT3G51310 0.0028 0.0025 0.0100 73
AT2G28390 0.0034 0.0000 0.0111 62
AT1G13320 0.0036 0.0003 0.0258 513
AT4G34270 0.0063 0.0000 0.0365 1074
AT1G59830 0.0044 0.0039 0.0370 1211

Microarray

AT4G33380 0.0103 0.0016 0.0747 3404
AT1G13440 0.0234 0.0058 0.1375 6562
AT5G60390 0.0267 0.0068 0.2270 8867
AT4G05320 0.0123 0.0094 0.2690 9409
AT5G12250 0.0313 0.0128 0.3262 10589

HKG

AT3G18780 0.0375 0.0211 1.0313 14951

Factors affecting stability ranking
The previous two subsections demonstrate that when using a numericalmeasure to quantify
gene expression stability, the outcome is dependent on (1) the biological context reflected
in the reference sample set used and (2) the technology used for measuring gene expression.
It should also be intuitive, and we will further clarify in the second half of this subsection,
that the stability ranking is also dependent on (3) the specific numerical measure used.
In this section, we will first compare the lists of stably-expressed genes identified under
different scenarios where one or more of the above three factors differ. We then further
discuss the subtle roles played by the specific stability measure and the reference gene set
by comparing the total variance σ̂ 2 measure from the GLMM (see Eq. (6)) to theM -value
measure used in the geNorm method (Vandesompele et al., 2002).

We look at an additional five lists of stably expressed genes identified under different
scenarios and examine how each of these five lists overlaps with the the top stably-expressed
genes identified from the multi-tissue group of RNA-Seq experiments according to the
total variance measure σ̂ 2 (see ‘Poisson log-linear mixed-effects regression model and the
total variance measure of expression stability’). The five lists are:
L1: 100 top stably expressed genes from the multi-tissue group according to theM -value

in geNorm (applied to (count+1)) of Vandesompele et al. ;
L2: 100 top stably expressed genes from the seedling group according to the total variance

σ̂ 2 from the GLMM;
L3: 100 top stably expressed genes from the leaf group according to the total variance σ̂ 2

from the GLMM;
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Figure 4 Comparison of top stably expressed genes identified under different scenarios.We choose the
top 100 stably expressed genes as described in L1–L4, and the top 50 stably expressed genes in L5 (see ‘Fac-
tors affecting stability ranking’). and plot the recall percentages between these lists and the top most stably
expressed genes identified from the multi-tissue group according to the total variance measure. The x-axis
is the number of most stably expressed genes in multi-tissue group according to the total variance mea-
sure, and the y-axis shows the recall percentage (see Eq. (10)) for each of the five lists.

L4: 100 stably expressed genes identified from a developmental series of microarray
experiments by Czechowski et al. (2005) using the CV measure (see ‘Other stability
measures’);

L5: 50 stably expressed genes identified by Dekkers et al. (2012) from microarray seed
experiments using the CV measure.

For each list Li above, we measure how it overlaps with the top stably expressed genes
(the reference set) from the multi-tissue group using the recall percentage

#{Li∩ reference set}
#{Li}

×100, (10)

where #{} denotes the number of elements in the list. In Fig. 4, we plot the recall percentage
versus the number of top stably-expressed genes we selected as reference from the multi-
tissue group.

We have the following observations:
1. The list L1 is identified from the same set of RNA-Seq experiments as the reference

sets, but using a different stability measure (M -value in geNorm). This list has
significant overlap with the top stably-expressed genes identified using the total
variance measure: 29 and 98 out of the 100 genes from the list L1 are among the top
100 and 1,000 most stably-expressed genes, respectively, from the multi-tissue group
identified using the total variance measure.

2. The lists L2 and L3 are identified from different sets of RNA-Seq experiments
(leaf and seedling experiments) using the same stability measure as used for the
reference sets. The lists L4 and L5 are identified from microarray experiments
(a developmental series and a seed group) and using the CVmeasure. The overlapping
(recall) percentages are still statistically significant, but much less than in the case
of L1. This shows that differences in tissue type and in measuring technology both
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influence the expression stability ranking, and to comparable degrees. The lists L3
and L5 have the least overlapping percentages with the reference sets. These lists are
identified from a leaf group and a seed group respectively. Our understanding is
that the leaf group and the seed group are more biologically homogeneous than the
multi-tissue group and thus provide very different biological contexts for evaluating
expression stability.

