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Abstract: Cardiovascular risk factors, biomarkers, and diseases are associated with poor prognosis in
COVID-19 infections. Significant progress in artificial intelligence (AI) applied to cardiac imaging has
recently been made. We assessed the utility of AI analytic software EchoGo in COVID-19 inpatients.
Fifty consecutive COVID-19+ inpatients (age 66 ± 13 years, 22 women) who had echocardiography in
4/17/2020–8/5/2020 were analyzed with EchoGo software, with output correlated against standard
echocardiography measurements. After adjustment for the APACHE-4 score, associations with
clinical outcomes were assessed. Mean EchoGo outputs were left ventricular end-diastolic volume
(LVEDV) 121 ± 42 mL, end-systolic volume (LVESV) 53 ± 30 mL, ejection fraction (LVEF) 58 ± 11%,
and global longitudinal strain (GLS) −16.1 ± 5.1%. Pearson correlation coefficients (p-value) with
standard measurements were 0.810 (<0.001), 0.873 (<0.001), 0.528 (<0.001), and 0.690 (<0.001). The
primary endpoint occurred in 26 (52%) patients. Adjusting for APACHE-4 score, EchoGo LVEF
and LVGLS were associated with the primary endpoint, odds ratios (95% confidence intervals) of
0.92 (0.85–0.99) and 1.22 (1.03–1.45) per 1% increase, respectively. Automated AI software is a new
clinical tool that may assist with patient care. EchoGo LVEF and LVGLS were associated with adverse
outcomes in hospitalized COVID-19 patients and can play a role in their risk stratification.
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1. Introduction

COVID-19 infection caused by the severe acute respiratory syndrome-related coro-
navirus 2 has become one of the most devastating global pandemics in history. Recent
studies have identified that many cardiovascular diseases, cardiovascular risk factors,
elevated cardiac biomarkers signaling acute myocardial injury, and other cardiac mani-
festations to be associated with worse prognosis in patients with COVID-19 infection [1].
Transthoracic echocardiography (TTE) remains the first-line cardiac imaging modality for
cardiac assessment in COVID-19 infection, and societal guidelines have been published
with regards to when and how to perform TTE safely in patients with COVID-19 infec-
tion [2]. Some studies have demonstrated TTE’s clinical value for diagnosis and potentially
altering subsequent management of patients with COVID-19 infection [3]. Significant
progress has been made in the field of artificial intelligence (AI) and machine learning over
the last decade when applied to multi-modality cardiac imaging, including for TTE [4].
AI techniques have the potential for rapid and streamlined analysis of point-of-care and
complete TTE examinations such as inpatients with COVID-19 infection, for which, in the
current ongoing pandemic, there remains unmet clinical need. It may also facilitate risk
stratification, however, so far, this has been infrequently studied in this setting [5].
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In this cohort study of COVID-19 inpatients, we aimed to compare the automated AI
analytic software “EchoGo” (Ultromics Limited, Oxford) output with standard TTE measure-
ments of the left ventricle and assess their prognostic utility for adverse in-hospital outcomes.

2. Materials and Methods

Consecutive patients with COVID-19 infection confirmed on a polymerase chain
reaction test at 18 years of age or older who underwent inpatient clinically indicated TTE
during 17 April 2020–8 May 2020 at Cleveland Clinic were identified from the prospective
COVID-19 inpatient registry of our institution (n = 80). Exclusion criteria included TTE
studies without apical 4- and/or 2-chamber views to allow for EchoGo analysis (n = 7),
and suboptimal image quality, which the EchoGo software could not analyze to produce
an output (n = 23), leaving 50 patients included in the study. Relevant demographic,
past history, and admission laboratory tests data were collected for electronic medical
records. History of coronary heart disease was defined as at least one coronary artery with
≥50% stenosis, percutaneous coronary intervention, coronary artery bypass grafting, or
prior myocardial infarction. Valvular heart disease requires the presence at least one heart
valve lesion (stenosis or regurgitation) graded moderate or severe. Laboratory test values
on admission were recorded. The Acute Physiology and Chronic Health Evaluation IV
(APACHE-IV) score was retrospectively calculated.

