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The orphan nuclear receptor Nr4a1 mediates
perinatal neuroinflammation in a murine model
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Abstract
Prematurity is associated with perinatal neuroinflammation and injury. Screening for genetic modulators in an LPS
murine model of preterm birth revealed the upregulation of Nr4a1, an orphan nuclear transcription factor that is
normally absent or limited in embryonic brains. Concurrently, Nr4a1 was downregulated with magnesium sulfate
(MgSO4) and betamethasone (BMTZ) treatments administered to LPS exposed dams. To understand the role of Nr4a1
in perinatal brain injury, we compared the preterm neuroinflammatory response in Nr4a1 knockout (KO) versus wild
type (wt) mice. Key inflammatory factors Il1b, Il6 and Tnf, and Iba1+ microglia were significantly lower in Nr4a1 KO
versus wt brains exposed to LPS in utero. Treatment with MgSO4/BMTZ mitigated the neuroinflammatory process in
wt but not Nr4a1 KO brains. These results correspond with a reduction in cerebral hemorrhage in wt but not mutant
embryos from dams given MgSO4/BMTZ. Further analysis with Nr4a1-GFP-Cre × tdTomato loxP reporter mice revealed
that the upregulation of Nr4a1 with perinatal neuroinflammation occurs in the cerebral vasculature. Altogether, this
study implicates Nr4a1 in the developing vasculature as a potent mediator of neuroinflammatory brain injury that
occurs with preterm birth. It is also possible that MgSO4/BMTZ mitigates this process by direct or indirect inhibition of
Nr4a1.

Introduction
Preterm delivery and the long-term impacts on the

developing neonate remain a major concern for obstetric
care in the United States. The rate of preterm birth in the
United States continue to rise1. Though our under-
standing of preterm birth and the associated fetal com-
plications continues to evolve, there is still much to
address. The pathogenesis of preterm birth and its
consequences is complex and multifactorial, likely
resulting from numerous elements including intrauterine

inflammation and dysregulation of fetal neurodevelop-
mental processes2,3.
Preterm delivery, particularly when earlier in gestation,

is linked to a high prevalence of cognitive impairment,
developmental delays, and central nervous system dis-
orders, such as cerebral palsy (CP)4,5. Perinatal brain
injury is thought to result from acute neuroinflammation,
driven by an excess of cytokines and immunological
responses2,6. Treatment aimed at reducing perinatal
neuroinflammation includes magnesium sulfate (MgSO4),
which is thought to reduce vascular instability, decrease
pro-inflammatory cytokines, and/or prevent hypoxic
injury and ischemia-induced tissue damage6. Although
the underlying molecular mechanisms of MgSO4 remain
poorly understood, antenatal use has been shown to
decrease the incidence of CP. Several randomized con-
trolled trials have demonstrated improved outcomes with
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MgSO4, particularly for preterm pregnancies treated
before 32–34 weeks gestation7–12. However, the effec-
tiveness of MgSO4 is not guaranteed with an estimated
number needed to treat of 5613.
In conjunction with MgSO4, antenatal corticosteroids

such as betamethasone (BMTZ), have also improved fetal
outcomes. Trials using corticosteroids in preterm labor
have demonstrated reductions in intracranial hemorrhage
and cystic periventricular leukomalacia14,15. Corticoster-
oids are characteristically anti-inflammatory and may
alleviate the fetal neuroinflammatory burden with pre-
maturity. Analogous to MgSO4, the exact molecular
mechanisms of corticosteroids remain unclear16. If the
mechanisms of injury and the actions of these treatments
are delineated, other interventions may be developed.
We sought to identify pro-inflammatory targets that are

responsive to MgSO4 and BMTZ treatments. Using
microarray screening, we identified the upregulation of
Nr4a1 in a murine model of preterm labor. Nr4a1 is an
orphan nuclear receptor, also known as Nur77, TR3, and
NGFI-B, that has been implicated in a variety of immune
responses and adult neuroinflammatory injury17–20. In the
prenatal brain, Nr4a1 expression is limited and not
required for normal development21–23. Based on these
preliminary findings, we hypothesized that Nr4a1 plays an
important role in perinatal brain injury and sought to
characterize its role using mutant mouse models. Our
primary objective was to evaluate the neuroinflammatory
response of Nr4a1 knockout (KO) versus wild type (wt)
mice. Additionally, we sought to evaluate the relationship
between Nr4a1 KO and wt mice in conjunction with
MgSO4 and BMTZ treatments. Finally, we used Cre-loxP
fate mapping to identify the cellular expression of Nr4a1
that is upregulated in response to perinatal
neuroinflammation.

