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Predicting Speech Perception in Older
Listeners with Sensorineural Hearing Loss
Using Automatic Speech Recognition

Lionel Fontan1 , Tom Cretin-Maitenaz2,3, and
Christian Füllgrabe4

Abstract

The objective of this study was to provide proof of concept that the speech intelligibility in quiet of unaided older hearing-

impaired (OHI) listeners can be predicted by automatic speech recognition (ASR). Twenty-four OHI listeners completed

three speech-identification tasks using speech materials of varying linguistic complexity and predictability (i.e., logatoms,

words, and sentences). An ASR system was first trained on different speech materials and then used to recognize the

same speech stimuli presented to the listeners but processed to mimic some of the perceptual consequences of age-

related hearing loss experienced by each of the listeners: the elevation of hearing thresholds (by linear filtering), the loss

of frequency selectivity (by spectrally smearing), and loudness recruitment (by raising the amplitude envelope to a power).

Independently of the size of the lexicon used in the ASR system, strong to very strong correlations were observed between

human and machine intelligibility scores. However, large root-mean-square errors (RMSEs) were observed for all conditions.

The simulation of frequency selectivity loss had a negative impact on the strength of the correlation and the RMSE. Highest

correlations and smallest RMSEs were found for logatoms, suggesting that the prediction system reflects mostly the func-

tioning of the peripheral part of the auditory system. In the case of sentences, the prediction of human intelligibility was

significantly improved by taking into account cognitive performance. This study demonstrates for the first time that ASR, even

when trained on intact independent speech material, can be used to estimate trends in speech intelligibility of OHI listeners.
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To measure the impact of age-related hearing loss
(ARHL) on communicative function, as well as to quan-

tify improvements in speech processing following audi-
tory rehabilitation through hearing aids (HAs), tests of
speech intelligibility—clinically referred to as “speech
audiometry”—have long been used as a complement to

pure-tone audiometry (Fournier, 1951; Hirsh et al.,
1952; Hudgins et al., 1947). Generally, either the propor-
tion of correctly identified utterances at one or several

constant presentation or speech-to-noise level(s) is
determined, or the so-called speech reception threshold
(SRT; American National Standard Institute [ANSI],

1969), corresponding to the presentation or speech-
to-noise level required to achieve a given performance
level (e.g., 50% correct), is adaptively tracked.
However, speech audiometry is less reliable and more

time-consuming than would be desirable for clinical
practice. For example, in France, HA audiologists
often evaluate speech intelligibility in a given listening
situation using 10-word lists such as those developed by
Fournier (1951). According to Moulin et al. (2016), at
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least five of such lists should be administered for each
test condition to achieve a reliable estimate of speech
intelligibility. In the context of fitting HAs and their
fine-tuning, where several settings for different process-
ing features (e.g., gain rule, dynamic range compression,
noise reduction) need to be explored, the repetition of
the test procedure for each combination of settings could
therefore become tedious for the listener. Especially for
older patients, this might lead to an increase in fatigue
and a decrease in attention, and, subsequently, yield
lower levels of and higher variability in performance
over the course of the assessment. In addition, because
familiarity with the speech material affects test perfor-
mance (e.g., Hustad & Cahill, 2003), the test material
needs to be refreshed for each test condition, and the
limited number of test items restricts the number of
test conditions that can be assessed within the same
patient without repeating the test material.

The use of speech-intelligibility prediction systems
could overcome these shortcomings. For example, in
the fields of telecommunications and room acoustics, a
number of predictive models of speech intelligibility have
been developed (e.g., Speech Intelligibility Index, ANSI,
1997; Articulation Index, French & Steinberg, 1947;
Speech Transmission Index, Steeneken & Houtgast,
1980). In these models, the most important acoustic fea-
tures of the communication channels that influence
speech intelligibility are assessed (such as signal-to-
noise ratio [SNR] and reverberation time) and used to
predict intelligibility scores that listeners would obtain
under the same acoustic conditions. As a consequence,
the reliability of these models for predicting intelligibility
performance under acoustic conditions other than
those used to collect human reference data (e.g., with
other types of noise or different SNRs) is uncertain
(for a more detailed discussion of these models, see
Sch€adler et al., 2015; for a review of current speech-
intelligibility and speech-quality prediction models, see
Falk et al., 2015).

In contrast, automatic speech recognition (ASR)
systems could constitute a more (yet not entirely)
reference-free means for predicting speech intelligibility.
Indeed, ASR has been used successfully to estimate the
intelligibility of speech degraded by the presence of
background noise (Barker & Cooke, 2007; Spille et al.,
2018) or speech pathologies (e.g., Fontan, Pellegrini,
et al., 2015; Maier et al., 2009).

By extension, and in case that the perceptual conse-
quences of ARHL can be accurately simulated by signal
processing, ASR should also be usable for the prediction
of speech intelligibility for listeners with ARHL. From a
practical perspective, this would mean that HA audiol-
ogists could calculate rapidly and at no “cost” to the
patient the ASR-predicted intelligibility performance
for any number of combinations of listening conditions

(e.g., in quiet or in different types of noises at different
levels, with or without HAs, and for various combina-
tions of HA settings).

Recent work by Kollmeier and colleagues has shown
encouraging results in this regard (Kollmeier et al., 2016;
Sch€adler et al., 2015). Kollmeier et al. (2016) used an
ASR system to predict SRTs for matrix sentences in
noise for a large group of hearing-impaired (HI) listeners
whose ages ranged between 23 and 82 years. They
modeled the effect of ARHL on speech intelligibility
using Plomp (1978)’s framework, in which any hearing
loss is considered as the combination of a “hearing loss
of class A” (where A stands for attenuation) and a
“hearing loss of class D” (where D stands for distortion).
The former results in an upward shift of absolute thresh-
olds, and, thus, can be compensated for by increasing the
presentation level of the speech signal, while the latter
represents the temporal and spectral distortions that
affect the intelligibility of speech independently of its
audibility. Such distortions include the loss of frequency
selectivity (FS; reduction in the ability to resolve spectral
components; e.g., Baer & Moore, 1993) and loudness
recruitment (LR; reduction of the intensity dynamic
causing an exaggerated perception of intensity changes
and an intolerance to loud noises; e.g., Moore, 2007).
The attenuation component (A) was simulated by
using a thresholding procedure in the ASR system
based on each listener’s audiogram. The distortion com-
ponent (D) was estimated based on the mismatch
between the listeners’ intelligibility scores and those pre-
dicted by the ASR system when only A was taken into
account. The effect of D on intelligibility was then sim-
ulated by an additive white Gaussian noise that was
added to the original speech signal before feeding
the speech-and-noise mixture once again to the ASR
system. Correlation coefficients between human and
machine SRTs ranged from 0.56 to 0.84 (for a stationary
noise) and from 0.69 to 0.91 (for a fluctuating noise).
In comparison, predictions based on the Speech
Intelligibility Index (ANSI, 1997) yielded correlations
coefficients that did not exceed 0.77 and 0.72 for the
stationary and fluctuating noise, respectively. However,
the approach taken in that study was far from being
reference-free, as the ASR system was trained and
tested on the same speech materials (i.e., the German
matrix sentences at different SNRs).

