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Primary Sjögren’s syndrome is an autoimmune disease that is predominantly seen in
women. The disease is characterized by exocrine gland dysfunction in combination with
serious systemic manifestations. At present, the causes of pSS are poorly understood.
Pulmonary and renal inflammation are observed in pSS mice, reminiscent of a subset of
pSS patients. A growing body of evidence indicates that inflammation mediated by
Damage-Associated Molecular Patterns (DAMPs) contributes to autoimmunity, although
this is not well-studied in pSS. Degraded extracellular matrix (ECM) constituents can serve
as DAMPs by binding pattern-recognition receptors and activating Myd88-dependent
signaling cascades, thereby exacerbating and perpetuating inflammatory cascades. The
ECM components biglycan (Bgn) and decorin (Dcn) mediate sterile inflammation and both
are implicated in autoimmunity. The objective of this study was to determine whether
these ECM components and anti-ECM antibodies are altered in a pSS mouse model, and
whether this is dependent on Myd88 activation in immune cells. Circulating levels of Bgn
and Dcn were similar among pSS mice and controls and tissue expression studies
revealed pSS mice had robust expression of both Bgn and Dcn in the salivary tissue,
saliva, lung and kidney. Sera from pSS mice displayed increased levels of autoantibodies
directed against ECM components when compared to healthy controls. Further studies
using sera derived from conditional knockout pSS mice demonstrated that generation of
these autoantibodies relies, at least in part, on Myd88 expression in the hematopoietic
compartment. Thus, this study demonstrates that ECM degradation may represent a
novel source of chronic B cell activation in the context of pSS.
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INTRODUCTION

Primary Sjögren’s syndrome (pSS) is a systemic autoimmune
disease characterized by loss of exocrine gland function, B cell
hyperactivity and kidney and lung pathoses (1, 2). The drivers of
chronic inflammation in pSS are not well understood, and
consequently targeted therapies that block specific signaling
cascades are not available. Damage-Associated Molecular
Patterns (DAMPs) represent a potent endogenous source of
inflammation that drive autoimmunity via activation of pattern
recognition receptors. DAMPs are comprised of diverse groups
of molecules, including heat shock proteins and extracellular
matrix (ECM) components (3, 4). DAMP-induced inflammation
is considered “sterile,” as it is caused by host-derived molecules
that are normally sequestered from the immune system. When
tissue becomes damaged, however, soluble DAMPs are released,
thereby activating cognate receptors that mediate inflammation
(4, 5). Several classes of receptors, including Myd88-dependent
TLRs, are activated by DAMPs that are derived from the ECM,
including biglycan (Bgn) and decorin (Dcn) (6–10).

Evidence in both SS mouse models and patients shows
DAMPs may be released through pathologic degradation of
exocrine tissue (11, 12). Indeed, extracts from SS salivary
biopsy tissue showed elevated proteolysis of ECM proteins (11)
and fibronectin is dysregulated in salivary tissue from SS mice
and is elevated in saliva from SS patients (13, 14). Additionally,
the ECM proteins Dcn and Bgn are degraded by saliva from pSS
mice (15). While these studies provide compelling evidence that
aberrant degradation of inflamed tissue facilitates release of
soluble DAMPs in SS, further work is needed to understand
the significance of DAMP-mediated inflammation in disease.

Mechanistic studies reveal that soluble ECM molecules can
activate pathways that rely on the ubiquitously expressed
cytosolic adapter, Myd88 by binding to pattern recognition
receptors (8, 16, 17). Activation of Myd88 is central to many
autoimmune diseases, as mice lacking Myd88 have attenuated
pathology (18–23). In particular, B-cell intrinsic Myd88 plays a
crucial role in autoimmunity, as lupus mice lacking Myd88 in B
cells do not develop anti-nuclear antibodies (ANA) or
rheumatoid factor (RF) formation (19). Additionally, our
group has demonstrated that total and ANA-specific
antibodies are diminished in pSS mice that lack Myd88 (24,
25). Thus, dysregulated Myd88 signaling in B cells plays an
essential role in autoantibody production in autoimmunity,
including pSS.

