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Abstract: This paper investigates, through simulation and experiment,
the behavior of two dimensional foci arrays generated via phase-only
holography where an iterative algorithm was used to produce the kinoforms.
Specifically, we studied how aliasing of the signal on a spatial light
modulator affects the quality of the foci array as the density and size of the
array are varied. This study provides a reference for applications where it
is important to understand how the fidelity and overall quality of the foci
array changes as the number of foci increases and as the spacing between
foci decreases.
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1. Introduction

Holograms are used in many areas, including three-dimensional image formation [1], wave-
front correction [2], and optical interconnects [3]. More recently phase-only holograms, or
kinoforms [4], have attracted much interest for use in microscopy-based techniques, including
digital holographic microscopy [5], structured illumination [6], and optical manipulation [7].
For many of these applications, static kinoforms [8] have given way to dynamic implementa-
tions using spatial light modulators (SLMs) [9]. These devices enable real-time modulation of
kinoforms and thus allow time varying processes to be implemented [10], such as forming and
changing the positions of multiple optical traps in real time.

For many of these applications, it is important to understand what limits the complexity of
the patterns that can be formed using kinoforms. In the context of parallel optical trapping, a
body of work has been carried out with the aim of optimizing the generation of an array of
laser foci for manipulating micro- and nanoparticles [11, 12]. For optical trapping, the number
of foci is often limited by the amount of laser power that the SLM can tolerate, because each
laser focus must have sufficient power for trapping. For imaging applications, such as in spatial
patterning of illumination, the laser powers involved are typically much lower than in optical
trapping. As a result, the number of laser foci is no longer constrained by laser power, but by
the accuracy of the kinoform used to generate a large number of foci that are closely spaced.

Kinoforms displayed on SLMs are effectively discretized versions of the ideal solution used
to form the foci array. Therefore, it is important to understand the effects any aliasing may have
upon the arrays produced. As with any spatially varying signal, it must sample the original
signal at or above the Nyquist frequency to prevent aliasing. Finding the solution from an
iterative algorithm gives no analytical description of the kinoform, so it is impossible to predict
when aliasing will degrade the resulting image. As such we decided to undertake an empirical
study to understand how aliasing affects the quality of the 2D foci array, specifically when the
foci become very dense and also large in number.

Figure 1 depicts the setup we used for this study. Here, the system uses the standard config-
uration of a Fourier transform lens placed one focal length from the kinoform to produce foci
in the back focal plane of the lens [13]. In our experiments, this image is de-magnified onto the
focal plane of a microscope. The array parameters are described by the inter-foci spacing, dx,
the number of laser foci, Nf oci, and the maximum spatial frequency, fmax.

In most applications, regardless of whether the intensity pattern is for optical trapping or
fluorescence imaging, the desired foci array is known and the corresponding kinoform must
be found, a classic inverse problem. Analytical solutions exist using superposition algorithms
that allow foci to be placed < 10 nm apart [14], but this approach quickly produces poor ki-
noforms for foci number � 10. For larger arrays, an iterative-type weighted Gerchberg-Saxton
algorithm, with a superposition starting phase, provides the best result in terms of uniformity
of the generated foci, efficiency, and relative standard deviation (rel. σ ) of foci intensities [12].
However, this method limits the spacing between foci to δx =

(
λ f1 fob j

)
/
(

f2a
√

Npix
)
, where

f1 is the focal length of the transform lens, f2 is the focal length of the second lens, λ is the
wavelength of light, a is the pixel pitch of the SLM, and Npix is the number of pixels in the
kinoform [15]. It is this iterative algorithm we concentrate on here.