All TTEs were performed at the bedside with appropriate protective equipment with
a limited targeted protocol, as opposed to the standard comprehensive TTE assessment.
TTE was performed using Philips EPIQ 7C (Philips Medical Systems, Bothell, WA, USA)
or GE Vivid7 or Vivid9 (GE Medical, Milwaukee, WI, USA). EchoGo is the automated ma-
chine learning software used to determine automated left ventricular end-diastolic volume
(LVEDV), end-systolic volume (LVESV), ejection fraction (LVEF), and global longitudinal
strain (LVGLS) measurements, using the apical 4-chamber and 2-chamber views. Standard
measurements of these left ventricle parameters were also performed using the Simpson’s
biplane technique for LVEF and velocity-vector imaging technique for LVGLS, with the lat-
ter being a vendor neutral platform to analyze both Philips and GE TEE images. Pericardial
effusion was counted if at least small in size. The primary endpoint was the composite of
in-hospital all-cause death, acute myocardial injury (defined as rise and/or fall in troponin
biomarkers above the upper reference limit), and need for mechanical ventilation.

Data was presented as mean ± standard deviation for continuous variables and fre-
quency (percentage) for categorical variables. Correlations between EchoGo and standard
measurements of the left ventricle were analyzed using Deming regression, Pearson correla-
tion coefficient (r), and Bland–Altman plots. Multivariable analyses were performed using
logistic regression of the primary endpoint with each echocardiography parameter, ad-
justed for the APACHE-IV score (to condense clinical parameters given the limited number
of endpoints) [6]. Statistical analyses were performed using R (version 4.0.3, R Foundation
for Statistical Computing, Vienna, Austria) and Prism (version 8, GraphPad, San Diego,
CA, USA). Institutional Board Review approval was obtained at the beginning of this study
from our institution’s IRB office with a patient consent waiver. The data that support the
findings of this study are available on reasonable request from the corresponding author.

3. Results

Key cohort characteristics, including clinical, biomarker, and echocardiography factors,
are shown in Table 1. Amongst the 50 patients with COVID-19 infection studied, the
mean age was 66 ± 13 years, 22 (44%) were women, and the mean body mass index was
30 ± 7 kg/m2. Past history included coronary heart disease in 16 (32%), heart failure
hospitalization in 20 (40%), hypertension in 42 (84%), diabetes in 26 (52%), atrial fibrillation
in 9 (18%), stroke in 7 (14%), and chronic respiratory disease in 22 (44%). Laboratory tests
included mean creatinine of 2.0 ± 1.6 mg/dL, C-reactive protein of 10.9 ± 6.4 mg/L, and
high-sensitivity troponin T of 75 ± 129 ng/dL. The mean APACHE-IV score was 59 ± 23.
The primary endpoint occurred in 24 (48%) patients, including 8 (16%) deaths, 21 (42%)
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acute myocardial injuries, and 16 (32%) needing mechanical ventilation while the mean
length of hospital stay was 14 ± 10 days.

Table 1. Clinical, biomarker, and echocardiography characteristics of the COVID-19 inpatients cohort.

Number of Patients 50

Demographics/presentation
Age (years) 66 ± 13

Female 22 (44%)
Body mass index (kg/m2) 30 ± 7

Body surface area (m2) 2.03 ± 0.28
APACHE-4 * score 59 ± 23

Past history
Coronary heart disease 16 (32%)

Heart failure 20 (40%)
Valve disease ** 5 (10%)
Cardiac surgery 7 (14%)

Cardiac implantable electronic device 2 (4%)
Atrial fibrillation 9 (18%)

Hypertension 42 (84%)
Hyperlipidemia 16 (32%)

Diabetes 26 (52%)
Current smoker 4 (8%)

