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Abstract: There have been significant advances regarding target detection in the autonomous vehicle
context. To develop more robust systems that can overcome weather hazards as well as sensor
problems, the sensor fusion approach is taking the lead in this context. Laser Imaging Detection
and Ranging (LiDAR) and camera sensors are two of the most used sensors for this task since they
can accurately provide important features such as target´s depth and shape. However, most of the
current state-of-the-art target detection algorithms for autonomous cars do not take into consideration
the hardware limitations of the vehicle such as the reduced computing power in comparison with
Cloud servers as well as the reduced latency. In this work, we propose Edge Computing Tensor
Processing Unit (TPU) devices as hardware support due to their computing capabilities for machine
learning algorithms as well as their reduced power consumption. We developed an accurate and
small target detection model for these devices. Our proposed Multi-Level Sensor Fusion model
has been optimized for the network edge, specifically for the Google Coral TPU. As a result, high
accuracy results are obtained while reducing the memory consumption as well as the latency of the
system using the challenging KITTI dataset.

Keywords: sensor fusion; deep learning; edge computing; camera sensor; LiDAR sensor; target
detection

1. Introduction

The interest in autonomous vehicles has increased in recent years due to the advances
in multiple engineering fields such as machine learning, robotic systems and sensor fu-
sion [1]. The progress of these techniques leads to more robust and trustworthy computer
vision algorithms. Using sensors such as Laser Imaging Detection and Ranging (LiDAR),
radar, camera or ultrasonic sensors with these techniques enables the system to detect
relevant targets in highly dynamic surrounding scenarios. These targets may include
pedestrians, cyclists, cars or motorbikes among others, as discussed in public autonomous
car datasets [2,3].

Computer vision algorithms such as You Only Look Once (YOLO) [4], Region based
Convolutional Neural Network (R-CNN) [5], Fast R-CNN [6] or Single Shot Detector
(SSD) [7] have been designed upon the previously mentioned sensors leading to numerous
models for target detection. These models calculate the score of the bounding box location
for each detected target as well as its classification based on high-level features generated
by using Convolutional Neural Networks (CNN). Nevertheless, these models are not
robust since the use of only one sensor may result in target detection problems in hazard
situations. There are machine learning (ML) attacks that can affect single sensor models
such as models only based on camera data. These attacks slightly modify target data in a
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scene to get a different classification result [8–10]. In addition, sensor data information can
be degraded due to weather conditions [11–13]. Other sensors can also be attacked with
similar results, as is the case of the LiDAR [14,15] or radar [16,17].

One viable option to improve the reliability of these systems as well as to improve
the accuracy of the results is the sensor fusion. This technique implements a system with
multiple data sources to complement the inputs. This approach results in a more complete
knowledge of the scenario for a better computer vision. The sensor fusion approach can
be divided into multiple techniques: Early Fusion, Late Fusion and Intermediate Fusion [18].
In the Early Fusion the raw data or low-level preprocessed data is combined to generate a
more complete raw data while in Late Fusion high-level features such as target location are
merged for a better final result. Intermediate Fusion can be understood as a combination
of both previous techniques in which the data is merged at multiple levels to effectively
find the merged representation of multiple input data [19]. Recently, some authors have
proposed computer vision models based on these approaches [11,19,20].

Most of these studies focus on improving the detection algorithms without taking into
account the constraints imposed by the autonomous vehicle industry of latency and privacy
to ensure the safety of the passengers [1]. At the same time, the limitations of the final
system in which the models should be integrated must be studied to ensure the suitability
of the models for the system regarding memory and computing power requirements due to
the specifications of the processing units deployed at the network edge [21,22]. Because of
this, in our paper we focused on researching a sensor fusion algorithm that can be deployed
in edge devices. These devices are meant to work without a high frequency communication
with external devices to process the data at the network edge. One of the advantages of
this is the increase of the security of the raw data since it is not broadcast to an external
device. However, they have constraints regarding memory in the device and computing
power due to their size and energy consumption.