When applied to the same set of samples, the M -value and total variance measure σ̂ 2

give similar expression stability ranking: the rank correlation is 0.97 (see also, observation
1 above). We point out that the reason is because the M -value and normalization step
needed for computing our total variance measure have similar fundamental assumptions.
The basic principle behind theM -value is that the expression ratio of two stably-expressed
genes should be identical in all samples. In formula, it means that the expression values of
two stably-expressed genes i1, i2 in any two samples j1, j2 should satisfy

yi1,j1
yi2,j1
=

yi1,j2
yi2,j2

. (11)

Our total variance measure σ̂ 2 is estimated from normalized data. The basic assumption
in the normalization step is that majority of genes are not DE. In formula, it means for any
stably-expressed gene i1, its expression level as measured by the relative frequency should
be stable across all samples,

yi1,j1
Sj1
=

yi1,j2
Sj2

, (12)

where Sj1 to Sj2 are the normalized library sizes (i.e., RjNj in Eq. (6)). This implies for any
two stably-expressed genes i1 and i2

yi1,j1
yi1,j2
=

yi2,j1
yi2,j2
=

Sj1
Sj2
. (13)

The first equation in Eq. (13) is equivalent to Eq. (11). (In practical application of both
methods, the stability of any single gene is evaluated by comparing its expression to a set
of reference genes. See the Method ‘Count normalization’ for more details.)

In practice, the geNorm program (Vandesompele et al., 2002) is frequently used to rank
a set of reference genes identified from other methods. An iterative elimination procedure
is used along with theM -value to determine the final ranks of the expression stability: after
each iteration, the gene receiving the largest M -value will be removed and a new set of
M -values will be computed for the remaining genes, and the iteration will go on until there
are only two genes left. We did not use such an iterative procedure in the comparisons
above (i.e., we only computed one set of M -values for all genes). We provided some
comments about the iterative elimination procedure in the Appendix.

Sources of variation
For each gene, the GLMM (Eq. (6) of ‘Poisson log-linear mixed-effects regression model
and the total variance measure of expression stability’) allows us to decompose total count
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Table 3 Percentages—averaged over all genes—of the total variance attributable to each of the three
variance components (between-sample, between-treatment, between-experiment) for the three groups
of RNA-Seq samples (the seedling, the leaf and the multi-tissue groups).

Source Seedling Leaf Multi-tissue

Between-sample 7.2% 16.0% 7.6%
Between-treatment 20.1% 28.0% 5.1%
Between-experiment 72.6% 56.0% 87.3%

Source between−experiment between−sample between−treatment
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Figure 5 Distributions (over all genes) of the percentages of the total variance attributable to the
between-sample, and between-treatment, or the between-experiment variance component, in the
seedling (A), the leaf (B), and the multi-tissue groups (C).

variance into between-sample, between-treatment and between-experiment variance
components. The estimated variance components tell us how much each component
contributes to the overall count variation. Table 3 summarizes the percentages—averaged
over all genes—of the total variance attributable to each of the three components for
three groups of RNA-Seq samples (seedling, leaf and multi-tissue groups in ‘RNA-
Seq data collection and processing’). Fig. 5 shows the histograms of the percentages.
Figure 6 shows the stacked bar plot of variance components estimated from the multi-
tissue group for 20 genes randomly selected from the top 1,000 stably expressed genes
and 20 genes randomly selected from 23,611 genes. As expected, the between-experiment
variance component, on average, explains the largest proportion of the total variation.
The between-experiment variation is relatively smaller among the leaf samples, indicating
that the leaf samples are more homogeneous. There is more variation in the relative
percentages of total variance explained by the between-sample and between-treatment
variance components. In principle, the between-treatment variation will be greater when
there is a higher proportion of DE genes or when the samples are more homogeneous.
In practice, the between-sample variance depends greatly on what samples are used as
biological replicates.
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Figure 6 Stacked bar plots of the three variance components for selected genes in the multi-tissue
group. (A): 20 genes randomly selected from top 1,000 stably expressed genes; (B): 20 genes randomly se-
lected from all the genes.