Materials and methods
Animal models
All animal experiments and procedures were approved

by the Institutional Animal Care and Use Committee.
Animals were randomly selected to receive treatments in
all experiments/groups and the data acquisition/analysis
was performed blinded with coded samples. For the
microarray screening, CD-1 mice were purchased from
Charles River Laboratories (Wilmington, MA, USA) and
on E15.5 received an intrauterine injection of 100 µl
containing 100 µg lipopolysaccharide (LPS) from Escher-
ichia coli O55:B5 (Sigma-Aldrich, St. Louis, MO, USA) or
the vehicle (PBS)24. Mice were subsequently treated with
normal saline (NS) or MgSO4/BMTZ, 30min post-
injection of LPS/PBS. MgSO4 and BMTZ treatments
were administered subcutaneously as previously descri-
bed25. Brains were harvested 6 h following the intrauterine
injections and frozen immediately in liquid nitrogen for

expression analysis. Sample sizes were estimated based on
cytokine gene expression from previous studies26,27.
Nr4a1 KO and wt controls on a C57BL/6 background

were acquired from The Jackson Laboratory (Bar Harbor,
ME, USA)22. Once acclimated (2 weeks), males and
females were paired by their respective genotypes: KO
male with KO female and wt male with wt female. Preg-
nancy was confirmed by the presence of a vaginal plug at
which time males were separated from the females. At
E15.5, females received a 100 µl intrauterine injection of
either the PBS vehicle or 250 µg of LPS. The higher LPS
dose was chosen for this and subsequent experiments in
order to evaluate a more severe neuroinflammatory
response that has been reported for the C57BL/6 strain28.
A second group of wt and Nr4a1 KO mice received LPS
or PBS and subsequent treatment with MgSO4/BMTZ as
previously described. Embryos were again collected 6 h
following the intrauterine injections. In these experi-
ments, brains were harvested from half of the embryos for
expression analysis while the remainder were placed in
formalin, cut sagittal and embedded in paraffin.
For fate mapping, Nr4a1-GFP-Cre recombinase and

tdTomato loxP reporter mice were acquired from The
Jackson Laboratory; strains C57BL/6-Tg(Nr4a1-EGFP/
cre820Khog/J and B6.Cg-Gt(ROSA)26Sortm14(CAG-
tdTomato)Hze/J respectively. The Nr4a1-GFP-Cre allele
enables the expression of green fluorescent protein (GFP)
and Cre simultaneously under the Nr4a1 promoter29. The
tdTomato loxP allele (Ai14 variant) is irreversibly acti-
vated in the presence of Cre30. Offspring with both alleles
were generated by mating Nr4a1-GFP-Cre males with
tdTomato loxP females. Dams received a 100 µl intrau-
terine injection of either 250 µg LPS or the PBS vehicle. In
these experiments, only LPS exposed mice received
MgSO4/BMTZ. Six hours post-intrauterine injections,
embryo brains were initially fixed by maternal cardiac
perfusion. First, the right ventricle was punctured to
permit drainage and then 10ml PBS followed by 10ml 4%
formaldehyde were infused into the left ventricle31.
Embryos were then placed in 5ml 4% formaldehyde for an
additional 2 h and then dehydrated with a sucrose gra-
dient beginning with 10%, 20%, and then 30%, in which
they were left overnight at 4 °C. The next day embryos
were cut sagittal and frozen in optimal cutting tempera-
ture (OCT) compound.

Microarray
RNA isolation
While working on dry ice, individual CD-1 embryo

brains were selected and transferred to a pre-chilled
2.0 ml tube containing one 5 mm stainless steel bead
(Qiagen, Germantown, MD, USA). Once brains were
transferred, 700 μl of QIAzol Lysis Reagent (Qiagen) was
added to each sample. Samples were immediately
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homogenized using a TissueLyzer LT (Qiagen) for 5 min
at 50 Hz, then placed at −80 °C until all samples were
processed. RNA was extracted using the miRNeasy 96 kit
(Qiagen), according to the manufacturer’s instructions.
The quantity of RNA samples was evaluated with a
multichannel Nanodrop 8000 spectrophotometer
(Thermo Fisher, Waltham, MA, USA).

Gene array
With an input of 100 ng total RNA, hybridization-ready,

fragmented, labeled, sense-stranded DNA targets were
prepared using Affymetrix GeneChip® WT Plus Reagent
Kit (Affymetrix, Santa Clara, CA, USA). We then prepared
the labeled cDNA targets, trays, and arrays with the
GeneTitan Hybridization, Wash and Stain Kit for WT
array plates (Affymetrix). Samples were then applied to
the Mouse Gene 2.1 ST 96 Array Plate and placed in the
GeneTitan System (Affymetrix). These steps conformed
to the manufacturer’s recommendations. Of the 96 arrays,
80 passed the GeneTitan scanning quality control which
includes visual inspection and QC metrics provided by the
Affymetrix Expression Console (hybridization control
performance, labeling control performance, internal
control gene performance, signal histogram, probe cell
intensity, Pearson’s Correlation, and Spearman Rank
Correlation). In order to verify the performance of the
replicates, Pearson’s R2 was manually calculated for each
set of replicates within each group. The 16 which did not
meet criteria were repeated. All 16 repeats passed quality
control and were included in the final analysis.