Our proposed algorithm is based on the fusion of LiDAR and camera data. LiDAR data
provides reliable information of depth and target presence which can complement the high-
quality camera image data of the surroundings for the target classification. Consequently,
the LiDAR provides further information about the relevant areas of the camera image.
The combination of these sensors can be used to ensure the presence of the targets and
to provide a solution for scenarios where one of the sensors does not provide data. Our
algorithm, called Multi-Level Sensor Fusion (MLSF), executes the data fusion at multiple
levels using the Intermediate Fusion as a bidirectional reinforcement approach for both
input data. A new layer structure, fusion layer, has been integrated in the proposed deep
learning model. This layer generates a shared feature map which is later used as a mask
for the feature map of the LiDAR and camera to further extract relevant features before
the final target localization and classification. Because of this, the target detection results
significantly improve. The latency and memory consumption have been used as constraints
during the design of the model to ensure its suitability for the network edge, specifically
the Google Coral TPU edge device.

This model has been evaluated using the challenging KITTI dataset [2], where it
achieves a final latency of 0.057 s and accuracy of 90.92%, 87.81% and 79.63% for easy,
medium and hard to detect targets.

The manuscript is organized as follows: Section 2 focuses on related works to the
addressed problem. In Section 3, the proposed Deep Fusion Network is described for a
deep understanding of its structure as well as the used input data. After that, Section 4 will
focus on the experiment where this algorithm has been applied, and finally Section 5 is the
conclusion.

2. Related Works

Since autonomous vehicles are a current trend, numerous authors are researching
the sensor fusion applied to this topic in order to improve the state-of-the-art accuracy
results. As previously mentioned, some of them research single-sensor scenarios for target
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detection in the autonomous vehicle paradigm such as Deep Manta [23]. This model uses
only the data from a monocular camera to generate 2D and 3D bounding boxes as well as
classification for targets. At the same time, this model provides information regarding the
visibility of each of the targets’ parts, making it suitable for annotation tasks. However, due
to its numerous algorithms to extract the location information of each part of the target, its
visibility and classification, this model has high execution times in comparison with other
techniques such as our proposed model.

Nevertheless, numerous authors are starting to research the use of LiDAR sensors for
mapping and detection due to the accuracy of this sensor to generate point clouds based
on the surfaces in the environment. This sensor has been applied to other research topics
apart from autonomous vehicles; it is used in the agricultural industry to generate accurate
maps. M.P. Christiansen et al. [24] developed a UAV Mapping System for Agricultural
Field Surveying where LiDAR data was gathered using an Unmanned Aerial Vehicle (UAV)
device. Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU)
sensors were also integrated in the device in order for the point cloud reconstruction based
on multiple frames to be later used for tasks such as estimation of the soil surface and total
plant volume. Following the same research line, A. Patil et al. [25] proposed a framework
to align LiDAR and video data using a point cloud registration algorithm. By using this
framework in five different experiments, they proved how it can help to reduce the time to
complete retrofitting tasks by 20% on average.

LiDAR sensors have also been used for other topics such as autonomous cars. One of
the authors who researched this topic is J.Zarzar. This author proposed a target detection
algorithm, PointRGCN, based on a single LiDAR sensor [26]. This algorithm is based
on Graph Convolutional Networks integrated in a multiple 3D object detection pipeline.
By doing so, the bounding boxes can be refined multiple times to achieve state-of-the-art
accuracy results. Nevertheless, even if the model provides high accuracy results, it faces
the same problems previously stated with the Deep Manta model regarding adversarial
attacks or lack of information.

Similar to our proposed algorithm, other researchers are studying the implementation
of a sensor fusion technique for target detection. One of the proposed algorithms following
this research line is the Camera-LiDAR Object Candidates Fusion (CLOCs) Deep Neural
Network (DNN) architecture proposed by S. Pang et al. [27]. This network combines
LiDAR and camera data to locate and classify targets in 2D and 3D. Depending on the
desired target detection, 2D or 3D, the system uses different perspectives obtained from
the raw LiDAR data. As a result, this technique provides high accuracy location and
classification of the targets in 2D and 3D. However, due to the complexity of its detectors,
its memory consumption may not be suitable for the current edge devices.