De-coupling the inter-dependent parameters - density of foci, ρ f oci, number of foci, Nf oci,

#148306 - $15.00 USD Received 31 May 2011; revised 28 Jul 2011; accepted 3 Aug 2011; published 17 Aug 2011
(C) 2011 OSA 29 August 2011 / Vol. 19,  No. 18 / OPTICS EXPRESS  17122



f

Objective
Lens

f1

SLM

f1 2 f2
L2L1

dx
ux

vx

fmax

MFP

Fig. 1. The holography apparatus is constructed with a 4f system. L1 is the Fourier trans-
form lens, L2 is a second lens, f1 = 300 mm, f2 = 500 mm. Inset shows our definitions of
maximum spatial frequency, fmax, and inter-foci spacing, dx, within the microscope focal
plane (MFP).

maximum spatial frequency, fmax, and inter-foci spacing, dx - is not possible, so we approached
the problem by asking two main questions that are pertinent to our aims. First, for a given dx,
what effect does varying Nf oci have? Second, for a given fixed fmax, what effect does increasing
ρ f oci have?

For our study the non-aliased ‘original’ kinoform was created through the iterative algorithm
because an exact solution does not exist. We also chose to study symmetric square patterns
centered on the 0th order. To determine the size of original kinoform that we needed in our
studies, kinoforms were calculated with a fixed set of parameters and with increasing number
of pixels in the result, Norig, after which consecutive original kinoforms were compared through
the mean residual of their differences. As an example, Fig. 2 shows increasing Norig reduced
the difference between consecutive kinoforms. For larger inter-foci spacing, convergence oc-
curred for larger Norig. From this set of calculations, we determined kinoforms calculated with√

Norig = 2000 should be sufficient to represent the true signal.

Fig. 2. Root mean square residual difference between original kinoforms with
√

Norig =

100P and
√

Norig = 100(P−1) where P are integers between 1 and 21. Here Nf oci = 100
and dx is varied between 5δx and 30δx.

Fourier transforming the kinoform with flat-top uniform incident light, normalized to an
intensity of unity, simulates the optical system shown in Fig. 1, thereby allowing us to examine
and compare the intensities of the foci with our experimental results. The quality of foci arrays
produced are quantified using the rel. σ of foci intensities in the array, which has been shown to
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be a reliable metric of pattern quality [12]. The aliased kinoform was constructed by sampling
every

√
Norig/Nal pix pixels while retaining the same size of the original kinoform (Fig. 3).
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0 
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ls
Fig. 3. Left panel: A 100× 100 pixel section of original kinoform with

√
Norig = 2000.

Right panel: Same section of the original kinoform aliased to
√

Nal pix = 500 pixels. One
pixel in the right panel has the same physical dimension as 16 pixels in the left panel. Both
white grids in the upper right corner of the panel display boxes that are 4×4 original pixels
in size.

In Fig. 4, with dx = 10δx, the quality of the simulated foci array is plotted as a function of
Nf oci for several Nal pix. It can be seen rel. σ increases with Nf oci, and the inset shows, for
Nf oci = 400, aliasing the kinoform below 10002 pixels results in a rapid decrease in quality.

Fig. 4. Simulated relative standard deviation of foci intensities (rel. σ ) versus increasing
number of foci (Nf oci) for kinoforms with varying numbers of aliased pixels (Nal pix) and
dx = 10δx. The legend indicates Nal pix for each curve. Inset shows the effect of aliasing on
rel. σ for Nf oci = 400.

Figure 5 plots the quality of the foci array as a function of ρ f oci when the original kinoform
was aliased to several Nal pix and with fmax = 30δx. After an initial increase in rel. σ , counter-
intuitively, there exists a threshold in density above which the quality of the kinoform remained
approximately equal. The inset shows, for ρ f oci = 0.071foci μm−2, when aliased below 10002

pixels there was a rapid decrease in the quality of the kinoform.
To test the findings experimentally we constructed an optical system as in Fig. 1. A c.w. 1064

nm laser (YLD-10-LP, IPG Photonics Corp.), power controlled using a λ/2 plate and polarizing
beam cube, was expanded to fill the short axis of an SLM (Holoeye PLUTO NIR). A second
λ/2 plate was used to optimize the diffraction efficiency through varying the polarization inci-
dent on the SLM. To image the foci array, we placed a mirror at the focal plane of the objective
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Fig. 5. Simulated relative standard deviation of foci intensities (rel. σ ) plotted as a func-
tion of the density of foci (ρ f oci) for kinoforms with varying numbers of aliased pix-
els (Nal pix) and for fmax (maximum spatial frequency) = 30δx. The legend indicates
Nal pix for each curve. Inset shows the effects of aliasing on pattern quality for a single
ρ f oci = 0.071foci μm−2.