Gene array data analysis
We normalized arrays using an extension of the PLIER

(Probe Logarithmic Intensity Error) algorithm, called the
iterPLIER procedure, in the Affymetrix Expression Con-
sole. The iterPLIER (gene level) procedure discards fea-
ture sets that perform poorly, as described by Qu et al.32.
We imported the resulting CHP files into Partek Geno-
mics Suite version 6.12.0907 (St. Louis, Missouri, USA).
Affymetrix library files included all available reference
files related to MoGene-2_1-st. To determine differen-
tially expressed genes, an analysis of variance (ANOVA)
was conducted with contrasts. Gene lists were generated
by applying a cutoff by Benjamini-Hochberg False Dis-
covery Rate (FDR < 0.05)33,34.

qRT-PCR
E15.5 brains were snap frozen in liquid nitrogen and

subsequently processed for gene expression analysis.
Whole brains were homogenized and then RNA was
extracted utilizing the RNeasy Lipid Tissue Kit (Qiagen),
following the manufacturer instructions. First strand
cDNA was then generated using the GoScript reverse
transcription kit (Promega, Fitchburg, WI, USA). PCR

reactions were conducted with SYBR Green on a Light
Cycler 480 II system (both from Roche, Indianapolis, IN,
USA). Reactions were performed in triplicate for each
gene sample using the following conditions: 95 °C × 5min,
then 40 cycles at 95 °C × 10 s, 60 °C ×10 s, and 72 °C × 10 s.
The relative expression of each respective target was
calculated by ΔCt, normalizing to ribosomal protein 18
s35,36. Primer sequences for Foxd1 were generated using
NCBI primer-BLAST37. With exceptions to 18 s and
Foxd1, the majority of primers sequences were generated
by the Harvard PrimerBank38. Primer sequences are
detailed in Supplementary Table S1.

Histology
Sagittal sections from whole embryos placed in for-

malin or OCT were cut 8 µm thick. Formalin fixed par-
affin embedded sections were cleared and used for Iba1
immunohistochemical staining. Antigen retrieval was
performed using citrate buffer pH 6.0 (Vector Labora-
tories, Burlingame, CA, USA) for 25 min at 95 °C. Slides
were blocked with biotin/streptavidin (Vector Labora-
tories) in accordance with the manufacturer’s instruc-
tions and then with 2.5% Horse serum (Vector
Laboratories) for 1 h. Washes were performed with PBS
+ 0.05% Tween 20 and a polyclonal goat anti-Iba1
(Abcam ab107159, Burlingame, CA, USA) was added at
1:1000 overnight at 4 °C in PBS+ 0.05% Tween 20 with
1% BSA. The next day, an anti-goat pre-diluted ready to
use secondary (Vector Laboratories) was applied for 1 h,
followed by DAB staining. Slides were counterstained
with hematoxylin and Iba1+ cells were quantified within
20× fields of fetal brains using the ImageJ cell counter
application. The mean number of Iba1+ cells was cal-
culated relative to the dimensional area of our micro-
scopes 20× objective (358 mm2). Paraffin slides were also
cleared and stained with hematoxylin and eosin (H&E) to
visualize pathology. The frequency of cerebral hemor-
rhage was counted, either present or absent from at least
three fields for each brain39. Frozen slides were examined
under fluorescence to identify GFP and tdTomato
reporters. Sections were stained for GFP to enhance the
signal40. For this a polyclonal chicken anti-GFP (Abcam
ab13970) was added at 1:1000 for 1 h, followed by a
donkey anti-chicken secondary conjugated to Alexa Fluor
488 (Jackson ImmunoResearch, West Grove, PA, USA),
also at 1:1000 for 1 h. Tissues were counterstained with
DAPI and biotinylated BS1 (Vector Laboratories) at 1:500
for 1 h and followed by streptavidin Alexa Fluor 647
(Jackson ImmunoResearch) at 1:1000 for 1 h. All images
were captured on a Leica (Buffalo Grove, IL, USA)
SP8 system with DFC7000 camera. The brightness and
contrast for fluorescent images were adjusted evenly
between experimental and control samples to reduce
background.
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Fig. 1 (See legend on next page.)
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Statistics
With exception to the aforementioned microarray

analysis, gene expression comparisons were accomplished
with either unpaired Student’s t-test or one-way ANOVA
with and without Tukey’s post-hoc test. Categorical data
(Figs. 5, 6) was analyzed by chi-squared test using the PBS
or PBS+MgSO4/BMTZ control groups as the expected
reference. These comparisons were conducted using
either Excel (Microsoft, Redmond, WA, USA) or SPSS
(IBM, Armonk, NY, USA). Graphs and tables were gen-
erated using Excel.