Following the same research line for target detection using sensor fusion, J. Kim et al. [19]
proposed a DNN to combine LiDAR depth maps and camera images. Its approach is based
on extracting relevant features from both sensor data independently using the VGG-16
structure [28] before fusing the output feature maps at multiple levels. This approach is
similar to our proposed network; however, we included the option of ignoring the result
of the previous fusion layers to avoid including not highly relevant data in the final data
fusion step. This leads to a more efficient approach where only relevant information is
further studied. At the same time, this model presents the same problem regarding the
network edge as the CLOCS Deep Neural Network. Due to the detector implemented
as well as the structure of the layer used for the data fusion, the latency and memory
consumption are larger than that obtained with our model.

LiDAR and camera are not the only sensors researched for target detection in the
vehicle context. Other authors research techniques based on different devices such as
camera, radar or ultrasonic sensors due to the high cost of the LiDAR sensors. Because of
this, F. Nobis et al. [11] researched the fusion of radar and camera data for this task. In
this pipeline, the radar data is preprocessed to generate 2D coordinates in the horizontal
plane which could belong to possible targets. Their approach was based on DNN where
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the data is fused on multiple levels. During the training phase of the model, the weight
configuration of the DNN establishes at what level the fusion is more effective to obtain
the desired output. The accuracy achieved with this pipeline in the NuScenes [3] dataset is
55.99%, requiring 56 ms to study each frame.

Therefore, it can be observed how multiple approaches for the target detection are
being researched and provide high accuracy results in some of the most popular datasets
such as KITTI or NuScenes. In the case of single-sensor models, the problem of adversarial
attacks or problems during the data acquisition are not solved, as [11] explains. This
is one of the most relevant reasons to use a sensor fusion approach as other previously
mentioned authors have done [11,19,27]. However, none of these models take into account
the constraints of the autonomous driving industry regarding latency and memory con-
sumption. Because of this, our research faces the problem of the target detection from
the Edge Computing perspective. The model integrates detectors that have been proven
to provide state-of-the-art results at the network edge while also optimizing the model
at layer and network level. Therefore, our proposed model considers the constraints of
the autonomous vehicles paradigm while maintaining state-of-the-art accuracy results. A
deeper comparison of the mentioned techniques, as our model, is shown in Section 4.

3. Proposed Multi-Level Sensor Fusion Network

The proposed Multi-Level Sensor Fusion (MLSF) Network aims to detect targets in
the camera data by integrating LiDAR data as reinforcement data. Camera and LiDAR
data are fused through this network at multiple levels, enabling the system to merge the
features at the specific level or levels decided during the training phase of the model. The
SSD [7] structure has been used as a reference for the proposed network due to its reduced
memory consumption while maintaining high-performance accuracy results.

In order to optimize the process as well as the memory consumption, the LiDAR data
preprocessing has been studied to reduce its dimensions while maintaining most of its
relevant features for the object detection before it is fed into our proposed model.

3.1. LiDAR Depth Map Representation

A Laser Imaging Detection and Ranging (LiDAR) sensor has been used in this project
to gather information regarding the environment. Differently from the camera, the LiDAR
sensor transmits laser pulses and measures the time it takes until a reflection is received.
Based on this, it calculates the distance of the target and its 3D coordinates since the angles
used to send the laser pulse and the distance are known. Consequently, this sensor provides
information regarding surfaces rather than only images as the camera does.

The order of these 3D points, (x, y, z), in datasets such as KITTI [2] and NuScenes [3]
public datasets cannot be ensured since it depends on the sensor used to gather data as
well as the environment. Therefore, it is usually assumed that the order of the points is
unknown, unlike pixel arrays in images. In consequence, their integration in DNNs is not
straightforward since the network must be invariant to these permutations of the input
data in the feeding order.

