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Editorial on the Research Topic

Emerging polyoxometalates with biological, biomedical, and health

applications

The biomedical application of metals, including platinum (Pt), lithium (Li), tungstate

(W), gold (Au) or vanadium (V), among others, has become an important and a rapidly

growing branch of science (Bertinat et al., 2018; Yeo et al., 2018; Vosahlikova et al., 2020;

Ścibior et al., 2020; Silva et al., 2021; Pena et al., 2022; Ochoa, 2022). Besides the well-

characterized platinum drugs, bio-active metal-based complexes and clusters, such as gold

compounds and polyoxometalates (POMs), as well as metal-based nanoparticles have

shown demonstrable anti-cancer, anti-viral and anti-bacterial activities (Bertinat et al.,

2018; Yeo et al., 2018; Soria-Carrera et al., 2020; Vosahlikova et al., 2020; Ścibior et al.,

2020; Silva et al., 2021; Aureliano et al., 2022a; Pena et al., 2022; Ochoa, 2022; Soria-

Carrera et al., 2022). The biological and biomedical application of POMs–in the form of

cluster ions, hybrid materials, and POM-based nanoparticles - has tripled in the last

decade (Pimpão et al., 2020). In fact, the wide range of POMs uses in medicine may be due

to the modulation of several proteins such as aquoporins and P-type ATPases (Gumerova

et al., 2018; Fraqueza et al., 2019) although many other biomolecular and biochemical

processes are affected by POMs, as illustrated by the well-studied polyoxovanadates

(POVs) (Bijelic et al., 2018; Bijelic et al., 2019; Čolović et al., 2020; Aureliano et al., 2021;

Aureliano et al., 2022b). POMs against bacteria and in cancer therapy and diagnostics,

their modes of action, protein targets and future perspectives were recently reviewed and

highlighted (Bijelic et al., 2018; Gumerova et al., 2018; Bijelic et al., 2019; Fraqueza et al.,

2019; Čolović et al., 2020; Aureliano et al., 2021; Aureliano et al., 2022b). The majority of

the biomedical studies have addressed how POMs affect cancer and bacterial cell growth,
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not to mention their antiviral activity (Bijelic et al., 2018;

Fraqueza et al., 2019; Guedes et al., 2020; Čolović et al., 2020;

Aureliano et al., 2021; Aureliano, 2022; Aureliano et al., 2022b),

however, much remains to be understood concerning the

biochemical mechanism of action of these compounds (Bijelic

et al., 2018; Bijelic et al., 2019; Pimpão et al., 2020; Čolović et al.,

2020; Aureliano et al., 2021; Aureliano et al., 2022b). The

isopolyoxovanadate decavanadate [V10O28]6−, {V10}, is perhaps

the most widely studied POM in biology, showing several roles in

key biochemical and cellular processes (Crans et al., 2004;

Aureliano, 2009; Aureliano and Crans, 2009; Aureliano et al.,

2013; Bijelic et al., 2018; Bijelic et al., 2019; Čolović et al., 2020;

Aureliano et al., 2021; Sciortino et al., 2021; Aureliano et al.,

2022b). Particularly interesting under the topic of POMs

speciation (Gumerova and Rompel, 2020), was the observation

that {V10} binding to G-actin inhibits its polymerization to F-actin

while it prevents {V10} decomposition (Ramos et al., 2006). The

V10/G-actin interaction might interfere with cytoskeleton

dynamics and inducing cell morphology changes (Ramos et al.,

2006; Sciortino et al., 2021).

Taken in consideration all these effects and properties, it

was clear that the future bio-based applications of POMs is

bright (Aureliano, 2022). That was why the Guest Editors

decided to pursue at Frontiers the promotion and the

development of a research topic about “Emerging

Polyoxometalates with Biological, Biomedical, and Health

Applications” (Figure 1).

Thus, the present Research Topic (RT) aimed to highlight

recent advances into in vitro and in vivo POMs, be they pure,

hybrid, or POM-based nanoparticles with anticancer, antiviral,

and antimicrobial activities as well as other biological or

biomedical applications, such as in diabetes and neurological

diseases (Treviño et al., 2019; Treviño and González-Vergara,

2019; Zhao et al., 2019; Atrián-Blasco et al., 2022). Moreover,

studies on POMs as biosensors, the redox activity of POMs as

sensors for biological factors or markers of specific illnesses were

also welcome. Papers addressing biomolecular POMs targets;

POMs as ion channels in lipid/cell membranes and

transportation of POMs across cell membranes was also

welcomed in this Research Topic. The RT had an excellent

number of authors (27) that confirmed, immediately after

invitation, their participation. However, among others several

reasons, directly and/or indirectly COVID has had a major

impact on the number of papers submitted, preventing to

fulfill, at least in part, some objectives of the present RT.