Results
Nr4a1 expression is upregulated with perinatal
neuroinflammation
To identify mediators of perinatal brain injury, we uti-

lized microarray analysis to screen for inflammation-
associated genes differentially expressed with LPS expo-
sure and modulated by treatment with MgSO4, BMTZ, or
the combination of MgSO4/BMTZ (Fig. 1a). The top ten
genes upregulated with LPS injections and downregulated
with at least one treatment were selected for further vali-
dation based on the degree of fold change and adjusted p-
value. These genes included transcription factors (Nr4a1,
Foxd1, Atoh8, Hes1), regulatory proteins (Dkk2, Olfml1,
Srpx2, Kcne4), an enzyme (Adcy4) and a cell surface
receptor (S1pr2) (Fig. 1b)41–50. Only Nr4a1, Kcne4, Foxd1,
and S1pr2 were significantly higher with LPS and similar
to controls with treatments by qRT-PCR (Fig. 1c). The
observed changes corresponded with the significant
upregulation of proinflammatory genes: Interleukin 1 beta
(Il1b), Tumor necrosis factor (Tnf), and Toll-like receptor 4
(Tlr4) (Fig. 1d)26,51. Expression of Interleukin 6 (Il6) was
also elevated with LPS, although not significantly. In
comparison to LPS alone, treatment with any combination
of MgSO4 and/or BMTZ resulted in lower expression of
these inflammatory factors. Interestingly, we observed an
increase of Tlr4 with LPS and either treatment adminis-
tered individually. With the treatment combination, the
expression of Tlr4 was similar to PBS controls. From this
screening and validation, we identified Nr4a1 as the most
prominent gene modulated by LPS and treatments. Vali-
dation in additional samples supported this result (Fig. 1e).

Nr4a1 KO mice show significant reductions in perinatal
neuroinflammation and injury
In order to assess whether Nr4a1 regulates perinatal

neuroinflammatory injury, we compared KO mice versus
wt controls. Second, we compared LPS injury in wt and
KO mice with the administration of MgSO4 and BMTZ to
evaluate if the protective effects of these treatments are
related to Nr4a1. The therapies of both MgSO4 and
BMTZ were chosen due to their effectiveness when given
in combination versus individual administration (Fig. 1d,
e). These experiments were split into two groups, one
evaluating LPS alone and a second comparing treatments.
Group 1 consisted of wt and Nr4a1 KO mice that received
only LPS or PBS. Group 2 consisted of wt and Nr4a1 KO
mice that received LPS or PBS and MgSO4/BMTZ
treatment (Fig. 2a). Although MgSO4 and BMTZ are
relatively safe, their administration in PBS controls was
included to account for any effects that may occur in
mutant mice.
Once more, to evaluate the perinatal neuroin-

flammatory response to LPS we examined the expression
of Il1b, Il6, Tnf, and Tlr4 (Fig. 2b). Gene expression
analysis by qRT-PCR revealed a robust upregulation of
cytokines in wt versus Nr4a1 KO fetal brains with LPS.
The expression of Il1b, Il6, and Tnf in the wt brains was
significantly elevated in the LPS group as compared to the
PBS control (Fig. 2b, d, Group 1). In the Nr4a1 KO brains,
the expression of these cytokines was similar between PBS
and LPS exposed animals. With the addition of MgSO4/
BMTZ treatment, the wt inflammatory response was
significantly lower than with LPS alone (Fig. 2b, d,
Group 2). In contrast, the Nr4a1 KO mice exposed to LPS
showed greater expression of Il1b with LPS in comparison
to PBS controls versus wt brains. Expression of Il6 and
Tnf cytokines was also higher in Nr4a1 KO brains
exposed to LPS and MgSO4/BMTZ, but only between
certain treatment groups (Fig. 2c, d, Group 2).
In addition to gene expression, we also compared the

cellular response to neuroinflammation by quantifying the
number of Iba1+ microglia. With LPS, a greater number
of Iba1+ cells was observed in wt embryo brains
(Fig. 3a)52,53. No difference was observed in the brains of
Nr4a1 KO embryos with PBS or LPS exposure. With