A different approach was taken by Fontan et al.
(2014, 2017). First, they used different speech materials
for training and testing the ASR system. Second, they
simulated not only elevated hearing thresholds (HTs)
but also some suprathreshold auditory processing defi-
cits occurring in listeners with ARHL. They used an
algorithm developed by Nejime and Moore (1997) that
takes audiometric thresholds as the input to also simu-
late the effects of FS loss and LR. For example, in
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Fontan et al. (2017), different speech materials were

processed through this ARHL simulator, using nine

audiograms that are typical for ages ranging from 60

to 110 years and represent increasing levels of severity

of ARHL (Cruickshanks et al., 1998). The processed

speech was then presented to an ASR system and 60
young normal-hearing participants. The results revealed

very strong positive correlations between human and

machine identification scores (all r� .90), indicating

that trends in human intelligibility as a function of the

simulated degrees of hearing loss could be accurately

predicted by ASR.
However, Fontan et al. (2017) compared machine

scores to the average intelligibility scores obtained by
the 60 participants in each of the 9 ARHL-simulation

conditions. It is therefore not clear if ASR can also be

used to predict intelligibility for individual cases of

ARHL, which are likely to show a greater variability

in audiometric profile, suprathreshold auditory process-

ing, and cognitive functioning.
Also, the application of this prediction method to

older listeners with actual (i.e., not simulated) ARHL

assumes that the signal processing used to simulate the

perceptual consequences of ARHL is accurate and that

the list of simulated auditory processing deficits occur-

ring in ARHL is exhaustive. However, there is increasing

evidence that older listeners also present altered sensitiv-

ity to temporal-envelope (e.g., Füllgrabe et al., 2003,

2015; He et al., 2008) and temporal-fine-structure infor-

mation (e.g., Füllgrabe, 2013; Füllgrabe et al., 2017;

Grose & Mamo, 2010; Ross et al., 2007; for a review,
see Füllgrabe & Moore, 2018) and that those deficits are

associated with poorer speech perception (e.g., Füllgrabe

et al., 2015; Neher et al., 2011). Such age-related tempo-

ral suprathreshold processing deficits are not simulated

by the algorithm of Nejime and Moore (1997). In addi-

tion, individual variations and age-related changes in

some (but not all; Füllgrabe & Rosen, 2016b) linguistic

and cognitive abilities are associated with speech-

perception performance (e.g., Carroll et al., 2016;

Füllgrabe et al., 2015). As with increasing age more
people are subject to cognitive decline (e.g., Baltes and

Lindenberger, 1997; Verhaeghen & Salthouse, 1997), a

number of older listeners might find themselves with

insufficient cognitive resources to perform optimally

complex tasks such as speech perception (Füllgrabe &

Rosen, 2016a). This age-related effect is not taken into

account by the ASR system.
Fontan et al. (2017) simulated the combined effects of

three components of ARHL, namely (a) the elevation

of HTs, (b) the loss of FS, and (c) LR. Thus, the relative

effect of each of these components on the precision

of the prediction of speech intelligibility is currently

not known.

The present study addresses the issues outlined earlier
by comparing intelligibility scores obtained by individual
older listeners with ARHL with the predictions of an
ASR system fed with speech signals processed to simu-
late for each individual listener one (HT elevation alone),
two (HT elevationþFS loss; HT elevationþLR), or all
three (HT elevationþFS lossþLR) of the perceptual
consequences of ARHL.

While the long-term objective is to use ASR to
predict aided speech intelligibility in a range of listening
environments (e.g., in quiet, in the presence of different
background sounds), it was decided to limit the scope of
the present study to the prediction of unaided perception
performance for speech presented in quiet. This was done
because the listener-related variability in suprathreshold
auditory and cognitive processing abilities are likely to
play a larger role when speech has to be understood in
the presence of background noise and/or after being
processed through a HA (e.g., Stone et al., 2009).
In addition, in France, speech audiometry is often
performed in quiet, as shown by a recent survey of the
current audiological practice of French HA audiologists
(Rembaud et al., 2017).

Methodology

Participants

Recruitment. Twenty-eight older (�60 years) native
French speakers, presenting for their first consultation
at the ENT department of the Honor�e Cave Hospital or
a local HA dispensing center (Montauban, France), were
recruited, based on their having relatively symmetrical
and sloping high-frequency hearing losses, as is typical
for mild-to-moderate ARHL. The difference in average
hearing sensitivity in the low-frequency (�1 kHz) and
high-frequency (�4 kHz) regions was at least 20 dB.
Extreme cases of (nearly) normal hearing sensitivity or
of more severe hearing losses (for the latter, the presence
of cochlear dead regions becomes more likely) were not
considered for participation to reduce the possibility of
observing ceiling and floor effects on the speech-
identification tests. None of the participants self-
reported having been excessively exposed to loud
sounds during their life. While some of the participants
self-reported experiencing tinnitus, which can affect
speech intelligibility (Ryu et al., 2012), none of them
judged its presence as having a deleterious effect on
their ability to understand speech. Only people with no
prior experience with speech-intelligibility tests were
invited to participate to ensure that familiarity with the
speech materials used in the present study did not affect
performance. All participants were confirmed as right-
handed based on their results on the Edinburgh
Handedness Inventory (Oldfield, 1971) and had normal
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or corrected-to-normal vision. Prior to the start of the
study, approved by the ethical committee of the Honor�e
Cave Hospital (Montauban, France), all participants
provided informed written consent.

Cognitive Screening. To minimize the possibility that test
performance might be affected by pathological cognitive
status, the French version of the Mini-Mental State
Examination (MMSE; Kalafat et al., 2003), a frequently
used screening tool for the assessment of cognitive
impairment, was administered to all participants.
Two of the recruited participants scored less than
27 points (out of the maximum of 30), which has been
considered as outside the range of normal cognitive
functioning (e.g., Bassuk et al., 2000; Bruce et al.,
1995; Zaudig, 1992), and hence were excluded from the
study. As expected based on population norms (Crum
et al., 1993), MMSE scores declined with increasing age
(Spearman’s rho¼ –.52, p¼ .005, one-tailed).

Audiometric Assessment. For the remaining 26 partici-
pants, pure-tone audiometry was reconducted in the
test (i.e., right) ear, following the guidelines of the
British Society of Audiology (2011). An Interacoustics
Affinity 2.0 AC440 audiometry module with a 3M Peltor
H7A headset and a RadioEar B-81 bone transducer were
used for air- and bone-conduction audiometry, respec-
tively. All testing was carried out in a sound-treated
room complying with the requirements set out by the
French public health code for audiometric booths
(R�epublique Française, 2017); the measured ambient
noise level over a 1-hr period was 32 dB(A) compared
with the maximum acceptable level of 40 dB(A).