Past smoker 18 (36%)
Stroke 7 (14%)

Chronic respiratory disease 22 (44%)
Dialysis 5 (10%)

Active malignancy 5 (10%)
Solid organ transplant 4 (8%)

Laboratory tests on admission
Creatinine (mg/dL) 2.0 ± 1.6

Hs-Troponin T (ng/L) 75 ± 129
C-reactive protein (mg/L) 10.9 ± 6.4

Procalcitonin (ng/dL) 1.4 ± 2.2
Albumin (g/dL) 3.5 ± 0.5

Hemoglobin (g/dL) 12.1 ± 2.3

Echocardiography (standard measurements)
Left ventricle end diastolic volume (mL) 120 ± 41
Left ventricle end systolic volume (mL) 54 ± 28

Left ventricle ejection fraction (%) 56 ± 10
Left ventricular global longitudinal strain (%) −14.1 ± 4.2%

Right ventricle dilation 6 (12%)
Right ventricle systolic impairment 11 (22%)

Tricuspid annular peak systolic excursion (mm) 17 ± 7
Right ventricle systolic tissue doppler (mm/s) 10.7 ± 2.4

Aortic regurgitation ** 2 (4%)
Aortic stenosis ** 1 (2%)

Mitral regurgitation ** 5 (10%)
Tricuspid regurgitation ** 8 (16%)
Pulmonary hypertension 12 (24%)

Pericardial effusion *** 3 (6%)
EchoGo measurements

Left ventricle end diastolic volume (mL) 121 ± 42
Left ventricle end systolic volume (mL) 53 ± 30

Left ventricle ejection fraction (%) 58 ± 11
Left ventricle global longitudinal strain (%) −16.1 ± 5.1%

Data is presented as mean ± standard deviation for continuous parameters and frequency (percentage) for
categorical variables; * APACHE-IV = Acute Physiology and Chronic Health Evaluation IV score; ** Valve disease
and lesions counted only if at least moderate in severity; *** Pericardial effusion counted if at least small in size.
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By standard TTE and EchoGo measurements, LVEDV were 120 ± 41 and 121 ± 42 mL,
LVESV 54 ± 28 and 53 ± 30 mL, LVEF 56 ± 10 and 58 ± 11%, and LVGLS −14.1 ± 4.2 and
−16.1 ± 5.1%, respectively. Comparing these two methods of left ventricular measurements,
there was high correlation for LVEDV (r = 0.81) and LVESV (r = 0.87), and moderate
correlation for LVEF (r = 0.53) and LVGLS (r = 0.69), all with p-value < 0.001. The Deming
regression and Bland–Altman plots are shown in Figure 1 for LVEF and LVGLS. Adjusted
for the APACHE-IV score, EchoGo LVEF and LVGLS were independently associated
with the primary endpoint, odds ratios (95% confidence intervals) of 0.92 (0.85–0.99) and
1.22 (1.03–1.45) per 1% increase, respectively, as indicated in the Forest plots of Figure 2,
while the other EchoGo and standard TTE measurements were not associated with the
primary endpoint.
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Figure 1. EchoGo software versus standard echocardiography measurements for left ventricular
ejection fraction (LVEF) and left ventricular global longitudinal systolic strain (LVGLS)—(A) Deming
regression plot with Pearson correlation coefficients for LVEF; (B) Bland–Altman plots for LVEF;
(C) Deming regression plot with Pearson correlation coefficients for LVGLS and (A,D) Bland–Altman
plots for LVGLS.
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Figure 2. Logistic regression analysis of the primary endpoint (composite of in-hospital all-cause
death, acute myocardial injury, and need for mechanical ventilation) in COVID-19 inpatients for
EchoGo measured (A) left ventricular ejection fraction (LVEF) and (B) left ventricular global longitu-
dinal strain (LVGLS). Data presented as Forest plots of the odds ratios (95% confidence intervals) in
the multivariable model adjusted for the Acute Physiology and Chronic Health Evaluation IV score
(APACHE-IV) score.