Given the importance of DAMPs in the activation of Myd88-
dependent pathways in other autoimmune diseases, we
performed studies to evaluate ECM expression and anti-ECM
antibodies in the context of pSS using the well-established pSS
mouse model, NOD.B10-H2b (NOD.B10). These animals display
many disease characteristics that are reminiscent of the human
disease, including female disease predilection, autoantibody
production, exocrine dysfunction, and pulmonary and renal
inflammation (26, 27). Additionally, conditional knockout
mice derived from the NOD.B10 strain that lacked expression
of Myd88 in the hematopoietic compartment (termed
NOD.B10Myd88D) were employed (25).
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Our results revealed levels of Bgn and Dcn were similar in the
sera and saliva and submandibular gland (SMG) salivary tissue
among the pSS strains examined. Since these ECM components
mediate renal and pulmonary pathoses and both tissues show
significant inflammation in pSS (1, 26, 28), Bgn and Dcn
expression were evaluated in these tissues in our pSS models.
Robust expression of both ECM components was detected in the
lung and kidneys of all strains examined. Serum studies revealed
that autoantibodies directed against ECM components were
elevated in NOD.B10 female mice at the clinical disease stage
when compared to healthy C57BL/10 (BL/10) animals.
Moreover, numerous anti-ECM antibodies were decreased in
NOD.B10Myd88D mice when compared to NOD.B10Myd88fl/fl

controls including those directed again Bgn, Dcn, and Elastin
(Eln). Thus, ECM constituents mediate autoantibody production
in the context of pSS and immune-intrinsic Myd88-dependent
pathways are crucial in establishing this repertoire specificity.
MATERIALS AND METHODS

Mice
BL/10 (stock# 000666) and NOD.B10 (stock# 002591) mice are
available from Jackson Laboratories. Generation and validation of
pSS conditional knockout mice that lack Myd88 in the
hematopoietic compartment, referred to as NOD.B10Myd88D, were
described previously (25). Briefly, we first generated NOD.B10 mice
that expressed Cre recombinase under the control of the Vav
promoter (B6-Tg(vav1-icre)A2Kio/J) (Jackson Labs stock
#008610) (29, 30). We then bred Myd88 floxed animals
(B6.129P2(SJL)-Myd88tm1Defr/J) (Jackson Labs stock # 008888) to
the NOD.B10 strain (Jackson Labs stock #002591) (31) to generate
NOD.B10Myd88fl/flmice. Animals were backcrossed to the NOD.B10
strain for at least 6 generations and were verified to be fully congenic
using a speed congenics approach (Jackson Laboratories). We
then bred NOD.B10Cre-Vav animals to the NOD.B10Myd88fl/fl

strain and the resultant progeny that expressed the Cre transgene
under the control of the Vav promoter were designated as
NOD.B10Myd88D. Littermates that did not express the Cre
transgene (NOD.B10Myd88fl/fl) were employed as controls (25).

All animals used were females that were at least 26 weeks of
age, the time at which the animals develop clinical disease (26,
27). All animal experiments were carried out in accordance with
IACUC and NIH guidelines.

Sera and Saliva Collection
Blood was collected by cardiac puncture immediately following
euthanasia and incubated at room temperature for two hours and
centrifuged at 1,300 g for 20 minutes. Sera were harvested and
stored at -20°C until use. Saliva was collected following pilocarpine
administration as previously described (25). Saliva was placed on ice
immediately and total protein levels quantified. Saliva was
solubilized using Laemmli buffer prior to storage at -20°C.

Autoantigen Arrays
Sera were collected from NOD.B10Myd88D (n = 5) and
NOD.B10Myd88fl/fl females (n = 5) for autoantigen arrays.
July 2021 | Volume 12 | Article 692216
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Autoantibody reactivities against a panel of autoantigens were
measured using an autoantigen microarray platform developed
by University of Texas Southwestern Medical Center. Genepix
Pro 7.0 software was used to analyze the images and generate the
genepix report (GPR) files (Molecular Devices). Data were
acquired and normalized as previously described (25).