Air-conduction audiometric thresholds were mea-
sured at octave frequencies between 0.125 and 8 kHz,
as well as at 0.75, 1.5, 3, and 6 kHz. To increase the
precision of the threshold estimate, and therefore the
precision of the ASR-based prediction based on the sim-
ulation of the participants’ hearing losses, the final step
size for the adaptive procedure was set to 2 dB instead of
the routinely used 5 dB.

Bone-conduction audiometric thresholds were mea-
sured at octave frequencies between 0.25 and 4 kHz, as
well as 0.75, 1.5, and 3 kHz. As recommended by the
British Society of Audiology (2011), a masking (white)
noise was systematically presented to the nontest (i.e.,
left) ear at 15 dB above the presentation level of the
pure tones to minimize the contribution of this ear to
the bone-conduction thresholds. The sensorineural
nature of the participants’ hearing losses was confirmed
by air-bone gaps �12 dB at each test frequency.
Two participants, who had larger air-bone gaps, were
excluded from the study.

The individual and mean audiograms of the remaining
24 participants (9 females; mean age¼ 71.3 years,

standard deviation [SD]¼ 7.9), who fulfilled all inclusion
criteria, are shown in Figure 1. Mean audiometric thresh-
olds declined progressively with increasing frequencies.
The mean audiogram spanned a very similar range of
hearing sensitivities (i.e., from 18dB hearing level [HL]
at 0.125 kHz to 66 dB HL at 8 kHz) to that extrapolated
for an age of 72 years by Fontan et al. (2017; see their
Figure 1) on the basis of the audiometric data reported
by Cruickshanks et al. (1998), averaged across gender and
ears. However, the overall sensitivity averaged across all
frequencies of 42 dB HL was 9-dB higher than that
reported by Fontan et al. (2017). The pure-tone average
(PTA) for frequencies of 0.5, 1, 2, and 4 kHz did not sig-
nificantly correlate with the age of the participants
(r¼ .09, p¼ .342, one-tailed). Individual characteristics
in terms of demographic, audiometric, and cognitive
data for the 24 participants are shown in Table 1.

Human Speech Intelligibility

Speech Materials. Human speech intelligibility was
assessed in quiet for the three types of speech materials
most frequently used for speech audiometry by HA
audiologists in France (i.e., logatoms, words, and senten-
ces; Rembaud et al., 2017). All stimuli were taken from the
recordings produced by the Coll�ege National
d’Audioproth�ese (CNA; 2007), a French nonprofit orga-
nizationofHAaudiologists providing technical, pedagog-
ic, and deontological guidance and recommendations, as
well as promoting scientific research in the domain of
audiology (http://www.college-nat-audio.fr). All stimuli

Figure 1. Results of Pure-Tone Air-Conduction Audiometry for
the Test (i.e., Right) Ears of the 24 OHI Participants. The thin lines
represent the individual audiograms. The thick line and associated
gray-shaded area represent the mean audiogram �1 SD.
OHI¼ older hearing-impaired; SD¼ standard deviation.
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were pronounced by the same adultmale native speaker of
standard French and recorded using a 44.1-kHz sampling
rate and 32-bit quantization.

For the identification of logatoms, the nonsense
vowel–consonant–vowel (VCV) stimuli from Lists 1 to
4 of the test material, provided by the CNA (2007) and
originally developed by Dodel�e and Dodel�e (2000), were
used. Each of these VCV stimuli was composed of 1 of
the 17 most frequent French consonants (C ¼/p,t,k,b,d,
g,m,n,f,s,S,v,z,Z,�,l,w/), presented within a given vocalic
context composed of two different vowels (V ¼/i,e,E,~E,ø,
o,O,~O,a,~A,y,u/; e.g., “iza,” “ato”). Each list contained all
consonants once (i.e., 17 logatoms), for a total of 68
logatoms used in the study.

For the identification of words, 60 disyllabic mascu-
line nouns (corresponding to 6 of the 40 ten-word lists
developed by Fournier, 1951), each preceded by the
French masculine definite article “le”, were used (e.g.,
“le soldat”—“the soldier”). Although these lists are not
phonetically balanced, they are exclusively composed of
nouns starting with a consonant and ending with any
vowel other than /@/, which has a special phonological

status in the French language, to minimize differences in

phonological structure between items within and across

lists (Fournier, 1951).
For the identification of sentences, 40 sentences from

the French version of the Hearing in Noise Test (HINT;

Vaillancourt et al., 2005) were used. The sentences are

rather simple and somewhat predictable, with each sen-

tence being composed of a single assertive clause com-

bining words chosen from a language comprehension

test for children aged 6 to 7 years (Leduc, 1997; e.g.,

“Le camion est rouge.”—“The truck is red.”).

General Procedure. All participants were tested with the

three types of speech materials, with the order of the

identification tests being counterbalanced across partic-

ipants. Prior to data collection with each test, partici-

pants were briefly familiarized with the test stimuli and

procedure using additional practice stimuli that were not

used during the test phase: one list of logatoms, one list

of words, and four sentences.
Stimuli were presented at 50 dB sound pressure level

(SPL) through an Interacoustics Affinity 2.0 audiometer

connected to a 3M Peltor H7A headset to the participant

seated in the same sound-treated room as that used for

the audiometric assessment. This level of presentation

(corresponding to “quiet speech” in the Affinity graph-

ical user interface) was chosen, as informal preliminary

testing of other older patients with a similar range of

ARHLs revealed a wide range of speech-identification

performance while avoiding large floor and ceiling

effects. It is noteworthy that this level is lower by

approximately 15 dB than that associated with a

normal conversational level. The rationale for assessing

speech-identification performance at a fixed presentation

level was that ASR systems, in contrast to human listen-

ers, use signal intensity normalization techniques for

processing and modeling speech. In case of an adaptive

procedure tracking the SRT, this would differently affect

human and machine intelligibility scores for speech pre-

sented in quiet. Finally, as both ASR and the ARHL-

simulation program process mono signals, it was decided

to present the speech stimuli monaurally to the right ear.
Participants were instructed to report back verbally

the VCVs or words they had heard and to guess in case

they were uncertain. No feedback on the test perfor-

mance was provided, but all participants received

verbal encouragements from the experimenter to main-

tain motivation and to reduce possible frustration in

those participants struggling with the task. Responses

were recorded using a microphone positioned in front

of the participant for off-line manual transcription

based on the International Phonetic Alphabet and scor-

ing. For each participant, the final intelligibility score

corresponded to the percentage of entirely correctly

Table 1. Individual Characteristics for the 24 Older Hearing-
Impaired (OHI) Participants in Terms of Gender (F¼ Female,
M¼Male), Age (Years), MMSE Score (Out of 30), and Pure-Tone
Average for Audiometric Frequencies of 0.5, 1, 2, and 4 kHz (PTA;
in dB HL) for the Test (i.e., Right) Ear.