To overcome this challenge, the voxel grid approach is applied by numerous authors
by using 3D-CNN [20,29]. However, this technique increases the complexity of the DNN,
leading to larger models, and uses layer structures that are not supported by some edge
devices such as the 3D convolutional layer. Therefore, rather than this technique, depth
maps from LiDAR data have been generated as shown in Figure 1. This technique ensures
the low memory consumption and latency of the model in comparison with the voxel
approach.

Depth maps representations reduce the dimensions of the LiDAR data to generate
2D images. The original 3D points are codified to generate these images following (1)–
(4) procedures for each point. These equations transform the 3D points from Cartesian
coordinates to the new representation system.

xDepthMap = tan−1(y3D/x3D) (1)
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d3D =
√

x2
3D + y2

3D + z2
3D (2)

yDepthMap = cos−1(z3D/d3D) (3)

colorDepthMap = d3D (4)

These new coordinates can be directly used for the representation of the depth maps
by adding the color component. Since the new data type is a 2D image, the SSD structure
can be implemented for the feature extraction from LiDAR depth maps. This preprocessing
technique is applied to the raw LiDAR data before being fed into our proposed MLSF
model.

This preprocessing of the LiDAR data enables a memory consumption reduction
of 95.6% to store the data when the depth maps are saved as 300 × 300 pixel images in
comparison with the raw 3D point cloud.

Figure 1. Camera images (left image in (a–d)) and LiDAR depth maps generated from LiDAR raw
data (right image in (a–d)).

3.2. Overall System Description

The structure of the proposed Multi-Level Sensor Fusion network is shown in Figure 2.
The camera images as well as the LiDAR depth maps are fed separately to our MLSF model.
The two input data are studied using two separated CNNs following the SSD structure to
generate the feature maps from each data type. These CNNs use the mobilenet network
backbone. As a result of this, the initial number of layers is smaller than other structures
such as VGGNet-16 used by other authors. The fusion of the feature maps is executed by
our fusion layers shown in Figure 3.

Figure 2. Proposed Multi-Level Sensor Fusion network structure for target detection.
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Figure 3. Proposed fusion layer.

The fusion layers combine the feature maps from both CNNs by concatenating them
(in the channel axis) before applying a 2D convolutional filter (3 × 3) with ReLU activation
function. After this, the new feature map is concatenated individually to each of the
previous initial feature maps from the LiDAR and camera data to generate deeper feature
maps. To maintain the shape of the initial feature map as well as to further process the
data, another 2D convolutional filter (1 × 1) with ReLU activation function is applied to
each of the new deeper feature maps. These feature maps can be used in a later step as
input for another fusion layer, enabling the system to execute a multi-level fusion of the
data. Because of this structure, the network learns during the training phase at what level
it must execute the fusion of each feature extracted from the LiDAR and camera sensors.

In our network, four of these fusion layers have been implemented in order to extract
the information of the localization of the targets and another four independent fusion layers
for the classification. The initial feature maps for the classification are extracted from the
conv-pad-6 layer of the mobilenet networks that process the camera and LiDAR data. For
the localization, the initial feature maps are extracted from the conv-pad-12 layer in each
network.

Since our approach is based on the SSD structure, the loss function implemented in
the system is ruled by the SSD loss presented in (5)–(14).

Lloc(x, l, g) =
N

∑
i∈Pos

∑
m∈(cx,cy,w,h)

xk
ij · SL1 (5)

SL1 = smootthL1(lm
i − ĝm

j ) (6)

smoothL1(lm
i − ĝm

j ) (7)

ĝcx
j = (gcx

j − dcx
i )/dw

i (8)

ĝcy
j = (gcy

j − dcy
i )/dh

i (9)

ĝw
j = log(

gw
j

dw
i
) (10)

ĝh
j = log(

gh
j

dh
i
) (11)

Lcon f (x, c) = −
N

∑
i∈Pos

xp
ijlog(ĉp

i − ∑
i∈Neg

log(ĉ0
i ) (12)