(see figure on previous page)
Fig. 1 Screening for inflammatory regulators reveals the upregulation of Nr4a1. a CD-1 dams were randomized to receive an intrauterine
injection of LPS or PBS at E15.5. Dams given LPS were randomized to receive subcutaneous injections of a combination of MgSO4 and/or BMTZ or
the normal saline (NS) vehicle control. Mice that received PBS received NS. Brains were harvested for gene expression analysis 6 h following
intrauterine injections. b The top genes upregulated with LPS and downregulated with treatment. Fold changes represent genes upregulated with
LPS+NS groups vs. PBS+NS controls (column 2) and downregulated in LPS groups with MgSO4 (column 4), BMTZ (column 6), or the combination of
MgSO4/BMTZ (column 8). Column 10 denotes a description of each gene. NC denotes no change. This comparison represents N = 4 embryo brains
per condition, analyzed by microarray. c Validation by qRT-PCR in the same samples used for microarray analysis in b. d Expression of key
inflammatory genes (Il1b, Il6, Tnf and Tlr4) by qRT-PCR, in the same samples assayed in b. e Additional embryo brains (total N = 8–9 per group)
analyzed by qRT-PCR to confirm the upregulation of Nr4a1. *p < 0.05 and **p < 0.005 by one-way ANOVA. Error bars represent ±SEM.
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Fig. 2 (See legend on next page.)
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Fig. 3 Microglial comparison between wt and Nr4a1 KO embryos. E.15.5 brains from wt and Nr4a1 KO embryos were stained for Iba1 with DAB
(brown). Sections were counterstained with hematoxylin to visualize nuclei in blue and high magnification micrographs (40×) depict Iba1+microglia
(arrowheads) between conditions. Cell quantifications graphed to the right were conducted at a lower magnification (20×) in order to reduce error. a
Comparison and quantification of Iba1+ cells for group 1 (N= 6 brains per condition); wt and Nr4a1 KO animals were exposed to PBS or LPS. b
Comparison and quantification for group 2 (N= 3 brains per condition); wt and Nr4a1 KO animals were exposed to PBS or LPS and MgSO4/BMTZ
treatment. Scale bars denote 100 µm. ##p < 0.005 by one-way ANOVA and *p < 0.05, **p < 0.005, by Tukey’s post-hoc test. Error bars represent ± SEM.

(see figure on previous page)
Fig. 2 Examination of perinatal inflammation in the absence of Nr4a1. a Experimental design comparing wild type (wt) and Nr4a1 knockout
(KO) dams exposed to perinatal neuroinflammation at E15.5. Two groups of animals were evaluated; one comparing only PBS vs. LPS and a second
comparing PBS vs. LPS with subsequent treatments of MgSO4/BMTZ. Embryo brains were harvested for molecular analysis, at 6 h following
intrauterine injections of PBS or LPS. b–e Expression analysis for principal inflammatory genes Il1b, Il6, Tnf, and Tlr4 was examined in E15.5 brains. This
analyses represents per condition N= 13–17 brains for group 1 and N= 7–12 brains for group 2. #p < 0.05, ##p < 0.005, ###p < 0.0005 by one-way
ANOVA and *p < 0.05, **p < 0.005, ***p < 0.0005, ****p < 0.00005 by Tukey’s post-hoc test. Error bars represent ± SEM.
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MgSO4/BMTZ treatment, the number of Iba1+ cells in
wt brains was higher but not significantly with LPS vs.
PBS controls (Fig. 3b). There was also no significant dif-
ference in Nr4a1 KO brains with MgSO4/BMTZ
treatment.

To gain more insight into the role of Nr4a1 in perinatal
brain injury, we examined the histopathology in wt versus
mutant embryo brains. Most obvious was cerebral
hemorrhage, occurring predominantly in the lateral ven-
tricle, midbrain, and fourth ventricle (Fig. 4a). This

Fig. 4 Comparison of cerebral pathology observed in wt and Nr4a1 KO embryos. a H&E stained cross-section of an E15.5 brain, highlighting the
regions (boxed areas) where injury in the form of hemorrhage was mainly observed. b Representative micrographs of hemorrhage in the respective
areas described in a for group 1 (PBS vs. LPS). Hemorrhage was predominant in wt brains exposed to LPS (arrowheads) and to a lesser extent in Nr4a1
KO brains also exposed to LPS (arrow). Scale bars denote 100 µm.
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pathology was more pronounced in wt animals exposed to
LPS in comparison to PBS controls and Nr4a1 KO brains
(Fig. 4b). The frequency of hemorrhage in wt mice
exposed to LPS diminished with MgSO4/BMTZ treat-
ment (Fig. 5a). The frequency of hemorrhage was also
significantly different between wt and mutant animals in
both Groups 1 and 2 (Fig. 5b). Notably, the incidence of
hemorrhage in Nr4a1 KO brains exposed to LPS and

MgSO4/BMTZ was greater versus wt counterparts and
similar to mutant mice that received only LPS.