Participant Gender Age MMSE PTA

OHI1 F 73 29 19.5

OHI2 F 69 27 21

OHI3 H 68 28 24

OHI4 H 71 29 27.5

OHI5 H 67 29 28.5

OHI6 H 73 29 32

OHI7 F 75 29 36

OHI8 F 60 30 36.5

OHI9 F 87 30 37

OHI10 H 62 29 40.5

OHI11 H 61 30 41.5

OHI12 H 61 29 45.5

OHI13 H 66 28 45.5

OHI14 H 85 27 45.5

OHI15 H 70 29 46

OHI16 F 89 27 48

OHI17 F 67 29 50

OHI18 H 73 28 51

OHI19 H 77 27 52

OHI20 F 77 28 53

OHI21 F 78 27 54

OHI22 H 67 30 54.5

OHI23 H 67 29 57

OHI24 H 68 29 61.5

OHIMean (9F/15M) 71.3 28.6 42.0

Note. Participants are ranked in increasing order of PTA. MMSE¼Mini-

Mental State Examination; PTA¼ pure-tone average.
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identified VCVs (for the logatom-identification test) or
words (for the word- and sentence-identification tests).

Machine Speech Intelligibility

ASR System. In the present study, the SPHINX-3 engine
(Seymore et al., 1998), an open-source speech recognizer
based on hidden Markov models (Rabiner, 1989), was
used. Acoustic models designed to process 16-kHz
speech recordings and representing 35 phones and
five kinds of pauses were created (i.e., trained) using a
31-hr-long corpus of French radio broadcast recordings
(Galliano et al., 2009), containing utterances from approx-
imately 600 speakers. The acoustic features were extracted
using a 16-ms sliding window. Each feature was composed
of 12mel-frequency cepstral coefficients (MFCCs;Davis&
Mermelstein, 1980), calculated in the 0.3-to-8-kHz range,
and the signal energy, as well as the first and second deriv-
atives of these 13 values (12 MFCCs+ the signal energy),
resulting in a total of 39 dimensions. Each phone wasmod-
eled by a hiddenMarkov model representing the probabil-
ity of transitions between three acoustic states (such states
include the attack, sustain, and release parts of phones),
and the distribution of acoustic features for each state was
represented byaGaussianmixturemodelwith 32Gaussian
models (Del�eglise et al., 2005; Est�eve, 2009).

As the size of the lexicon used in the ASR system
influences the probabilities of occurrence of the target
items, which might affect the correlations with human
intelligibility scores, three lexicons varying in size were
created for each of the three speech materials used in this
study (referred to in the remainder of the article as
“small”, “medium”, and “large” lexicons). The small lex-
icon was only comprised of the stimuli that were pre-
sented to the participants during the identification tasks.
Given its high specificity, compared with the two other
lexicons, the small lexicon was expected to yield the
highest machine intelligibility.

For the logatom-identification test, one finite-state
grammar was created, containing only one final state
(i.e., a single “word” to be recognized) that could be
actualized under the form of any of (a) the 68 test loga-
toms presented to the participants (small lexicon), (b) the
68 test logatoms and the 17 logatoms that were used for
the training of the participants (medium lexicon), and (c)
the 2,448 VCVs that can be obtained by combining the
17 consonants and 12 vowels used in the logatom-
identification test (large lexicon).

For the word-intelligibility test, a bigram language
model was used. This model contained sequences of two
words beginning by the French masculine definite article
“le” followed by a masculine noun. The probability asso-
ciated with each noun corresponded to the probability of
their occurrence in spoken French, as described by New
et al. (2007). The bigram model was associated with a

lexicon consisting of (a) the 60 disyllabic nouns from the
test of Fournier (1951) that were presented to the partic-
ipants (small lexicon), (b) 300 words from the 30 lists of
Fournier (1951)’s dissyllabic words distributed by the
CNA (2007; medium lexicon), or (c) the 6,491 masculine
nouns starting with a consonant included in the lexicon
created by de Calm�es et al. (2005; large lexicon).

For the sentence-identification test, a trigram model
was created based on the ESTER2 corpus (Del�eglise
et al., 2005; Galliano et al., 2009). The trigram model
was associated with a lexicon comprising (a) the 129
words included in the 40 HINT sentences that were pre-
sented to the participants (small lexicon), (b) the 566
words contained in the 100 HINT sentence recordings
provided by the CNA (2007; medium lexicon), or (c) the
whole lexicon created by de Calm�es et al. (2005), con-
taining 62,351 French words (large lexicon).

To check that the ASR system achieved a sufficiently
high performance (i.e., more than 80% correct identifi-
cation) with “normal” (i.e., undegraded) speech,
machine intelligibility scores for the three unprocessed
speech materials were computed, using the small lexi-
cons. Performance for logatoms, words, and sentences
was 84.7, 98.3, and 90.8%, respectively, indicating that
the ASR system was working as expected.

Simulation of Hearing Loss. The algorithm described by
Nejime and Moore (1997) was used to simulate some
of the perceptual consequences of ARHL. The algorithm
was implemented in a custom-written MATLAB pro-
gram. Based on the audiometric thresholds provided to
the program, three effects associated with ARHL were
simulated: (a) elevated HTs (by attenuating the frequen-
cy components in several frequency bands according to
the threshold values given as an input); (b) reduced FS
(by spectrally smearing the speech signal; Baer & Moore,
1993); and (c) LR (by raising the signal envelope to a
power; Moore & Glasberg, 1993).

To simulate the elevation of HTs, the program uses
frequency-dependent linear attenuation filters. The gain
value for each filter is defined according to the corre-
sponding audiometric threshold.

To simulate the loss of FS, the program first defines
the degree of hearing loss based on the PTA for audio-
metric frequencies between 2 and 8 kHz, using three cat-
egories: “mild” (15 dB HL � PTA2–8kHz< 35 dB HL),
“moderate” (35 dB HL � PTA2–8 kHz< 56 dB HL), and
“severe” (PTA2–8 kHz � 56 dB HL). Depending on the
category, a different degree of spectral smearing is
applied to the power spectrum, using the algorithm
described by Baer and Moore (1993). As auditory filters
tend to broaden asymmetrically as a function of the
degree of ARHL (e.g., Glasberg & Moore, 1986; Tyler
et al., 1984), with more broadening generally occurring
on the lower slope of the filters, higher broadening
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factors were set for the lower (L) slopes of the simulated

auditory filters than for the upper (U) slopes:

Broadening factors were (L¼ 1.6, U¼ 1.2), (L¼ 2.4,

U¼ 1.6), and (L¼ 4.0, U¼ 2.0) for the filters associated

with a mild, moderate, and severe loss, respectively.
Finally, the program simulates LR by raising the nor-

malized envelope of the speech signals (Moore &

Glasberg, 1993). Depending on the degree of hearing

loss to be simulated, the envelope is raised with more

or less power.
To investigate the relative importance of each of the

components of the ARHL-simulation algorithm for the

prediction of human speech-identification performance,

four simulation conditions were set in this study: HT

elevation, HT elevationþFS loss, HT elevationþLR,

and HT elevationþFS lossþLR.