ELISAs
ELISAs were developed to detect ECM autoantibodies as follows:
Absorbent plates were coated with either murine Bgn (2.5 mg/
mL), murine Dcn (2.5 mg/mL) (R&D Systems) or murine Eln (2.5
mg/mL) (Millipore Sigma) and incubated overnight at 4°C. Plates
were then washed with TBS containing 0.05% Tween and
incubated with a blocking solution consisting of TBS with 1.5%
FBS for 1 hour. Sera were serially diluted and incubated for 2
hours. Plates were washed and incubated with IgG or IgM HRP
at a concentration of 1:100,000 and 1:75,000, respectively (Bethyl
Laboratories). Plates were washed and autoantibodies were
visualized using TMB substrate following addition of stop
solution (1 N H2SO4). O.D. values were acquired at 450 nm.
Serial dilutions of rabbit anti-Bgn antibody (Lifespan
Biosciences, polyclonal), rat anti-Dcn antibody (R&D Systems,
clone #161026) or mouse anti-Eln IgG antibody (Lifespan
Biosciences, clone 10B8) with reactivity for mouse Bgn, Dcn
and Eln, respectively, were used to generate standard curves to
allow for normalization of values across plates.

To detect levels of Bgn and Dcn in sera, commercially
available ELISAs from Lifespan Biosciences and R&D Systems,
respectively, were used. Sera were diluted 1:10 (Bgn) or 1:50
(Dcn) and ELISAs were carried out in accordance with
manufacturer instructions.

RNA Isolation
RNA isolation was performed as previously described (25).
Briefly, tissue was snap frozen and RNA isolated using a
Qiagen RNeasy kit. cDNA synthesis was performed using an
iScript kit (BioRad) and quantitative PCR (qPCR) was done with
SYBR green (32). Primers used were as follows: Bgn: Forward:
5’-CCATCCAGGCATGTGTTCCT-3”, Reverse: 5’- GCCAG
GTTGTAGCTGGGATT-3’, Dcn: Forward: 5’-TCGAGTG
GTGCAGTGTTCT-3, Reverse: 5 ’-TAGCAAGGTTGTG
TCGGGTG-3’, and b-Actin: Forward: 5’-TGTTACCAACTGG
GACGACA-3 ’ , Reverse: 5 ’-GGGGTGTTGAAGGTCT
CAAA -3’.

Immunoblots
Saliva, lung, and kidney were harvested from NOD.B10, BL/10,
NOD.B10Myd88D, and NOD.B10Myd88fl/fl females. Western
blotting was performed as previously described (25).
Membranes were blotted overnight at 4°C with antibodies
directed against Bgn (Lifespan Biosciences, polyclonal), Dcn
(R&D Systems, clone #161026) and Vinculin (Cell Signaling
Technology, clone #E1E9V). Membranes were incubated with
HRP-conjugated secondary antibodies at RT for 1 hour and
developed using ECL reagents (BioRad Laboratories). Tissue
expression of Bgn and Dcn in lung and kidney was normalized
to the housekeeping protein Vinculin using Image Lab software
Frontiers in Immunology | www.frontiersin.org 3
(BioRad Laboratories). For the saliva samples, total protein
concentration in the samples was quantified by BioRad Protein
Assay (BioRad Laboratories) and 10 mg of total protein was
loaded for each sample.

Statistical Analyses
Autoantigen array data were analyzed using previously described
methods (26). Briefly, the two-sample t-test for all autoantigens
was performed, and then the p.adjust R function in the stats R
package was used to adjust the p-values for multiple
comparisons. The method proposed by Benjamini and
Yekutieli was used in the adjustments (33). An autoantigen
was deemed significant if the corresponding adjusted p-value
was less than 0.05. The autoantigen array data is deposited in the
Gene Expression Omnibus (GEO) database under the accession
number GSE163395. All analyses were performed using the R
software. All other data were analyzed using the Mann-Whitney
test with Prism software (GraphPad).
RESULTS