Reference gene set for normalization
Once we have ranked the genes according to our numerical stability measure (i.e., the total
variance measure, σ̂ 2), one application is to use an explicit set of most stably expressed
genes as reference genes for count normalization. This new approach allows investigators
to prescribe a specific biological context for evaluating gene stability by choosing the most
relevant reference samples and experiments when computing the stability measure. For
example, the most stably expressed genes identified from the multi-tissue group and those
identified from the seedling group will provide different biological contexts. In contrast,
existing normalization approaches are often applied to the single data set under study, and
thus provide a single, narrow context.

Even under a specific biological context, it is almost impossible to know whether the
genes in any reference set are absolutely stably expressed, even though commonly used
normalization methods often enforce some assumptions on the reference gene set: for
example, when we use Anders and Huber’s method to estimate the normalization factors
based on a subset of reference genes, roughly speaking, the median fold change among the
reference genes will be set to 1 (see ‘Count normalization’ for more details). A subtle point
we want to make is that since it is impossible to know how well such or similar assumptions
on DE hold for a reference gene set, we can improve the interpretability of the DE test
results by making the reference gene set explicit: we can slightly change our perspective
and interpret all DE results as relative to the reference gene set. For example, a fold change
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Table 4 A toy example for illustrating the importance of using a common explicit set of reference
genes when comparing RNA-Seq data frommultiple experiments. If a common reference gene set (e.g.,
genes 1–3) is used as reference for count normalization, we will notice that the DE behavior of gene 3 dif-
fers in the two experiments. If the two experiments are separately normalized using genes 1–3 as reference
in experiment 1, but using genes 3–5 as reference in experiment 2, we may conclude that gene 3 is not DE
in either group.

Exp. 1 Exp. 2

Gene Control Treatment Control Treatment

1 10 20 10 20
2 10 20 10 20
3 10 20 10 10
4 10 10 10 10
5 10 10 10 10

of 2 inferred from the GLMM model can be interpreted as the fold change of a gene is 2
times the true (but often unknowable) median fold change of the reference genes. When
one estimates the normalization factors based on all genes, one is effectively specifying an
implicit set of genes as a reference set. Our proposal is to make the reference set explicit
and interpret DE results as relative to the reference gene set.

Interpreting the DE results as relative to an explicit reference set is especially beneficial
when one wants to compare DE results from an experiment to previously published results.
When the interest is in comparing different experiments, we recommend using a common
reference set. For example, when two RNA-Seq data sets are separately normalized with
different reference sets, a fold change of two observed in one experiment may not be
directly comparable to a fold change of two observed in the other. This concern can be
alleviated by using a common set of reference genes. We use a toy example to illustrate
this point in Table 4 where we examine the mean counts for 5 genes in two two-group
comparison experiments. If we use different reference gene sets for count normalization in
the two experiments, for example, we use genes 1–3 as reference in experiment 1, but use
genes 3–5 as reference in experiment 2, we may conclude that gene 3 is not DE in either
experiment. If we use a common reference gene set—either genes 1–3 or genes 3–5—for
normalization, however, we will be able to discover, in either case, that the DE behavior of
gene 3 is different in the two experiments. Note that the DE conclusion in both experiments
will depend on the reference genes used: if genes 1–3 are used as reference, gene 3 is not
DE in experiment 1, but will be DE in experiment 2; if genes 3–5 are used as reference,
gene 3 will be considered DE in experiment 1, but not DE in experiment 2. The point is,
in either case, we will notice that the DE behavior of gene 3 is different between the two
experiments. This information will be lost if one uses different reference sets to assess DE
in the two experiments.

In practice, we recommendusing the top 1,000most stably expressed genes for estimating
normalization factors. The key is to avoid using too few (e.g., less than 10) or toomany (e.g.,
using all genes) reference genes: intuitively, using too few, the estimates will be unstable;
using too many, the results may be subject to influence from highly unstable genes. Our
simple simulations suggest that using between 100 to 10,000 genes seems to give stable
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Figure 7 Matrices of scatter plots of normalization factors estimated using different reference gene
sets. The subfigures (A–C) show normalization factors estimated for the samples in the seedling, leaf,
and multi-tissue groups correspondingly. In each case, the top 10, 100, 1,000, and 10,000 stably expressed
genes are used as reference to calculate the normalization factors. The subfigure (D) shows the normaliza-
tion factors estimated for a new root experiment (GSE64410, with sample size 48) using the top 10–10,000
stably expressed genes identified from the multi-tissue group as reference. The normalization factors are
estimated using the method described in ‘Count normalization’.