Machine Intelligibility Score. Every item (VCV or word) was

considered as correct if it was chosen as the most prob-

able item by the ASR system. Final scores for each test

corresponded to the percentage of correct items (in the

case of sentences, every word of each sentence was taken

into account).

Results

Human Speech Intelligibility

Intelligibility scores for each of the three speech materials

are shown in Figure 2. In all three tests conducted at the

same presentation level of 50 dB SPL, individual scores
varied widely across participants, spanning almost the
entire possible performance range. The distributions of
performance for logatoms and sentences looked some-
what bimodal with identification scores falling either
above 80 or below 50% correct. Twenty-six, 13, and
13% of the participants were unable to perform the loga-
tom, word, and sentence identification tests, respectively,
while 17% performed at ceiling in the sentence identifi-
cation test. A Kolmogorov–Smirnov test showed that
intelligibility scores for logatoms and sentences were
not normally distributed (both p< .05). Hence, nonpara-
metric tests were used in all subsequent inferential statis-
tical analyses involving intelligibility scores. As expected,
median performance (shown by the thick black lines) dif-
fered across the three speech materials: It was lowest for
the meaningless logatoms (25.7%) and increased for the
words in isolation (73.3%) to reach a near-ceiling level
for the words in sentences (85.8%).

Prediction of Human Speech Intelligibility

Intelligibility scores for all three speech materials
declined with age (Spearman’s rho ranged from –.20 to
–.28), but this trend was not significant (all p� .091, one-
tailed). On the other hand, PTA correlated strongly with
speech intelligibility, with higher PTAs being associated
with lower intelligibility scores (all Spearman’s rho
�–.87, all p< .001, one-tailed). In the upper row of
Figure 3, human intelligibility is plotted as a function
of PTA for each of the three speech materials (see dif-
ferent panels). A nonlinear regression, using a general-
ized logistic function, was used to model the
psychometric curves for each speech material.
Consistent with previous observations (e.g., Kryter,
1994; Pichora-Fuller, 2008; Sheldon et al., 2008), the
slope of the psychometric function becomes steeper,
and the function shifts toward higher PTAs as the
speech material contains more linguistic information.

The use of lexicons of different sizes resulted in
changes in performance of the ASR system but hardly
affected its ability to predict the trends in human speech
intelligibility (see Table 2). For all three speech materi-
als, highest machine intelligibility was achieved for the
smallest lexicon. For logatoms, using the smallest lexi-
con yielded median intelligibility (30.6%) that was close
to that observed in the older hearing-impaired (OHI)
participants (25.7%). Machine intelligibility remained
approximately the same when the used speech material
consisted of isolated words (36.7%) or sentences
(32.2%), thereby dramatically underestimating human
intelligibility (73.3 and 85.8% for words and sentences,
respectively). There is however a noticeable exception to
this general trend: The predicted intelligibility scores for
one OHI listener were always much higher than the

Figure 2. Speech Intelligibility for Logatoms, Words, and
Sentences. Circles represent individual scores for the 24 OHI
participants. Overlapping data points at the extremes are displaced
horizontally for better visibility. The thick black line indicates
median performance, and the gray area represents the associated
interquartile range.
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behavioral scores: 62.5% versus 8.8% for logatoms,
85.0% versus 70.0% for words, and 79.8% versus
46.5% for sentences (see the corresponding data points
in the lower row of Figure 3).

Increasing the lexicon size to medium and large
resulted in a progressive reduction in machine

intelligibility, independently of the speech material
used. The quality of the prediction of human intelligibil-
ity scores was assessed in terms of both the strength of
the association between human and machine intelligibil-
ity scores and prediction errors. As human and machine
scores were not normally distributed, the strength of

Figure 3. Human Intelligibility Scores Plotted as a Function of PTA and Machine Intelligibility Scores. Upper row shows scatterplots
relating human intelligibility scores to the PTA computed over frequencies 0.5, 1, 2, and 4 kHz for each participant, and lower row shows
scatterplots relating human intelligibility scores to individual scores predicted by the ASR system with a small lexicon and using the ARHL
simulation implementing elevation of hearing thresholds, loss of frequency selectivity, and loudness recruitment. Each panel shows the
results for a given speech material: logatoms (left panel), words (middle panel), and sentences (right panel). The different colors indicate
different ranges of PTAs (see symbol legend).
PTA¼ pure-tone average; SRT¼ speech reception threshold.

Table 2. Median Machine Intelligibility (in %) and Correlation Between Human and Machine Intelligibility Scores (Spearman’s Rho, One-
Tailed), Using the Small, Medium, and Large Lexicon (Rows) for Each of the Three Speech Materials (Columns).

Logatoms Words Sentences

Machine

intelligibility Correlation

Machine

intelligibility Correlation

Machine

intelligibility Correlation

Small 30.6 .81*** (19.7) 36.7 .77*** (24.0) 32.2 .71*** (31.6)

Medium 27.1 .83*** (18.9) 25.0 .83*** (23.7) 20.5 .73*** (31.4)

Large 4.2 .83*** (22.8) 12.5 .76*** (25.1) 15.8 .70*** (32.0)

Note. The root-mean-square error obtained using a linear regression is reported between brackets.

***p< .001; one-tailed test.
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association between both variables, and its statistical sig-
nificance, were assessed through Spearman’s correla-
tions. To estimate prediction errors, simple parametric
linear regressions were used to calculate root-mean-
square errors (RMSEs). The results show that, contrary
to the ASR performance, the quality of the predictions,
either in terms of Spearman’s rho or RMSE, did not
systematically change as a function of lexicon size.
Given the lesser processing costs and shorter processing
time associated with the use of an ASR system imple-
menting a small lexicon, further analyses were limited to
machine intelligibility obtained with the small lexicon.

The lower row of Figure 3 shows scatterplots relating
human intelligibility scores to machine intelligibility
scores. For logatoms (left panel), the data are roughly
following the diagonal, showing an audibility gradient
from “high PTA” (yielding both low human and low
machine intelligibility scores) to “low PTA” (yielding
both high human and high machine intelligibility
scores). Such a linear relationship between human and
machine scores is not observed with the other two speech
materials affording the use of linguistic top-down infor-
mation (Pichora-Fuller, 2008): For OHI listeners with
PTAs of 40 dB HL and above (excluding the outlier
mentioned earlier), predicted intelligibility remains low
(i.e., does not exceed 53.4%) in the face of human per-
formance varying widely from 0.0 to 81.7% for words
and from 0.0 to 95.0% for sentences.