Circulating Dcn Is Decreased in the Sera
of pSS Mice
Since soluble Bgn and Dcn are potent inflammatory modulators
that activate Myd88-dependent TLRs in the context of
autoimmunity (17), we sought to determine whether
circulating Bgn and Dcn were altered in pSS. We assessed sera
from Myd88-sufficient pSS mice and also from those that lacked
Myd88 in the hematopoietic compartment. ELISA results
revealed that Bgn levels were similar in the sera of NOD.B10
females when compared to age and sex-matched controls (p =
0.5). Moreover, circulating Bgn levels remained unchanged in the
NOD.B10Myd88D strain when compared to the NOD.B10Myd88fl/fl

strain (p = 0.2) (Figures 1A, C). Further experiments were
carried out to quantify Dcn levels in the sera of these strains.
Dcn was decreased in sera derived from NOD.B10 mice (p =
0.01), although NOD.B10Myd88D mice had similar Dcn levels
when compared to floxed controls (p = 0.2) (Figures 1B, D).

Dcn and Bgn Are Detected in Salivary
Tissue and Saliva From pSS Mice
Since salivary inflammation is a hallmark of SS and autoantibody
generation is known to occur within salivary tissue in disease
(34), we assessed Bgn and Dcn expression in SMG tissue derived
from BL/10 and NOD.B10 females by qPCR (Figures 2A, B).
Analagous experiments were performed in SMG tissue derived
from the NOD.B10Myd88fl/fl and NOD.B10Myd88D strains
(Figures 2C, D). We found Dcn and Bgn were expressed in
SMG tissue, although no differences were noted among the BL/
10 and NOD. B10 mice (p > 0.99 and p = 0.2, respectively) or the
NOD.B10Myd88fl/fl and NOD.B10Myd88D strains (p = 0.06 and p =
0.1, respectively). We then sought to examine expression of Dcn
and Bgn in saliva. While Dcn and Bgn were detected in the saliva
of all strains, levels were similar across each of the strains
(Figures 2E, F).
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A B D

E F

C

FIGURE 2 | Dcn and Bgn are detected in SMG tissue and saliva. Expression of Bgn and Dcn was determined by qPCR in SMG tissue from (A, B) BL/10 and
NOD.B10 mice (n = 5 each) and from (C, D) NOD.B10Myd88fl/fl and NOD.B10Myd88D mice (n = 4 and 5, respectively) by qPCR. Expression was normalized to b-Actin.
Horizontal lines represent the mean and SEM, (NS, non-significant). Expression of Dcn and Bgn in saliva was quantified in (E) BL/10 and NOD.B10 mice (n = 8 and
7, respectively) and (F) NOD.B10Myd88fl/fl and NOD.B10Myd88D females (n = 4 and 5, respectively) by western blotting. Two representative animals from each strain
are shown. Full-length Bgn and Dcn are indicated by asterisks. fl/fl = NOD.B10Myd88fl/fl and D = NOD.B10Myd88D.
A B

DC

FIGURE 1 | Bgn and Dcn are detected in the sera of pSS mice and controls. Sera were harvested from NOD.B10 and BL/10 mice. ELISAs were performed for (A)
Bgn and (B) Dcn. Sera were also collected from NOD.B10Myd88fl/fl and NOD.B10Myd88D mice and ELISAs were performed for (C) Bgn and (D) Dcn. Sera from 9 or
10 mice from each strain were used for Bgn and Dcn ELISAs, respectively. Horizontal lines represent the mean and SEM, (NS, non-significant; *p < 0.05).
Frontiers in Immunology | www.frontiersin.org July 2021 | Volume 12 | Article 6922164
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Bgn and Dcn Are Expressed in Lung
and Kidney
Experiments were then carried out to identify potential tissue
sources of soluble Bgn and Dcn in disease. Both ECM
constituents are well-established modulators of inflammation
in the lung and kidney (17, 28). While a subset of pSS patients
display pulmonary and renal disease manifestations (1), the
contribution of these tissues to disease pathogenesis remains
poorly understood. Since NOD.B10 and NOD.B10Myd88fl/fl mice
display robust kidney and renal inflammation and this is altered
in NOD.B10Myd88D mice (25), studies were undertaken to
evaluate Bgn and Dcn expression in these organs in the context
of pSS (Figure 3). In lung tissue, levels of Bgn and Dcn were
similar between NOD.B10 mice and healthy controls, and no
differences were observed in Bgn and Dcn expression in lung
tissue derived from the NOD.B10Myd88D and NOD.B10Myd88fl/fl

strains (Figures 3A, B, E, F). Gene expression results also
showed similar levels of Bgn and Dcn in kidney tissue among
the strains, with the exception of elevated Dcn levels in the
kidney of NOD.B10 mice when compared to BL/10 controls (p =
0.008) (Figure 3D).