Nr4a1 is upregulated by cerebral endothelial cells in
response to neuroinflammation
To characterize the cellular expression of Nr4a1, we

utilized Cre-loxP fate mapping with the Nr4a1-GFP-Cre
model. In addition to Cre, this allele expresses GFP as an

Fig. 5 Reductions of cerebral pathology in Nr4a1 KO embryos. a Representative micrographs of hemorrhage (arrow), in respective areas for
group 2 (PBS vs. LPS with MgSO4/BMTZ). Scale bars denote 100 µm. b The frequency of cerebral hemorrhage observed per condition for groups 1
and 2. The number of brains with hemorrhage vs. total examined is indicated in the brackets to the right of the percentages. P-values were generated
by chi-squared test using the PBS or PBS+MgSO4/BMTZ controls as a reference.
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Fig. 6 (See legend on next page.)
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indicator of active Nr4a1 expression. To compare GFP
and Cre labeling, tdTomato loxP females were mated with
Nr4a1-GFP-Cre males and given intrauterine PBS, LPS or
LPS and MgSO4/BMTZ at E15.5 (Fig. 6a). In brains of
PBS controls, we observed tdTomato localized to the
vasculature (Fig. 6b). LPS exposed animals had tdTomato
and GFP, both appearing localized to the cerebral vas-
culature. Analogous to PBS controls, we observed only
tdTomato in brains exposed to LPS and MgSO4/BMTZ.
Staining with the lectin BS1 confirmed that GFP and
tdTomato reporters localized to the vasculature31. Both
GFP and tdTomato reporters were present in the devel-
oping skeletal muscle (Fig. 6c), corresponding to the
known expression of Nr4a1 in myoblasts54. Concurrently,
fluorescence for either reporter was absent in littermates
negative for the Nr4a1-GFP-Cre allele.
Based on the pattern of cellular expression we examined

Nr4a1 KO versus wt brains (same samples used in Fig. 2)
for differences in vascular genes, Cdhr5 and Vegfr2. Both
genes are important for endothelial integrity and angio-
genesis. Therefore a difference from PBS controls may
reflect intrinsic differences in vascular development that
may influence the outcomes observed in Nr4a1 KO brains
with LPS exposure55,56. Secondarily, we sought to gain
more insight into possible declines in endothelial cell
integrity or number that may also occur with LPS.
Expression analysis indicates no such differences even
with MgSO4/BMTZ (Fig. 7a, b).

Discussion
We found that Nr4a1 is upregulated with neuroin-

flammation in a murine model of preterm labor. Treat-
ments with MgSO4/BMTZ mitigated this response in wt
animals. In contrast, Nr4a1 KO animals showed a
reduction in neuroinflammation and brain injury.
MgSO4/BMTZ did not alter inflammatory responses in
mutant animals. Finally, using Cre-loxP fate mapping, we
were able to identify that the inflammatory upregulation
of Nr4a1 occurs in the vasculature of the fetal brain.
With normal brain development, Nr4a1 is limited or

absent according to several lines of evidence21,22. In situ
hybridization of fetal mouse brains show an absence of
Nr4a1 until E18.5 (© 2015 Allen Institute for Brain
Science, Allen Brain Atlas API; available from:

http://developingmouse.brain-map.org/gene/show/
15145). Within the context of preterm birth, Nr4a1 is
upregulated with lung inflammation in premature
sheep57. In addition, microarray analysis of fetal rat brains
4 h following LPS exposure reveals an increase of Nr4a1
expression (GEO accession GDS4429)23. This coincides
with the significant increase of Nr4a1 that we observed at
6 h following LPS. Based on this pattern of upregulation
with insult, downregulation with MgSO4/BMTZ treat-
ments, and limited presence in brain development, we
reasoned that Nr4a1 warranted further investigation. We
took a genetic approach and used an established mutant
mouse model with no known developmental phenotype22.
The lack of differences between PBS controls (Figs. 2–5,
7a, b) support the notion that Nr4a1 ablation does not
influence normal development. However, with the addi-
tion of an inflammatory instigator there are significant
changes that may cause neurodevelopmental deficiencies
noted in postnatal animals36.
Our study suggest Nr4a1 plays a prominent role in