As done in Fontan et al. (2017), ARHL was initially
simulated by spectral attenuation, spectral smearing,
and expansion of the signal envelope to a power, mim-
icking three effects of ARHL: HT elevation, FS loss, and
LR. To quantify the relative contribution of these dif-
ferent components, the present study also evaluated
machine intelligibility for speech signals processed to
mimic only one or a combination of the components
of ARHL (see Table 3).

Surprisingly, the HT-elevation condition yielded
Spearman correlation coefficients that were (marginally)
higher than those for the condition in which all three
effects of ARHL were simulated simultaneously (HT
elevationþFS lossþLR). Adding FS loss to HT eleva-
tion resulted in small decreases in the strength of the
correlation for logatoms and words (of .07 and .06
respectively) and an even smaller increase for sentences
(of .02). Associated RMSEs all increased (by 0.6, 2.4,
and 1.7 for logatoms, words, and sentences, respective-
ly). On the other hand, removing FS loss from the full
ARHL simulation improved the strength of the correla-
tions for all three speech materials (by .08, .05, and .09
for logatoms, words, and sentences, respectively) and
reduced the RMSE (by 1.6, 2.2, and 2.2 for logatoms,
words, and sentences, respectively). After applying a
Fisher’s r-to-Z transformation (Lee & Preacher, 2013),
the improvements in the strength of the correlations

were found to be significant for logatoms (Z¼ 2.12,

p¼ .017, one-tailed) and for sentences (Z¼ 2.90,

p¼ .004, one-tailed). When adding the simulation of

LR to the simulation of HT elevation, or to

the simulation of HT elevationþFS loss, both increases

and decreases in the strength of the correlations and in

the RMSEs were observed. However, these changes were

significant only for the simulation of HT elevation with

logatoms (Z¼ 2.18, p¼ .015, one-tailed) and sentences

(Z¼ 1.89, p¼ .029, one-tailed), for which the correlation

coefficient increased by .07 and .05, respectively.

Discussion

This study aimed at predicting the speech-identification

performance in quiet of unaided OHI listeners for speech

materials of varying linguistic complexity and predict-

ability that are commonly used in audiological practice

in France (Rembaud et al., 2017). Twenty-four OHI lis-

teners completed three speech-identification tasks con-

sisting in the repetition of logatoms, words, and

sentences. An ASR system was used to recognize the

same speech stimuli, which were processed to mimic

some of the perceptual consequences experienced by

each listener (i.e., elevation of HT, loss of FS, and LR).

Human and Machine Speech-Intelligibility

Performance

Despite all speech materials being pronounced by the

same speaker and recorded and reproduced under the

same acoustic conditions, human speech-intelligibility

performance improved from logatoms over words to sen-

tences, that is, with increasing linguistic context (i.e., lex-

ical, morphosyntactic, and semantic information). This

observation is in line with the Mutuality Model of

Table 3. Spearman Correlation Coefficients Between Human
Intelligibility Scores and Machine Intelligibility Scores (Obtained
With the Small Lexicon) for Each of the Three Speech Materials, as
a Function of ARHL-Simulation Condition (HT elevation, HT
elevationþ FS loss, HT elevationþ LR, and HT elevationþ FS
lossþ LR).

Human intelligibility

ARHL simulation Logatoms Words Sentences

HT .82*** (19.0) .86*** (21.7) .75*** (29.6)

HTþ FS .75*** (19.6) .80*** (24.1) .77*** (31.3)

HTþ LR .89*** (18.1) .84*** (21.8) .80*** (29.4)

HTþ FSþ LR .81*** (19.7) .79*** (24.0) .71*** (31.6)

Note. The root-mean-square error obtained using a linear regression is

reported between brackets. ARHL¼ age-related hearing loss. HT¼
elevation of hearing thresholds; FS¼ loss of frequency selectivity;

LR¼ loudness recruitment.

***p< .001; one-tailed test.
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Lindblom (1990), according to which listeners will take
advantage of nonacoustic cues when the speech signal is
degraded. Also, the psychometric functions relating
human intelligibility scores to mean audibility shifted
toward higher degrees of signal degradation, associated
with higher PTAs, for words and sentences. Similar obser-
vations have been made for normal-hearing and HI lis-
teners performing identification-in-noise tasks, using
speech materials of varying predictability (Fontan,
Tardieu, et al., 2015; Kryter, 1994; Pichora-Fuller, 2008).

By comparison, machine intelligibility did not marked-
ly or consistently improve with the speech materials. The
discrepancies observed between human and machine
intelligibility could be due to the fact that the acoustic
models used in the present study were not trained on
degraded speech (in contrast to those used in Kollmeier
et al., 2016; Sch€adler et al., 2018). One way to improve
machine intelligibility scores would therefore be to train
acoustic models on speech material that has previously
been processed to simulate HT elevation, FS loss, and
LR of various degrees. A second (less costly, but probably
also less efficient) way to achieve more robust acoustic
models (i.e., models that are less sensible to degraded
conditions) would be to modify the acoustic models by
using adaptation techniques such as maximum likelihood
linear regression (Leggetter & Woodland, 1995) or max-
imum a posteriori (Gauvain & Lee, 1994) on a (smaller)
corpus of speech processed to mimic ARHL.

The size of the lexicon had an impact on machine
performance: The smaller the lexicon, the higher the rec-
ognition scores. This was expected, as there are fewer
alternative candidates for speech recognition in case of
a smaller lexicon, and, thus, there is a greater probability
for the ASR system to successfully recognize the target
utterance. Given the higher performance and lower
associated processing costs, only small lexicons were con-
sidered for the prediction of human intelligibility scores.
It should however be noted that, if aiming at the qualita-
tive prediction of human speech-identification perfor-
mance (such as phonemic confusions; Fontan et al.,
2016), using small lexicons might not be optimal.
Indeed, as the lexicon determines to a large extend the
errors and confusions the ASR system can perform, a
qualitative speech-intelligibility prediction system should
incorporate a lexicon that matches as closely as possible
the mental lexicon of the human listener.

Prediction of Human Speech-Intelligibility Scores

Consistent with previous studies (Fontan et al., 2017;
Kollmeier et al., 2016; Sch€adler et al., 2018), very
strong and highly significant correlations were observed
between human and machine intelligibility scores.
Importantly, this result was achieved for the first time
using an ASR system that was trained on unprocessed

speech material (i.e., not degraded to mimic the conse-
quences of ARHL) and different from the test material.

However, for all speech materials and ARHL-
simulation conditions, the observed RMSEs were very
large, indicating that the prediction system could mainly
predict trends in human speech intelligibility. Among the
three speech materials used in the present study,
the strongest correlation (Spearman’s rho¼ .89) and
the lowest RMSE (18.1%) were observed for logatoms.
This is likely due to the prediction system mainly reflect-
ing the functioning of the peripheral part of the auditory
system. Indeed, the ASR system is basically an acoustic-
phonetic decoder: Aside from syntactic information (i.e.,
information on which word may occur after a given
word), only bottom-up, acoustic-phonetic information
is processed by the system. Because human performance
on the logatom-identification task is also mainly deter-
mined by acoustic-phonetic information, a very high
correlation was found between human and machine
intelligibility scores for this speech material.