results. In the first set of three examples, we used Anders and Huber’s method (see Eq. (2))
to estimate normalization factors for samples in each of the seedling, leaf and multi-tissue
groups of experiments (see ‘RNA-Seq data collection and processing’). We used the top 10,
100, 1,000, and 10,000 stably expressed genes identified earlier (see ‘Stably expressed genes’
for details) as reference gene sets. Figure 7 shows the pairwise scatter plots and correlation
coefficient between the normalization factors when different numbers of top stable genes
are used as reference. A stronger correlation indicates the normalization factors estimated
from the two settings are highly consistent. The plots and correlation coefficients suggest
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using between 100 and 1,000 genes tend to give similar normalization factor estimates.
We also used the top 10, 100, 1,000, and 10,000 stably expressed genes identified from the
multi-tissue group as reference set for estimating normalization factors for a set of 48 root
samples from a new experiment (GSE64410, Vragović et al. (2015)). The largest Pearson
correlation 0.993 is between the normalization factors estimated using the top 100 and top
1,000 stably expressed genes as reference. Based on the above observations, using 1,000
most stably expressed genes as reference seems to be a reasonable heuristic rule.

An example
In this part, we illustrate the effect of using different reference gene sets for computing
normalization factors on a real data set and explain the implication on DE analysis.

Wang et al. (2012) performed RNA-Seq experiments using 10-day old seedlings to
investigate the role of Arabidopsis SNW/Ski-interacting (SKIP) protein on transcriptome-
wide changes in alternative splicing. Two biological replicates each from wild type (Col-0)
and skip-2mutant were compared.We retrieved and processed the raw RNA-Seq data from
this experiment using our pipeline (see ‘RNA-Seq data collection and processing’, accession
number GSE32216). For this data set, the normalization factors for the four samples (two
wild types followed by twomutants) estimated using all genes, (0.84,0.62,1.38,1.39), differ
markedly from the normalization factors, (0.71,0.54,1.59,1.63), estimated using the 1,000
reference genes that we identified using the total variance measure from the seedling group
(see ‘Stably expressed genes’).

The implication on DE analysis is that if we use the 1,000 stably expressed genes for
normalization, we will expect to see more under-expressed genes and less over-expressed
gene in the mutant group relative to the wild type group. The two sets of estimated
normalization factors reflect different assumptions: roughly speaking, when using all genes
to compute the normalization factors, the assumption is that median fold change among all
genes is 1; when using the 1,000 reference genes to compute the normalization factors, the
assumption is that the median fold change among the set of 1,000 genes is 1. It is difficult
to know which assumption is more reasonable without additional biological insights.
However, the benefit of using an explicit set of 1,000 genes as reference is the improved
interpretability by making the reference gene set, and thus the implied assumption, more
explicit. Furthermore, if one wants to compare the DE results from this experiment to other
DE results from the collection of seedling experiments, then one should use a common
reference set of genes for count normalization.

CONCLUSION AND DISCUSSION
In this paper, we advocate quantifying gene expression stability by applying a numerical
stability measure to a large number of existing RNA-Seq data sets. Similar strategies have
also been used by others to find stably expressed genes from microarray data. Since DE
is measured by relative frequencies, we argue that DE is a relative concept and using an
explicit reference gene set can improve interpretability of DE results, and furthermore,
using a common reference gene set can avoid inconsistent conclusions when comparing
multiple experiments (see ‘Reference gene set for normalization’).
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It should be clear but worth emphasizing that when using a numerical measure to
identify stably expressed genes, the outcome depends on multiple factors: the background
sample set and the reference gene set used for count normalization, the technology used
for measuring gene expression, and the specific numerical stability measure used. In this
study, to illustrate our proposed methods, we identified three sets of stably expressed
genes from three sets of Arabidopsis experiments. The major point is that stably expressed
genes identified from different backgrounds will provide different biological contexts for
evaluating differential expression. In practice, researchers can choose the specific context.
A practical challenge in applying such a philosophy is that no two experiments will have
identical settings, and researchers have to decide what experiments can be considered
comparable. This is a difficult question; however, we believe it has to be asked from now
on: biologists perform comparative experiments with the intent that the conclusions
from a single experiment will be generalizable beyond the context of a single lab. If we
do not understand comparability between different experiments, such generalization is
impossible. Defining and characterizing comparability is a challenging topic that we would
like to investigate more in the future.