to image the reflection of the formed foci. The SLM was imaged using a 4f system to slightly
overfill the back aperture of a 40× NA=1.4 Nikon Plan Fluor objective. Images were taken us-
ing a GC1380 GigE camera (Allied Vision Technologies) and analysis carried out with custom
written LabVIEW software (v8.6 National Instruments Corp.), which measured the intensities
of each foci and calculated their standard deviation relative to the mean intensity.

The SLM was calibrated to give a linear phase retardation response up to a maximum of
2π as a function of gray value applied [16]. Any non-flatness in the device was removed by
using Zernike polynomials to create a correction kinoform [17] encoded into the test kinoforms,
which produced a 2.200±0.002 fold increase in Strehl ratio.

The original kinoforms used for Fig. 4 were first aliased to
√

Norig = 1080 then test holo-
grams were made for Nal pix = 200 and 1080. These were displayed on the SLM and images
taken of the resulting intensity patterns in the focal plane of the microscope. Figure 6 shows the
measured rel. σ for several Nf oci; note only two differing Nal pix are shown for clarity. Figure 6
indicates the same power-law trend is seen experimentally as in simulations. Experimentally we
observed heavily aliased kinoforms performed comparably to the larger Nal pix until Nf oci ≈ 50.
The inset shows aliasing begins to severely affect pattern quality when Nal pix � 6002 pixels.

Finally kinforms of Fig. 5 were aliased in a similar fashion and placed on the SLM to generate
the experimental measurements shown in Fig. 7. Again, only two different Nal pix are shown for
clarity. Here, we observed rel. σ increased consistently with ρ f oci. Kinoforms with less aliasing
performed better overall with performance again rapidly decreasing for Nal pix � 6002.

Experimentally the measurements indicate a poorer performance than that expected from
simulation. We believe this is partly attributed to an increasing amount of speckle, known to oc-
cur in kinoform reconstruction [18], as the pattern complexity increases. Future studies should
investigate the effectiveness of utilising a dummy area to improve precision [15].

Through simulations and experiments, we have characterized and given the first reference
on how iteratively generated kinoforms perform at producing large or dense 2D arrays of laser
foci. There are no limits on Nf oci and dx (above δx) per se, but as we have shown here, one
must carefully balance the quality of the intensity pattern needed for the application with Nf oci
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Fig. 6. Experimentally measured relative standard deviation of foci intensities (rel. σ ) plot-
ted as a function of the number of foci (Nf oci) for Nal pix (number of aliased pixels) = 200
and 1080; dx = 10δx. Inset shows the effect of aliasing on rel. σ for Nf oci = 400. Error bars
represent standard deviation; n = 20.

Fig. 7. Experimentally measured relative standard deviation of foci intensities (rel. σ ) for
varying foci density (ρ f oci); Nal pix (number of aliased pixels) = 200 and 1080; fmax

(maximum spatial frequency) = 30δx. Inset shows the effect of aliasing on rel. σ for
ρ f oci = 0.071foci μm−2. Error bars represent standard deviation; n = 20.

and dx. Finally, our studies show kinoforms need at least ≈ 6002 pixels to accurately represent
the kinoform desired. This study should serve as a useful reference for applications, such as
parallel confocal imaging or patterned illumination, in which it is important to understand how
aliasing affects the degradation of the quality of the arrayed laser foci as the number or density
of the foci is increased.

Acknowledgments

We thank Xudong Chen for many useful discussions. We are grateful to the NIH (GM 085485)
for support of this work.

#148306 - $15.00 USD Received 31 May 2011; revised 28 Jul 2011; accepted 3 Aug 2011; published 17 Aug 2011
(C) 2011 OSA 29 August 2011 / Vol. 19,  No. 18 / OPTICS EXPRESS  17126