ĉp
i =

exp(cp
i )

∑p exp(cp
i )

(13)

L(x, l, g) =
1
N
(Lcon f (x, c) + αLloc(x, l, g)) (14)

where N indicates the number of matching default boxes, l represents the predicted boxes, g
the ground truth boxes, x the coordinates of the bounding boxes and c the class confidences.
These parameters also include the offset for the center points (cx, cy), the width of the box
(w) and its height (h).
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This DNN has later been optimized for the network edge by pruning the layers. This
process removes the connections when the parameters of a layers/neurons do not highly
modify the value of the input signal, consequently reducing the size of the model and
the number of operations. At the same time, due to the constraints of the Google Coral
TPU Edge Device where the model should be integrated, the model parameters have been
quantized to 8-bit integer values. After the optimization process, the final model requires
56.4 MB in contrast to the initial model with a size of 185 MB.

Following these techniques, the full pipeline from the data acquisition to target detec-
tion is shown in Figure 4. In the first moment, after gathering the data from the LiDAR
and camera sensors, the data need to be aligned to ensure that the coordinate origin is
shared by both sensors. This is also used to filter out parts of the scene visualized only by
the LiDAR that are not relevant for the target detection. After this step, the LiDAR raw
data is used to generate the LiDAR depth maps previously explained. The input data also
needs to be quantized to 8-bit integers before it is fed into the model due to the constraints
imposed by the Google Coral TPU Development Board. Finally, our proposed MLSF model
studies the input data to provide information about the targets in the current frame.

Figure 4. Full pipeline for target detection using our proposed model.

4. Experiment

In this section, our proposed MLSF model is evaluated using the KITTI dataset [2] to
compare its accuracy results for the 2D target detection with state-of-the-art techniques. At
the same time, latency and memory size are also included in the comparison since the goal
is to design a target detection model for the network edge. Furthermore, the influence of
the lighting conditions will also be discussed in this section.

Since targets could be located in both sensor data, the coordinates’ origin has been set
to the ego vehicle for an easier final evaluation of the model results, as depicted in Figure 5.

Figure 5. Input data on the left side of the figure and output on the right side.

4.1. Dataset

The dataset used for this experiment is the KITTI dataset [2] since it is one of the most
popular databases when LiDAR and camera data is required. Due to this, numerous state-
of-the-art results provide accuracy information of their algorithms with this dataset. The
LiDAR sensor used in this dataset is the Velodyne HDL-64E [30] developed by Velodyne in
San Jose, United States.

This dataset consists of 7481 training samples and 7518 testing samples. Both subsets
include camera and LiDAR data. The labels in this dataset are provided using the ego
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vehicle coordinate system that can be used for all the sensors integrated in the KITTI dataset.
Since our goal is the 2D target detection in the camera images, we have converted the
LiDAR and camera data to this ego vehicle coordinate system in order to match the labels
with the used data. The labeled targets in this dataset are: car, pedestrian, bicycle, tram,
van, truck, misc and sitting down person. These targets’ labels also include information
about the difficulty to detect the target (easy, medium and hard). Therefore, we will also
provide the accuracy result achieved on each of these subsets based on the difficulty of the
targets.

Since labels are required to measure the final accuracy of the model, the training
dataset has been split into training and evaluation data using 30% of the dataset for the
evaluation.

4.2. Hardware Architecture

As the goal of this paper is to present a sensor fusion pipeline for target detection
at the network edge, the latency results were calculated in an edge device. The specific
device is the Google Coral TPU Dev Board from Google, manufactured in China, that
is shown in Figure 6. This platform is based on the integration of a TPU coprocessor to
execute the tensor computations in a more efficient way than using traditional CPUs or
GPUs. However, this device still integrates an Integrated GC7000 Lite Graphics GPU and
an NXP i.MX 8M SoC CPU to execute nontensor operations. As a result of this, it is capable
of performing 4 trillion operations per second (TOPS) while only consuming 0.5 W/TOPS.