Finally, western blots were performed to evaluate expression
of Bgn and Dcn (Figure 4). We detected Bgn in kidney and lung
derived from NOD.B10 mice and BL/10 controls, as well as in the
NOD.B10Myd88D and NOD.B10Myd88fl/fl strains, although there
were no differences detected between the strains (Figure 4, left
panels). Similarly, robust expression of Dcn was observed in lung
and kidney and levels were similar across all strains examined
(Figure 4, right panels). Thus, Bgn and Dcn are expressed in lung
and kidney, and tissue-specific expression is not altered by the
absence of Myd88 in the hematopoietic compartment in the
context of pSS.
Frontiers in Immunology | www.frontiersin.org 5
Serum Autoantibodies to ECM
Components Are Increased in pSS
Previous autoantigen array studies by our group found that
autoantibodies directed against ECM components were
elevated in pSS mice as compared to healthy BL/10 controls
(26). To confirm and extend this work, sera from NOD.B10 and
BL/10 females were evaluated by ELISA for reactivity to Bgn,
Dcn, and Eln (Figure 5). IgM autoantibodies directed against
Dcn were elevated in NOD.B10 mice when compared to healthy
BL/10 controls (p = 0.02) (Figure 5B), although no differences in
IgM antibodies with specificity for Bgn or Eln were observed
between sera from NOD.B10 and BL/10 mice (p = 0.7 and 0.08,
respectively) (Figures 5A, C). Additionally, Anti-Bgn, -Dcn and
Eln IgG autoantibodies were increased in the NOD.B10 females
with clinical disease as compared to BL/10 controls (p = 0.008,
<0.0001, and 0.0003, respectively) (Figures 5D–F).

Anti-ECM Autoantibodies Are Decreased
in pSS Mice That Lack Myd88 Expression
in the Hematopoietic Compartment
Prior work by our group revealed that anti-nuclear autoantibody
(ANA) production in the context of pSS relies in part on
immune-intrinsic Myd88 (25). To determine if Myd88
expression in immune cells was required for generation of
autoantibodies directed against ECM components, autoantigen
arrays were performed on sera from pSS mice lacking Myd88 in
immune cells (NOD.B10Myd88D mice, n = 5) and Myd88-
sufficient controls (NOD.B10Myd88f/fl, n = 5) (Figure 6). The
arrays can detect over 90 different autoantigens and we focused
our analyses on the 22 autoantigens that are ECM components.
Numerous IgM autoantibodies with specificity for ECM
components were decreased in NOD.B10Myd88D mice, such as
A B D

E F G H

C

FIGURE 3 | Dcn is elevated in the kidneys of pSS mice. Expression of Bgn and Dcn was determined in lung and kidney tissue from (A–D) BL/10 and NOD.B10
mice (n = 5 each) and from (E–H) NOD.B10Myd88fl/fl and NOD.B10Myd88D mice (n = 5 each) by qPCR. Expression was normalized to b-Actin. Horizontal lines
represent the mean and SEM, (NS, non-significant; **p < 0.01).
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laminin, aggrecan, proteoglycan, collagen, III, collagen IV,
collagen V, heparan sulfate, and entactin EDTA (Figure 6B).
Similarly, IgG autoantibodies directed against heparan sulfate,
vitronectin, aggrecan, fibronectin, proteoglycan, fibrinogen S,
elastin, heparan HSPG, Matrigel, fibrinogen IV, collagen III,
and laminin were diminished in NOD.B10Myd88D mice when
compared to NOD.B10Myd88fl/fl controls (Figure 6D).