perinatal neuroinflammation and brain injury. Conversely,
Nr4a1 has been implicated in both anti- and pro-
inflammatory processes. Within the adult innate
immune system and with metabolic disease, Nr4a1 plays
an anti-inflammatory role58,59. The mechanisms by which
Nr4a1 reduces inflammation have been noted to involve
p38, NF-kB, and ISG12 depending on the context of
disease, biological modeling, and analyses19,60,61. In- depth
molecular examination suggests p38 counters Nr4a1 in
suppressing NF-kB pro-inflammatory signaling19.
Whereas comparisons of animal models reveals Nr4a1
deficient mutants exhibit greater inflammation in
response to sepsis and higher mortality versus Isg12
deficient animals61. In the adult CNS, Nr4a1 is broadly
expressed in brain tissue and involved in regulatory
functions, specifically in microglia. In contrast to our
results in embryonic brains, adult Nr4a1 KO mice show
elevated autoimmune inflammatory responses by micro-
glia and T-cells62–64.
In addition to the anti-inflammatory responses, there

are numerous biological processes whereby Nr4a1 is pro-
inflammatory. Nr4a receptors are expressed in several
immune cells to include activated macrophages20. Within
the context of LPS stimulation, Nr4a1 can also promote

(see figure on previous page)
Fig. 6 Fate mapping Nr4a1 expression with perinatal neuroinflammation. a Experimental design for combining the Nr4a1-GFP-Cre and
tdTomato loxP alleles in E15.5 embryos. Males heterozygous for Nr4a1-GFP-Cre were timed mated with females homozygous for tdTomato loxP to
generate embryos that harbor both alleles at a 50% Mendelian frequency. For this comparison, tdTomato loxP mice were given intrauterine PBS and
subcutaneous NS, LPS and NS or LPS and MgSO4/BMTZ. Embryo brains were harvested 6 h following injections for fluorescence microscopy. b
Representative micrographs for each genotype portraying GFP (green), indicative of real-time Nr4a1 expression, and tdTomato (red), expressed
irreversibly following Cre recombination. BS1 (magenta) was used to label the vasculature. Merged images combine all three channels with DAPI
(blue). c Positive (skeletal muscle, arrowhead) and negative controls (Cre negative littermates) confirm the specificity of the Cre-loxP combination
represented in (a). Scale bars denote 100 µm.
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macrophage NF-kB signaling65. Other studies have indi-
cated that Nr4a1 does not alter immune cell responses
but instead antagonizes endothelial responses to inflam-
mation66. In regards to the CNS, Nr4a1 has been impli-
cated in adult brain injury to promote neuroinflammation
and cell death17,18. Although these studies did not link the
cerebral vasculature to Nr4a1 signaling, it is important to
note that trauma was modeled by inducing subarachnoid
hemorrhage. In regard to a role within the vasculature,
various modalities have implicated Nr4a1 in regulating
endothelial cell inflammation, leakiness, permeability and

dysfunction40,66–68. Such studies reinforce that Nr4a1 is
dispensable for homeostasis but is important in a patho-
logical state. This pattern of Nr4a1 necessity makes it an
ideal target for disease, since ablation in normal processes
may not result in deleterious side effects.
In this study, the absence of Nr4a1 in KO mice resulted

in a significant reduction of principal pro-inflammatory
markers in the E15.5 pup brains. This evidence provides a
basis for the role of Nr4a1 in regulating bacteria initiated
perinatal neuroinflammation. It is possible that Nr4a1
promotes an increase in cytokine expression from an

Fig. 7 Vascular gene expression in Nr4a1 KO embryos and summary of findings. Embryonic brains from Fig. 2 were evaluated for the
expression of a Cdh5 and b Vegfr2. No statistical significance by was noted by one-way ANOVA between wt and Nr4a1 KO animals or with MgSO4/
BMTZ treatment. Error bars represent ±SEM. c Through undetermined interactions the expression of Nr4a1 with perinatal neuroinflammation results
in vascular injury (hemorrhage). In turn, the neuroinflammatory process is activated directly or indirectly, as indicated by the upregulation of principal
cytokines Il1b, Il6, and Tnf. This process appears blunted by MgSO4/BMTZ, which may be related to Nr4a1 suppression.
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inflammatory insult, as displayed by the effect of LPS in
the wt mice. In comparing the LPS treatment groups of
the wt and the Nr4a1 KO, the treatment of MgSO4/
BMTZ did not appear to decrease the level of inflam-
matory cytokine expression. This may be explained by a
potential mechanism related to Nr4a1 signaling that is
essential for the neuroprotective actions of MgSO4/
BMTZ. Alternatively, in Nr4a1 KO animals inflammation
may be reduced to a threshold whereby the treatments are
no longer effective. We additionally recognize that by
using MgSO4/BMTZ in combination (a clinically relevant
approach), our results cannot be attributed to one of the
two medications.
The upregulation of pro-inflammatory genes with LPS