Figure 6. Google Coral TPU Development Board image from https://coral.ai/ (accessed on 31 May
2021) [31].

Simultaneously, the software framework for the implementation of DNNs in the
device enables the optimization of them. As a result, the latency, as well as the size of the
model, can be reduced in most cases.

In order to provide an accurate comparison of the latency, the compared algorithms
have been implemented in the same platform when possible. In other cases, the results
of the algorithms have been extracted from the original papers and KITTI dataset results
table [2].

4.3. Experimental Settings

The parameters used during the training of the model can be observed in Table 1.
The loss function used for the training of the model is the same as that used in the SSD
structure, which is explained in Section 3.2.

https://coral.ai/
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Table 1. Parameters for the model training.

Parameter Setting

Epochs 500

Batch size 6

Optimizer SGD

Initial learning rate 1 × 10−3

Final learning rate 1 × 10−5

Momentum 0.9

The number of labels for each of the classes of the KITTI dataset is not the same,
having large variation between common classes such as car and uncommon classes such
as tram. Therefore, the algorithm for the model training tries to use the same number of
labels from each of the studied classes to overcome this class imbalance problem while still
using all the training data.

The Intersection Over Union (IOU) algorithm has been implemented to measure the
accuracy of the model. This technique can be applied to any system that predicts bounding
boxes in scenarios where the ground truth is known. An IOU result above 0.5, as used
in this experiment for Pedestrian and Cyclist classes, is normally considered as a good
prediction. For cars, the IOU threshold selected is 0.7 as generally done when using the
KITTI dataset. The algorithm itself is explained in (15), where A means the ground truth
bounding box and B the predicted bounding box.

IOU =
A ∩ B
A ∪ B

(15)

As well as the configuration of the experiment, it is also important to comment on the
algorithms that have been selected for the comparison with our model. Due to the fact
that the main goal of our research is the target detection at the network edge using sensor
fusion, we have selected some of the most relevant target detection algorithms which have
been tested using the KIITI dataset. Among those algorithms, we provide a comparison
with the models based on LiDAR and camera sensor fusion. As a result, a comparison of
models which share the dataset as well as the application goal is shown in the next section.
These models are the Deep Gated Information Fusion Network (DGFN) [19], CLOCs [27],
Multi-view 3d object detection network (MV3D) [32] and Multi-Scale Convolutional Neural
Network (MS-CNN) [33] since they are the most relevant in this topic to the best of our
knowledge.

At the same time, a comparison with single sensor models is also discussed in the
next section. The goal of this comparison is the discussion of the advantages of the sensor
fusion applied for the target detection rather than using a single sensor. The models
used for this comparison are the SSD (studied separately to detect targets using LiDAR
and camera data) [7], the Deep Manta [23], the Structure Aware SSD (SA-SSD) [34] and
the MonoPair [35] algorithms. These models have been chosen because SSD is one of
the most efficient model structures for the network edge. The other models (based on
camera or LiDAR) are some of the state-of-the-art target detection models based on a single
sensor which achieves high accuracy results. Therefore, these models can provide further
information regarding the state of our proposed model in comparison with the current
state-of-the-art target detection models.

Finally, the influence of the lighting condition in the target detection task is discussed
to prove the relevance of the sensor fusion. For this task, a reduced synthetic dataset has
been created to generate night frames (500 frames) based on the original KITTI camera
frames.
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5. Results

In this section, a comparison of our proposed DNN and the state-of-the-art models
for target detection will be presented for a deeper understanding of the advantages of our
technique. The parameters that are compared in Table 2 are the size of the models in the
second column, accuracy (for easy, medium and hard to detect targets according to the
KITTI dataset) in the third column and latency in the fourth column. These parameters
have been selected since they are the most relevant ones when executing target detection at
the network edge taking into account the memory constraints of edge devices and latency
requirements for autonomous vehicles.

Table 2. Comparison of LiDAR-Camera fusion networks for target detection.