To identify a set of stably expressed genes, our method still needs to estimate an initial
set of normalization factors, which requires that we must make assumptions about relative
fold changes between samples. This kind of circular dependence seems unavoidable
(Vandesompele et al., 2002). In this paper, we used a one-step iteration strategy to reduce
the dependence on the initially estimated normalization factors. In future work, we intend
to look at the genes through evolutionary genetics methods (e.g., 1,001 genomes, Weigel
& Mott (2009)). For example, evolutionary genetics methods can help us test whether a
gene is under negative, neutral, or positive selection and help us identify genes that are well
conserved through the evolutionary history. We need to be mindful that a well conserved
gene is not necessarily stably expressed, just like the house-keeping genes. However, it
would be interesting to ask whether there is correlation between measures of expression
stability and measures of conservativeness, and so on.

In the GLMM model we fit, the random effect terms such as the sample and treatment
effects were modeled as normal random variables (‘Poisson log-linear mixed-effects
regression model and the total variance measure of expression stability’). For the purpose
of identifying stably expressed genes, this should be adequate, since we aremainly interested
in the variances of these random effects (i.e., the variance components). In the future, it
may also be of interest to model these random effects more accurately, for example, in
order to build a prior distribution of the random effect terms for analyzing a new data set.
A more careful examination of the individual data sets suggests that the between-sample
variance varies greatly between experiments. Our observation suggests that different labs
often have different understanding of what is deemed as ‘‘biological replicates’’.

The R codes for reproducing results in this paper are available at Github: https:
//github.com/zhuob/StablyExpressedGenes.
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Table 5 A toy example showing the effect of iterative elimination. Columns 2 and 3 represent expres-
sion levels for seven genes in two samples, column 4 is the stability ranking of genes byM -value without
iterative elimination, and column 5 is the ranking after two geNorm iterations.

Raw counts Rank

Gene Sample 1 Sample 2 Rank 1 Rank 2

Gene1 1 1 3 1
Gene2 1 1 3 1
Gene3 1 1 3 1
Gene4 1 2 1 4
Gene5 1 2 1 4
Gene6 1 3 6
Gene7 1 4 7
Library Size 7 14

APPENDIX. THE ITERATIVE ELIMINATION PROCEDURE IN
GENORM
In this part, we discuss the effect of an iterative elimination procedure used by geNorm.
This iterative elimination procedure creates an extra layer of complexity that is not well
explored in literature. We use a toy example below to illustrate one subtle aspect of the
iterative elimination procedure. In this example, we consider the expression values of 7
genes in two samples shown in Table 5. WhenM -value is used to rank all 7 genes, the initial
ranking of expression stability is given in column 4 of the table: gene 7 is the least stable
and genes 4 and 5 are considered the most stable ones. Once genes 6 and 7 are eliminated,
however, the recalculated M -values will rank genes 1–3 as more stable than genes 4 and
5 (see column 5 of Table 5). The root cause of this reversal of ranking is that when an
iterative elimination procedure is used, effectively, the reference gene set is changing after
each iteration: in the initial ranking, the expression patterns genes 4 and 5 are close to the
‘‘middle of the pack’’ and thus considered as the most stable, and the expression patterns of
genes 1–3 and genes 6 and 7 are considered relatively more extreme; once genes 6 and 7 are
removed, however, the ‘‘middle of the pack’’ is shifted towards the expression patterns of
genes 1–3, and thus genes 1–3 become the most stably expressed. With this understanding,
one could and should make a conscious decision on whether such a behavior as described
above is desirable or not.

The essence of the above toy example is that the expression profiles of the set of genes to
be ranked are clustered into subgroups. In practice geNorm is often used to rank a set of
stably expressed genes. In such applications, the impact of the iterative elimination might
be limited. For example, if we use M -value to rank the top 1,000 stably expressed genes
identified from the multi-tissue group ‘Stably expressed genes’, the top 100 mostly stably
expressed genes from geNorm runs with and without using the iterative elimination will
have 77 genes in common.

The point we want to emphasize is that gene stability is a relative concept and the stability
ranking depends on which set of genes we use as reference. In an iterative elimination
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procedure, the reference gene set will change after each iteration. The procedure can thus
give surprising results and the adoption of it in practice should not be automatic.
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