To extend and validate these findings, ELISAs were performed
for autoantibodies directed against Bgn, Dcn and Eln using sera
from NOD.B10Myd88D and NOD.B10Myd88fl/flmice (Figure 7). Anti-
Bgn and anti-Dcn IgM antibody levels were diminished in
NOD.B10Myd88D mice when compared with NOD.B10Myd88fl/fl

controls (p < 0.0001 and p = 0.04, respectively) (Figures 7A, B).
In agreement with autoantigen array results, anti-Eln IgM levels
were similar between the NOD.B10Myd88D mice and the
NOD.B10Myd88fl/fl controls (p = 0.9) (Figure 7C). IgG
autoantibodies directed against Bgn, Dcn, and Eln were
diminished in the NOD.B10Myd88D strain (p = 0.02, 0.03, and
0.03, respectively) (Figure 7). Taken together, these data reveal
autoantibodies directed against ECM constituents are elevated in
NOD.B10mice and generation of autoantibodies with specificity for
the ECM relies, at least in part, on the activation of Myd88-
dependent pathways within the hematopoietic compartment.
Frontiers in Immunology | www.frontiersin.org 6
DISCUSSION

DAMPs are important drivers of many autoimmune diseases (17),
although the role of these endogenous molecules in pSS
pathogenesis remains poorly understood. The current study was
carried out to assess DAMP levels and anti-DAMP autoantibodies
in the context of pSS and whether these were modulated by
hematopoietic-intrinsic Myd88 expression. In particular, studies
focused on Bgn and Dcn, 2 ECM components that serve as
ligands for Myd88-dependent TLRs. Work herein revealed that
Dcn and Bgn levels are similar in the SMG, lung and kidney among
the strains examined. However, autoantibodies directed against Bgn
and Dcn were increased in pSSmice, and anti-ECM antibodies were
diminished in pSS mice that lacked Myd88 expression in immune
cells. Thus, anti-DAMPs autoantibodies are altered in pSS, and
expression of antibodies directed against ECM constituents relies, at
least in part, on Myd88 activation in immune cells.

Anti-ECM Antibodies May Contribute to
Tissue Destruction Directly in
Autoimmunity
Although there is a paucity of studies examining the role of anti-
ECM antibodies in autoimmunity, the work published to date
A

B

FIGURE 4 | Bgn and Dcn are expressed in lung and kidney. Western blotting was performed on (A) lung and (B) kidney tissue derived from BL/10 (n = 9 or 10),
NOD.B10 (n = 6 or 7), NOD.B10Myd88fl/fl (n = 8), and NOD.B10Myd88D mice (n = 7 or 8). Representative levels of Bgn and Dcn from 2 animals of each strain are
shown and protein expression was normalized to vinculin. Data from one of two independent experiments are shown. Horizontal lines represent the mean and SEM,
(NS, non-significant). fl/fl = NOD.B10Myd88fl/fl and D = NOD.B10Myd88D.
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suggests these may play an important role in disease. In a study
comparing sera derived from patients with rheumatoid arthritis
(RA) to that from healthy donors, IgG autoantibodies directed
against the ECM components thrombospondin-4, cartilage
oligomeric matrix protein, and collagen type II were identified
more frequently in RA patients when compared to healthy
controls (35). Corroborative work examined anti-ECM
antibodies in the synovial fluid of RA patients and those with
osteoarthritis (OA) and found that anti-Bgn IgM and IgG
antibodies were elevated in the synovium of RA patients when
compared to those with OA (36).

Under physiologic conditions, Bgn interacts with many
components of the ECM, including collagen type I, II, III, and
elastin (37). Of direct relevance to disease pathogenesis, an ex
vivo mechanistic study revealed that anti-Bgn antibodies may
initiate disease by inducing collagen fiber decomposition (38).
Through elegant transmission electron microscopy studies, the
authors demonstrated that binding of an anti-Bgn antibody to
the Bgn proteoglycan-core protein disrupted the interaction
between Bgn and collagen fibrils. The Bgn core protein then
dissociated from the collagen fibrils and the collagen fibril bundle
decomposed into thin-fibrils. These collagen type II thin-fibrils
were vulnerable to collagenase and gelatinase activity, thereby
rendering the altered collagen matrix more fragile and readily
digested by proteases (38). These findings have mechanistic
importance for autoimmune disease, as the degraded ECM
components could then become available to promote immune
responses and could amplify the ongoing tissue inflammation.