Model Size of the Accuracy (%) Latency (s)Model Easy–Medium–Hard

MLSF (proposal) 56.4 MB 90.92–87.81–79.63 0.057

DGFN [19] 713 MB 98.69–90.31–82.16 0.73

CLOCs [27] – 88.94–80.67–77.15 0.1

MV3D [32] – 95.01–87.59–79.90 0.36

MS-CNN [33] – 93.98–89.92–79.69 0.5

Table 2 shows how the achieved general accuracy results when using our proposed
Deep Fusion Network model for easy, medium and hard to detect targets (shown in the
third column of Table 2 respectively for all the classes in the studied dataset) are lower
than the rest of the studied models. In this comparison, the DGFN algorithm achieves the
highest accuracy results for easy, medium and hard to detect targets. Nevertheless, the
targets used during the training and testing of the DGFN and CLOCs algorithms were
reduced subsets of the KITTI dataset. These subsets only include some of the classes
instead of the whole list of targets. Consequently, this comparison must be understood as
an estimation of the accuracy.

On the other hand, the model size of the proposed model is considerably smaller than
the rest of the compared models. For example, it is 92.1% smaller than the DGFN model.
The rest of the compared models do not provide information about their memory size
so a direct comparison is not possible. Therefore, the model size can only be compared
with the DFGN model. Nevertheless, the MV3D model [32], which preprocesses 3 inputs
individually, as well as the CLOCs [27], which executes simultaneously a 3D and 2D
detection, and MS-CNN [33], which studies independently each subset in the LiDAR
point cloud of each target, can be assumed to require a larger memory due to their high
complexity in comparison to our proposed MLSF model.

The memory reduction has been achieved due to the optimization of the model
for the network edge by applying multiple techniques such as quantization [36] and
pruning [37]. These techniques are further explained in Section 3.2. At the same time, the
mobilenet detector integrated in the model, as well as the pruning of nonrelevant layers
and parameters, leads to a faster execution as the previous table also shows.

As a conclusion from this table, it is possible to observe the tradeoff between the
accuracy and memory/latency. Therefore, our algorithm has been designed following the
network edge constraints in order to achieve a reduced latency and memory consumption.
However, the accuracy results are 7.77%, 2.50% and 2.53% (easy, medium and hard to
detect targets, respectively) smaller than the DGFN model. This leads to the conclusion
that this model should be implemented in a collaborative approach with other networks to
ensure high reliability for applications such as autonomous driving.

From this point on, now our proposed model will be compared with other algorithms
for target detection which are not based on sensor fusion. In this case, since the goal of the
comparison is to discuss the improvement of the robustness as well as the general accuracy
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of the models for all the studied classes, the comparison will be based on the used input
data, the latency and the accuracy achieved by the model, as shown in Table 3.

Table 3. Comparison of of our model with no-sensor fusion algorithms.

Model Data Latency (s) Accuracy (%)
Easy–Medium–Hard

MLSF (proposal) LiDAR-Camera 0.057 90.92–87.81–79.63

SSD [7] Camera 0.003 87.14–84.37–75.74

SSD [7] LiDAR 0.003 85.17–71.52–67.36

Deep Manta [23] Camera 0.7 97.58–90.89–82.72

SA-SSD [34] LiDAR 0.04 95.03–91.03–85.96

MonoPair [35] Camera 0.06 96.61–93.55–83.55

It is possible to observe in Table 3 how our proposed model outperforms the SSD
structure using a single data input. This can result from the lack of information when
using a single sensor as previously discussed, which leads to a lack of robustness during
the target detection. Overcoming this problem is one of the main reasons to apply sensor
fusion techniques, as explained in [19]. In real scenarios such as the context of autonomous
vehicles, the weather conditions can affect the data acquisition of each individual sensor
(i.e., water on the camera lens after the rain, LiDAR laser absorption in fog conditions,
etc.). When using a sensor fusion approach, this problem can be mitigated due to the
bidirectional reinforcement of the data.