The first paper published on the present RT Corona-Motolinia

et al., by the research group of Professor Enrique González-

Vergara from the Benemérita Universidad Autónoma de Puebla

(Mexico) in collaboration with coworkers from the Universidad de

Granada (Spain). Enrique González-Vergara is a well-known

researcher in our scientific community for publishing, for

example, several studies about the antidiabetic properties of

{V10} compounds, particularly metformin-decavanadate

(Sánchez-Lombardo et al., 2014; Treviño et al., 2016; Treviño

et al., 2019; Treviño and González-Vergara, 2019). The hybrid

metformin-decavanadate (Metf-V10) (Chatkon et al., 2013) has

shown in vivo nontoxicological effects on liver and kidney, leading

it to be considered as a better treatment for diabetes than

metformin (Treviño et al., 2016). However, as suggested

previously by Enrique González-Vergara and coworkers, Meft-

V10 might be also a more effective treatment than metformin in

cancer (Sánchez-Lara et al., 2018; Treviño et al., 2019). In fact,

herein, the focus of the paper is the antineoplastic activity of

another hybrid POVs containing {V10}. Among the findings,

molecular docking studies with small RNA fragments support

the hypothesis that decavanadate’s anticancer activity could be

attributed to its interaction with small non-coding RNAmolecules.

From the University of Aveiro (Portugal), a review about

“Polyoxometalate Functionalized Sensors”, by Veríssimo et al.,

brings an interesting perspective about POM-based biosensing

applications. The University of Aveiro has a tradition in the use

of POMs for several different applications (Gamelas et al., 2012;

Veríssimo et al., 2017; Veríssimo et al., 2018). In the present review,

the authors emphasized that POMs could be used as sensors for

detecting and determining molecules and biomolecules in different

matrices, many of them with biochemical and clinical relevance,

along with analytical figures of merit and main virtues and

drawbacks of such devices. Special emphasis is given to the

stability of POMs sensitive layers, detection limits, selectivity, and

the pH working range.

FIGURE 1
POMs are described with anticancer, antiviral, and
antimicrobial activities as well as other biological or biomedical
applications such as artificial protease activity (top-left) and self-
assembly with biomacromolecules to make micelles, gels &
other superstructures (top-right).
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The third paper of this RT by Long-Sheng Wang from the

Hubei University of Technology, Wuhan (China) reports the

antiviral activity of POMs. These authors are from a University

with previous experience in the use of these derivative POMs

against virus (Wei et al., 2020). Herein, it was referred that the

covalent linkage between the iodobenzoyldiazenido components

and POMs can enhance the molecular inhibitory efficiency of

iodobenzohydrazides against coxsackievirus B3.

Finally, the RT is finished with a mini-review by Gil and

Carbó from the Universidad de Zaragoza and Universitat

Rovia i Virgili (Spain), respectively. The authors highlight the

relevance of the combination of molecular modulations

simulations with quantum mechanics/molecular mechanics

methods and theoretical calculations on cluster models.

These calculations are starting to shed light on the factors

governing the activity and selectivity for the hydrolysis of

peptide and phosphoester bonds catalyzed by POMs. The

authors have previously experience on theoretical

calculations in cluster models (Solé-Daura et al., 2020).

Moreover, the phosphoester bond hydrolysis catalysed by

molybdate anions as artificial phosphoesterases has been also

studied computationally (Lanuza et al., 2021; Martins et al.,

2021; Sánchez-González et al., 2021). POMs as artificial

enzymes have been tested by the group of Parac-Vogt,

using POMs as catalysts in the hydrolysis of peptide bonds

(Absillis and Parac-Vogt, 2012). Further computational

studies have focus on the characterization of the reaction

mechanism and the rationalization of the observed selectivity

(Jayasinghe-Arachchige et al., 2019; Ly et al., 2019). In sum,

the authors of the present mini-review are confident that in

the coming years the computational studies on the biological

activity of POMs will be an emergent research topic.

Altogether, the present RT reflects emergent 21st century

applications of POMs, namely anticancer, antidiabetic and

antiviral activities besides the applications of POMs as sensors

and the contribution of computational studies for the

understanding the biological activities of POMs. Within this

RT a total of 25 authors were involved, where the majority are

young researchers, The future is bright for POMs!
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