In contrast to human listeners, the ASR system could
not compensate for the degradation of the speech signal
by taking advantage of the linguistic information present
in the case of words and sentences. This resulted in an
increasing discrepancy between human and machine
intelligibility scores with increasing linguistic context.

Also, as cognitive abilities contribute to some extent
to speech processing in quiet in unaided OHI listeners
(van Rooij & Plomp, 1992), variability in these abilities
across the listeners (that are not echoed in the ASR
system) most likely reduced the association between
human and machine intelligibility scores. To explore
whether general cognitive functioning also contributed
to speech intelligibility in our sample, bivariate correla-
tions between MMSE scores and human intelligibility
scores were calculated. While the correlations failed to
be significant for logatoms (Spearman’s rho¼ .33, p¼
.059, one-tailed) and for words (Spearman’s rho¼ .30,
p¼ .075, one-tailed), the correlation was found to be sig-
nificant for sentences (Spearman’s rho¼ .40, p¼ .026,
one-tailed). Also, separate multiple linear regressions
were conducted for each of the speech materials, with
human intelligibility scores as the dependent variable
and machine intelligibility scores (obtained using the
small lexicon and the AHRL-simulation condition yield-
ing the strongest correlation with human intelligibility
scores) and MMSE scores as predictor variables. For
each speech material, MMSE scores were always entered
after machine intelligibility scores. Results are shown in
Table 4 and indicate that the addition of MMSE scores
just failed to contribute significantly to the prediction of
human intelligibility scores for logatoms (p¼ .074) and
words (p¼ .056) but significantly improved the predic-
tion for sentences (p¼ .024). The normality assumption
for the three models was assessed by a Kolmogorov–
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Smirnov test that indicated that the distributions of the
prediction residuals were not significantly different from
a normal distribution (all p¼ .200). The amount of addi-
tional variance explained by the MMSE scores increased
as a function of the linguistic complexity of the speech
material: It was 3.8, 6.8, and 13.4 percentage points for
logatoms, words, and sentences, respectively.

It is noteworthy that all our participants had MMSE
scores� 27 (out of 30), indicative of normal cognitive
functioning, and that the MMSE has poor discrimina-
tive power in the nonpathological range of cognitive
functioning. Hence, it can be speculated that the use of
more sensitive cognitive tests and a more cognitively het-
erogeneous sample of OHI listeners would reveal a
greater potential for cognition to improve ASR-based
predictions of speech intelligibility.

The current study also investigated the additional
effects of simulated FS loss and LR on the prediction
of human speech intelligibility, when these were added
separately or together to the simulation of HT elevation.
One possible concern was that the spectral smearing
used to simulate FS loss might have no effect on ASR
performance because the computation of MFCC fea-
tures also involves spectral smearing. It was thus possi-
ble that the simulation of FS loss would remain
“invisible” in the ASR features unless the amount of
smearing used to simulate FS loss would exceed that
imposed by the computation of MFCCs. However, in
the present study and in the study of Fontan et al.
(2017), the simulation of FS loss did affect ASR perfor-
mance, and this was observed for all levels of smearing
used (i.e., mild, moderate, and severe; results not
shown). Contrary to the simulation of LR which yielded
marginal improvements in the correlation between
human and machine intelligibility scores and, in some
cases, in RMSEs, the inclusion of the simulation of FS
loss yielded almost always weaker correlations and
always yielded higher RMSEs. One explanation might
be that artifacts produced by the spectral smearing to
mimic the loss of FS had detrimental effects on machine
intelligibility; such signal-processing-related artifacts do

not occur in the impaired human ear. To overcome this
issue, future studies could train the acoustic models of
the ASR on speech signals processed through the ARHL
simulator; in this case, great care should be taken in
considering which ARHL-simulation conditions (i.e.,
which ARHL profiles) should be selected for the training
of the acoustic models, as it may result in an overfitting
of the system (i.e., to higher ASR scores) for OHI listen-
ers whose audiometric profiles are close to the training
conditions. To avoid such a bias, a separate set of acous-
tic models could be created for each listener’s audiomet-
ric profile. In that case, all the listeners would benefit
from the same amount of acoustic training. However,
given the large training speech corpus, resulting in a
computation time of more than 30 hr for a single set of
acoustic models, this approach was deemed beyond the
scope of the present study.

Another limit of the prediction system used in this
study is that the strength of the simulation of FS loss
and LR depended on the category of the severity of the
audiometric loss (mild, moderate, or severe). For listen-
ers whose PTA falls just below or above the threshold
associated with a given ARHL severity category, this
could result in an under- or oversimulation of FS loss
and LR. This is possibly illustrated by the three outliers
in the bottom panels of Figure 3, representing data for
the same listener with a PTA of 55.2 dB HL. As this PTA
just falls short of the lower limit of the severe-ARHL
category (i.e., 56 dB HL), the simulated FS loss and LR
probably underestimated the actual consequences of
ARHL in this individual. This would have resulted in
higher machine than human intelligibility scores, as was
empirically observed for this listener.

Also, FS loss and LR show a high interindividual
variability that is unrelated to audiometric thresholds
(Al-Salim et al., 2010; Hopkins & Moore, 2011;
Marozeau & Florentine, 2007). Thus, individual FS
loss and LR might have to be measured experimentally,
rather than being inferred, to improve the prediction of
human intelligibility scores. To test this hypothesis, LR
was estimated for each participant by computing the

Table 4. Results of Multiple Linear Regressions for the Prediction of Human Logatom-, Word-, and Sentence-Intelligibility Scores Using
Machine Intelligibility Scores and MMSE Scores as Predictor Variables.

Speech material R2 RMSE Predictor b coef R2 change p value

Logatoms .78 17.2 Machine intelligibility .828 .739 <.001

MMSE score .196 .038 .074

Words .65 21.7 Machine intelligibility .750 .584 <.001

MMSE score .261 .068 .056

Sentences .52 26.6 Machine intelligibility .602 .387 .001

MMSE score .367 .134 .024

Note. Machine intelligibility scores were always entered first into the regression analysis. For each of the three speech materials, the explained variance (R2)

and root-mean-square error (RMSE) for the entire model are given, as well as the contribution of each predictor in terms of its standardized coefficient (b
coef), associated change in the amount of explained variance (R2 change), and significance (p value). MMSE¼Mini-Mental State Examination.
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average of the differences between HTs and the maxi-
mum comfortable levels at all audiometric frequencies.
Separate multiple linear regressions were computed for
each speech material, with human intelligibility scores as
the dependent variable and machine intelligibility scores
and LR estimates as the predictor variables. The results
indicate that LR estimates do not significantly improve
the prediction of the human intelligibility scores for any
of the speech materials (all p� .097). This finding might
indicate that the ARHL simulation successfully approx-
imated the individual levels of LR experienced by the
listeners. On the other hand, the fact that the average
dynamic range across frequencies did not contribute sig-
nificantly to the model could indicate that it is not a
good estimate of LR. A number of alternative methods
for assessing LR exist, such as asking the listeners to
estimate the intensity of pure tones with absolute num-
bers (e.g., Hellman & Meiselman, 1990) or on a categor-
ical scale (e.g., Brand & Hohmann, 2001). Similarly,
collecting individual data on FS loss (through the assess-
ment of auditory filter bandwidth) could help to better
simulate ARHL and therefore achieve better predictions
of human intelligibility.