Indeed, it is possible that anti-Bgn antibodies could
contribute to tissue destruction and immune activation in pSS.
Frontiers in Immunology | www.frontiersin.org 7
Our data demonstrate that anti-Bgn IgG antibodies are elevated
in NOD.B10 mice (Figure 5A). Moreover, both IgM and IgG
antibodies directed against Bgn are decreased in NOD.B10Myd88D

mice when compared to floxed controls (Figure 7A). Thus, these
antibodies may facilitate collagen degradation in disease in a
Myd88-dependent manner. This putative disease mechanism is
supported by the autoantigen array data, as autoantibodies
directed against several types of collagen are diminished in
NOD.B10Myd88D mice (Figure 6).

Corroborative work demonstrates the presence of Bgn
degradation products in submandibular gland lysates from
NOD.B10 mice (15). Moreover, increased gelatinase activity was
detected in the saliva of NOD.B10 mice with clinical disease and
elevated levels ofMmp2 andMmp9 were identified in salivary tissue
(15, 39). These findings may have pathologic significance, as a Bgn
neo-epitope generated by concomitant MMP9 and MMP12
digestion was elevated in a rat model of RA and levels of this
neo-epitope correlated with liver fibrosis in a rat bile duct ligation
model (40). Of note, several small molecular weight products were
detected using a polyclonal Bgn antibody in ourmouse strains in the
saliva, lung and kidney in the current study (Figure 2 and
Supplemental Figure 1). It is interesting to speculate that these
may represent Bgn degradation products that could carry
pathogenic consequence in the context of pSS (15), although
further experiments are needed to establish this conclusively.

Soluble Dcn and Bgn Are Elevated in
Autoimmunity and Modulate Inflammation
While the tissue source of soluble ECM constituents in pSS
remains poorly understood, these components could activate
A B C

FIGURE 5 | NOD.B10 females exhibit elevated autoantibodies against ECM constituents. Sera were harvested from NOD.B10 and BL/10 mice (n = at least 7 each).
ELISAs were performed for IgM and IgG autoantibodies directed against (A) Bgn, (B) Dcn and (C) Eln. Horizontal lines represent the mean and SEM, (NS, non-
significant; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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many different signaling networks in pSS, as Bgn binds CD14,
TLR2, TLR4, CD44 and the purinergic receptors P2X7/P2X4 (6,
7, 41–43). Additional studies have identified functional
interactions between Dcn and TLR2 and TLR4 (32, 44). While
Bgn and Dcn activate pro-inflammatory cascades, anti-
inflammatory signaling outcomes are also documented (17). Of
relevance to the current study, select pathways activated by Bgn
require Myd88 (7, 42, 45, 46). Dcn likely activates Myd88-
dependent pathways as well, since TLR2 requires Myd88 for
signal transduction, although this has not been confirmed
experimentally to date to our knowledge.
Frontiers in Immunology | www.frontiersin.org 8
In pSS, Dcn induced both pro- and anti-inflammatorymediators
in splenocytes (32). This finding, in conjunction with those of the
current study, suggest that Dcn could induce both protective and
destructive changes in the context of pSS depending on the tissue
microenvironment. This dichotomous role for Myd88-mediated
signaling is supported by our previous work in NOD.B10Myd88D

mice. Interestingly, pulmonary inflammation was heightened in
NOD.B10Myd88D mice but was diminished in the kidney when
compared to floxed controls (25). Taken together, these findings
highlight the need for further studies in specific tissues to delineate
the way in which Bgn and Dcn modulate inflammation in pSS.
A B