4. Discussion

Many studies since the pandemic have found cardiovascular co-morbidities and
cardiac injury to portend worse prognosis in COVID-19 patients, which makes TTE critical
in the cardiac evaluation of these patients [1]. This study is one of the first to evaluate AI
TTE software in patients with COVID-19, along with the recent World Alliance Societies of
Echocardiography (WASE-COVID) study, and has several important findings [5]. EchoGo
AI software had high LVEDV and LVESV and moderate LVEF and LVGLS correlations
with standard TTE measurements in our COVID-19 inpatients cohort, confirming its utility
for left ventricular measurements in bedside TTE and targeted protocols as an alternate
method. The lower correlations for LVEF and LVGLS may be because of the discrepancies
in the volumes being compounded in the calculation of LVEF, along with known variations
in strain values that differ amongst the measurement software vendors.

Uniquely, we found that EchoGo LVEF and LVGLS values both provided incremen-
tal prognostic value to the well-established APACHE-IV score in COVID-19 inpatients,
whereas standard TTE measurements did not. We suspect one reason could be the subop-
timal quality of some of the bedside TTE studies for COVID-19 inpatients, which made
standard measurements more challenging and potentially less accurate and reproducible
than EchoGo AI software automated measurements so that only the latter demonstrated
prognostic value. These findings, together with the efficiency, automated, and potential for
batch analysis of TTE scans are all strengths of the EchoGo AI software. The WASE-COVID
study similarly found LVGLS (using EchoGo software) and right ventricular free wall
longitudinal strain (using TomTec software) but not LVEF (standard measurement), as
the TTE parameters independently associated with in-hospital mortality in patients with
COVID-19 infections, with other adverse prognosticators being older age, previous lung
disease, and increased lactic dehydrogenase [5]. This study did not, however, compare
and correlate EchoGo and standard measurements of the left ventricular volumes and
function of these patients. Taken together, the findings support the uptake of automated
AI software such as EchoGo for left ventricular analysis in COVID-19 given its prognostic
value, accuracy, and efficiency in TTE analyses to potentially aid patient management,
and may be expanded to many other cardiovascular diseases as well, subject to further
research. There are also other roles for AI and machine learning in COVID-19 management
and research, whether for interpretation of other medical tests, construction of diagnostic
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and treatment algorithms, and development of population screening and preventative
(including vaccination) strategies [7–9].

This study has some limitations of note. It is a single center observational cohort study
with inherent biases. Study power and multivariable analyses are restrained by the number
of patients and clinical events, so the APACHE-IV score was used as a surrogate to measure
global clinical risk. A minority of patients were excluded because of suboptimal image
quality, which is to be expected for bedside TTE studies of sick COVID-19 patients, some
of whom were in the intensive care unit. The EchoGo software currently only analyzes
a limited number of TTE parameters, although there is ongoing software development
to expand its analytic capabilities. The Velocity Vector Imaging technique was used for
standard strain measurement analysis as it is a vendor neutral method, although it is
known to have a slightly lower magnitude of LVGLS than other vendors such as GE
EchoPAC and may also have explained its slightly lower LVGLS values than EchoGo. We
also focused on assessing associations between in-hospital outcomes and TTE, including
EchoGo measurements, rather than longer-term outcomes beyond hospital discharge,
where further research is warranted.

In conclusion, automated AI software is a new clinical tool that may assist with
patient care, with potential for higher efficiency and precision of cardiac imaging analysis,
including in acutely ill patients with COVID-19 infection. EchoGo software output had
high correlations with left ventricular volumes and moderate correlations with LVEF
and LVGLS compared with standard TTE measurements. EchoGo LVEF and LVGLS
measurements were associated with the primary endpoint, including when adjusted for
the APACHE-IV score, and can therefore play a role in the risk stratification of hospitalized
COVID-19 patients.
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