The prediction system in this study also did not take
into account changes in the sensitivity to temporal-
envelope and temporal-fine-structure information that
occurs with age (e.g., Füllgrabe et al., 2018; Moore
et al., 2012) and hearing loss (e.g., Füllgrabe & Moore,
2017; Gallun et al., 2014; King et al., 2014) and that are
associated with speech-in-noise perception (e.g.,
Füllgrabe et al., 2015; Lopez-Poveda et al., 2017;
Strelcyk & Dau, 2009). To our knowledge, there is cur-
rently no generally accepted simulation of the reduction
in or loss of temporal processing abilities that could be
used in addition to the ARHL simulation used here.
However, ASR-based predictions of human speech intel-
ligibility could possibly be improved by statistically
taking into account temporal processing abilities that
would need to be measured for each listener.

Finally, the present study investigated speech intelli-
gibility in conditions that are not the most representative
of real-life listening. First, conversational speech levels
are generally higher than the presentation level used in
the present study. A lower presentation level of 50 dB
SPL was used, and, as the ASR system uses intensity
normalization, predictions would most likely result in
an underestimation of human performance at higher
presentation levels. Second, the present study focused
on the prediction of speech intelligibility in quiet by
unaided OHI listeners. However, the main difficulty
for people with ARHL is to understand speech in
noisy environments, and this is observed even when
amplification is provided by HAs. Thus, the suitability
of ASR for the prediction of unaided and aided speech-
in-noise perception needs to be assessed in future studies.

This would require the training of acoustic models to

cope with the consequences of signal processing schemes

used in HAs (e.g., linear amplification, amplitude com-

pression, frequency shifts) and the presence of different

types of background noise (e.g., white noise, speech

babble).

Conclusions

This study compared logatom-, word-, and sentence-

identification performance of 24 unaided OHI listeners

with predictions of an ASR system presented with the

same speech stimuli but processed to simulate some of

the consequences of ARHL (elevation of HT, loss of FS,

and LR). Strong to very strong correlations were

observed between human and machine intelligibility

scores for all three speech materials, but in all cases,

RMSEs were large. Simulating FS loss, in addition to

the elevation of HT, resulted in weaker correlations and

higher RMSEs. The strongest correlations were

observed for logatoms for which both human and

machine performance rely on acoustic cues.

Correlations were weaker for words and sentences for

which the ASR system did not benefit from the addition-

al linguistic context present in those speech materials.

The prediction of human sentence-identification perfor-

mance was significantly improved by taking into account

general cognitive ability of the listener.
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Füllgrabe, C., Harland, A. J., SeRk, A. P., & Moore, B. C. J.

(2017). Development of a method for determining binaural

sensitivity to temporal fine structure. International Journal

of Audiology, 56(12), 926–935. https://doi.org/10.1080/

14992027.2017.1366078
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(2009). Multichannel fast-acting dynamic range compres-
sion hinders performance by young, normal-hearing listen-
ers in a two-talker separation task. Journal of the Audio

Engineering Society, 57(7/8), 532–546.
Strelcyk, O., & Dau, T. (2009). Relations between frequency

selectivity, temporal fine-structure processing, and speech
reception in impaired hearing. Journal of the Acoustical

Society of America, 125(5), 3328–3345. https://doi.org/10.
1121/1.3097469

Tyler, R. S., Hall, J. W., Glasberg, B. R., Moore, B. C. J., &
Patterson, R. D. (1984). Auditory filter asymmetry in the
hearing impaired. Journal of the Acoustical Society of

America, 76(5), 1363–1368. https://doi.org/10.1121/1.391452
Vaillancourt, V., Laroche, C., Mayer, C., Basque, C., Nali, M.,

Eriks-Brophy, A., . . .Gigu�ere, C. (2005). Adaptation of the
HINT (hearing in noise test) for adult Canadian franco-
phone populations. International Journal of Audiology,
44(6), 358–361. https://doi.org/10.1080/14992020500060875

van Rooij, J. C. G. M., & Plomp, R. (1992). Auditive and
cognitive factors in speech perception by elderly listeners.
III. Additional data and final discussion. Journal of the

Acoustical Society of America, 91(2), 1028–1033. https://
doi.org/10.1121/1.402628

Verhaeghen, P., & Salthouse, T. A. (1997). Meta-analyses of
age–cognition relations in adulthood: Estimates of linear
and nonlinear age effects and structural models.
Psychological Bulletin, 122(3), 231–249. https://doi.org/10.
1037/0033-2909.122.3.231

Zaudig, M. (1992). A new systematic method of measurement
and diagnosis of “mild cognitive impairment” and dementia
according to ICD-10 and DSM-III-R criteria. International
Psychogeriatrics, 4(Suppl 2), 203–219. https://doi.org/10.
1017/S1041610292001273

16 Trends in Hearing

https://doi.org/10.1097/MAO.0b013e31826dbcc4
https://doi.org/10.3109/14992027.2015.1061708
https://doi.org/10.3109/14992027.2015.1061708
https://doi.org/10.1177/2331216518768954
https://doi.org/10.1177/2331216518768954
https://doi.org/10.1121/1.2783762
https://doi.org/10.1121/1.2783762
https://doi.org/10.1016/j.csl.2017.10.004
https://doi.org/10.1016/j.csl.2017.10.004
https://doi.org/10.1121/1.384464
https://doi.org/10.1121/1.384464
https://doi.org/10.1121/1.3097469
https://doi.org/10.1121/1.3097469
https://doi.org/10.1121/1.391452
https://doi.org/10.1080/14992020500060875
https://doi.org/10.1121/1.402628
https://doi.org/10.1121/1.402628
https://doi.org/10.1037/0033-2909.122.3.231
https://doi.org/10.1037/0033-2909.122.3.231
https://doi.org/10.1017/S1041610292001273
https://doi.org/10.1017/S1041610292001273

	table-fn1-2331216520914769
	table-fn2-2331216520914769
	table-fn3-2331216520914769
	table-fn4-2331216520914769
	table-fn5-2331216520914769
	table-fn6-2331216520914769