exposure corresponds with a greater number of microglia
in wt brains. Treatment with MgSO4/BMTZ mitigated the
increase of microglia in wt embryos that was observed
with LPS alone. In mutant embryos exposed to LPS, the
number of microglia did not elevate or correlate with
increases in pro-inflammatory gene expression. In
response to inflammatory stimuli such as LPS, microglia
produce cytokines including IL-1β69. It is possible that the
microglial inflammatory response is restricted in mutant
embryos, resulting in significantly lower levels of cytokine
expression vs. wt animals. Alternatively, other cell popu-
lation’s upregulate cytokines independent of the mutant
status but to a limited degree as compared to microglia.
To further characterize the role of Nr4a1 in perinatal

brain injury, we examined the histopathology of the
embryo brains. Cerebral hemorrhage was notable in wt
versus Nr4a1 KO brains with LPS. MgSO4/BMTZ miti-
gated the frequency of hemorrhage in wt brains but had
no effect in KO animals. These results correspond with
the pathological findings in humans, whereby the inci-
dence of intraventricular hemorrhage is greater with
prematurity and reduced by corticosteroids70–72. The
mechanisms of perinatal hemorrhage within the context
of preterm labor are not clear. Our examination of key
vascular genes suggests that cerebral hemorrhage is not a
result of endothelial cell decline (Fig. 7a, b). Both MgSO4

and corticosteroids are known to relax the vascu-
lature73,74. However, it is unclear whether vasodilation or
other responses invoked by MgSO4 and/or BMTZ confer
neuroprotection. Our results suggest a possible role of
Nr4a1 with regard to MgSO4/BMTZ and the cerebral
vasculature. This is supported by the upregulation of
Nr4a1 in vessels observed with Cre-loxP fate mapping.
Whether Nr4a1 signaling directly or indirectly influ-

ences the perinatal inflammatory response remains a
question. Given that Nr4a1 is expressed in the vascu-
lature, we suspect that it is mediating inflammation as
summarized in Fig. 7c. One of the principal inflammatory
markers, Il1b, was intimately affected by the knockout
status and the treatment group. This suggests that Il1b

expression is modulated by Nr4a1. However, it is unclear
whether the upregulation of inflammatory cytokines by
Nr4a1 is direct or indirect. Vascular cells are known to
express interleukin receptors and respond to inflamma-
tory cytokines75. Therefore, it is likely that perinatal vas-
cular cells interact with immune cells, but are not the
main source of inflammatory cytokines.
Our study’s strengths include the use of multiple mur-

ine models including outbred CD1, inbred C57BL/6 and
Nr4a1 KO mice, to support our findings. Furthermore,
several assays and validation experiments were conducted
including the use of Cre-loxP mutants that not only
substantiated the upregulation of Nr4a1 with neuroin-
flammation but also implicated the vasculature. Finally,
the comparison of MgSO4/BMTZ provides additional
insight into the mechanisms of neuroprotection and the
role of Nr4a1.
The primary limitation of our study is the reliance on a

mouse model of preterm labor. The mechanisms of pre-
term labor in humans are complex and difficult to
translate. Therefore, we used an inflammation-based
model which has been well described in the literature.
Although other exposure modalities using live bacteria
exist, we used the in utero LPS approach to examine
specific inflammatory components of brain injury to
evaluate potential mechanisms of MgSO4/BMTZ
neuroprotection2,51,76.
A second limitation is the use of the microarray only for

screening genes but not for functional analysis. This is due
to the low number of genes that were validated; only four
of our top ten were significant by qRT-PCR (Fig. 1c).
Based on the high level of false positives, we deemed the
microarray unsuitable for making interpretations regard-
ing the status of the transcriptome.
A third limitation is that we could not establish a clear

link between Nr4a1 and its mechanism of action. We
suspect that the mechanisms of Nr4a1 are directly related
to the vasculature and the pathology of hemorrhage.
However, we could not pinpoint the role of Nr4a1 to
specific pathways within the neuroinflammatory milieu.
We observed that Nr4a1 is re-expressed in the context of
neuroinflammation but the exact timing and reason for
expression earlier in development also remain unclear.
Finally, the etiology of preterm labor in humans is mul-
tifactorial and our observations may represent only one of
many pathways that govern neuroinflammation and/or
MgSO4/BMTZ neuroprotection77.
In closing, we have identified Nr4a1 as a potent med-

iator of perinatal neuroinflammation and direct or indir-
ect target of MgSO4/BMTZ treatments. Nr4a1 expression
was upregulated in the fetal brain vasculature and linked
to cerebral hemorrhage. The lack of Nr4a1 in normal
brains presents an opportunity to target neuroinflamma-
tion, potentially with few developmental side effects.
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Based on these findings, additional studies are warranted
to better understand the role of the vasculature and Nr4a1
signaling within the context of preterm labor.
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