On the other hand, the Deep Manta model [23] outperforms our model as well as the
SA-SSD [34] and MonoPair [35] when it comes to target detection accuracy. Regarding the
latency, except the SSD structure, the rest of the studied models have a similar execution
time to our model even when they study the data from a single sensor. Therefore, even
when they achieve similar results of latency and accuracy, the robustness of the single
sensor models is reduced in comparison with our MLSF model, following the criteria
of [19].

Finally, the suitability of these models for edge devices must also be considered, since
most of these models integrate complex layers such as 3D Convolutions which are not
supported in edge devices like the Google Coral TPU. On the other hand, our MLSF has
been designed following the layer restrictions of this device to ensure its correct function.

Figure 7. Synthetic night frames (top row) and original images (bottom row).

The influence of the lighting conditions has been researched using some of the frames
from the KITTI dataset and reducing their luminosity to generate synthetic night frames
as shown in Figure 7. Due to the darkness of these images, the accuracy of the target
detection in these frames when using a SSD mobilenet trained with the original KITTI
dataset dropped to 73.81%–65.41%–39.63% (easy, medium and hard to detect targets) when
using only the camera data. One possible reason is that in bad light conditions, the camera
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sensor may not be able to gather information about all the targets in the scenario. This
problem can be observed in the top images of Figure 7 where it is hard to see the targets in
comparison with the bottom images. However, when using our proposed sensor fusion
algorithm, the model can detect targets that have not been located when using only the
camera, as shown in Figure 8. LiDAR data is not affected by the poor light conditions
due to the fact that it is based on measuring the time taken to receive the reflection of a
transmitted laser pulse rather than measuring the external light reflected by the targets.
The accuracy achieved with our model in these dark frames was 83.18%–80.02%–47.83%.
Consequently, it is possible to observe how the LiDAR data reinforce the camera data by
generating a map of relevant areas of the image, leading to a higher accuracy.

Figure 8. Target detection in night frame with (a) sensor fusion algorithm and (b) only camera.

After these comparisons, it can be observed how our proposed model achieves high
accuracy results for the researched task but it does not improve the state of the art. However,
when taking into account the latency and memory constraints, our model achieves edge
capabilities that are not present in the rest of the compared models while improving its
robustness in comparison with single sensor models.

6. Conclusions

A Multi-Level Sensor Fusion deep neural network has been developed and tested in
the Google Coral TPU Edge Device in this paper for target detection using camera and
LiDAR sensors. The sensor fusion layers integrated in this model generate feature maps
that are combined at multiple levels to produce a joint data representation that has been
tested on the KITTI dataset.

The accuracy results do not surpass the state-of-the-art accuracy shown by other
sensor fusion models such as DGFN [19]. Nevertheless, our model still achieves a 90.92%,
87.81% and 79.63% accuracy results for easy, medium and hard to detect targets in the
challenging KITTI dataset while requiring a 92.1% less memory than the DGFN model [19].
As a result of the optimization applied to the proposed model, the latency of the model has
also been reduced to 0.057 s, outperforming the rest of compared algorithms.

At the same time, the advantages of using a sensor fusion approach rather than a
single sensor model have been studied by comparing our proposed algorithm with other
single sensor target detection algorithms. This comparison is shown in Table 3 where it
is possible to observe how some of the single sensor models achieve better accuracy than
our proposed algorithm. However, we studied the effect of using only camera data for the
target detection task and we showed how the accuracy drops to 73.81%–65.41%–39.63%
(easy, medium and hard to detect targets) in cases where the light is not good. Since the
LiDAR data does not depend on the light of the scenario, using a sensor fusion approach
helps to achieve an accuracy of 83.18%–80.02%–47.83%. This proves that even if high
accuracy can be achieved by a single sensor model, these algorithms are not robust when
facing changes in the environment in comparison with a sensor fusion algorithm.

We can conclude that the proposed model has been designed in order to fit in edge
devices as well as time constraints applications such as autonomous driving, taking into
account a tradeoff among the accuracy, latency and memory size.
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