DC

FIGURE 6 | Anti-ECM antibodies are diminished in pSS animals that lack Myd88 in hematopoietic tissue. Sera were harvested from NOD.B10Myd88fl/fl and
NOD.B10Myd88D mice (n = 5 each). (A, C) IgM and IgG autoantibodies were assayed by autoantigen array and heatmaps are provided to summarize the data.
Analysis of autoantigen array data reveals significant differences in ECM-specific (B) IgM and (D) IgG.
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DAMPs Mediate B Cell Activation in
Autoimmunity Through Myd88-Dependent
Pathways
While the significance of B cell-intrinsic Myd88-dependent TLR
signaling in pSS is poorly understood, the importance of these
pathways in other autoimmune diseases is evident. In lupus, a
related autoimmune disease (47), B cells express TLRs and BCRs
that have shared specificity for nuclear autoantigens. These
antigens are released from apoptotic or necrotic cells, thereby
engaging BCR and TLR signaling concomitantly to induce B cell
activation (23, 48, 49). Elegant studies in lupus models revealed
that recognition of endogenous nuclear antigens by B cell TLRs is
necessary for autoantibody production in lupus and this
facilitates the generation of ANA-secreting cells in a Myd88-
dependent manner (49).

This paradigm extends beyond nuclear autoantigens, as
generation of RF also relies on TLR7 and TLR9 (50).
Importantly, TLR2 and TLR4 are crucial for autoantibody
generation in lupus (51, 52) and a TLR4-deficient arthritis
model shows attenuated disease and lower titers of
autoantibodies (53). Moreover, studies in a scleroderma model
demonstrate stimulation of B cells with the ECM component
hyaluronan activates TLR2 and TLR4 and results in
inflammatory cytokine secretion, including IL-6, TNFa,
and IFNg (54). In agreement with these findings, results from
the current study suggest that recognition of soluble
ECM components by BCRs together with simultaneous
activation of Myd88-dependent signaling networks may
represent a previously unappreciated mechanism of B cell
activation in pSS.
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Bgn and Dcn Are Implicated in Diverse
Pathoses Affecting the Lung and Kidney
An increasing number of studies demonstrate a role for Dcn and
Bgn in autoimmunity and there is considerable evidence that
DAMPs contribute to both pulmonary and renal pathology.
Indeed, DAMP-mediated inflammatory networks are identified in
asthma, pulmonary fibrosis, chronic obstructive pulmonary disease
and in lung cancer (17, 28, 55). Similarly, DAMPs contribute to
many distinct kidney pathoses, such as renal fibrosis, lupus
nephritis, and diabetic nephropathy (7, 28, 56). Of relevance to
the work herein, when soluble biglycan was overexpressed in
healthy mice, levels of pro-inflammatory cytokines were increased
in kidney lysates (7). Dcn can also stimulate production of
inflammatory mediators in peritoneal macrophages, but this has
not been documented in the lung or kidney to date (28, 44).
Separate studies, however, reveal a protective role for Dcn in the
context of disease. Indeed, in a model of streptozotocin-induced
diabetes, Dcn-/-mice showed accelerated diabetic nephropathy (57,
58). Moreover, in lung tissue derived from Dcn-deficient mice with
sepsis, IL-10 levels were decreased and IL-12 and TNFa levels were
increased (44). Thus, further studies are warranted to understand
the signaling networks activated by Bgn and Dcn in greater depth
and to identify the organ-specific consequences of Myd88 activation
by Dcn and Bgn in pSS.
CONCLUSION

Data from the current study reveal that the ECM components Bgn
and Dcn are expressed in the sera, SMG, saliva, lung, and kidney of
A B C

FIGURE 7 | Anti-Bgn, -Dcn and -Eln autoantibodies are elevated in pSS in a Myd88-dependent manner. Sera were harvested from NOD.B10Myd88fl/fl and
NOD.B10Myd88D mice (n = at least 7 each) and ELISAs were performed for IgM and IgG autoantibodies directed against (A) Bgn, (B) Dcn and (C) Eln. Horizontal
lines represent the mean and SEM, (NS, non-significant; *p < 0.05, ****p < 0.00001).
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pSS mice and controls. Autoantibodies directed against both Bgn
and Dcn are elevated in pSS mice, and NOD.B10Myd88D mice that
lack Myd88 expression in the hematopoietic compartment show
diminished expression of many autoantibodies that bind ECM
components, including Dcn and Bgn. Thus, these data reveal that
ECM degradation products may represent a novel source of B cell
activation in pSS and therapeutics that target Myd88-dependent
signaling cascades may have therapeutic efficacy in the context of
this disease.
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