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Simple Summary: Bovine mastitis is a highly prevalent and expensive illness that leads to enormous
financial losses to dairy industries. Although significant progress has been made in the control and
therapy of mastitis, the frequency of this disease continues to be high in livestock herds, having
a negative influence on productive parameters and implicitly on economic indices in dairy farms.
The opportunity to address this problem resides in the fact that a countries’ share of the community
market will only be maintained by increasing milk quality. It is imperative for cattle farmers, milk
producers and national economies to obtain milk according to EU standards, in order for it to be
valued at advantageous, competitive prices. This objective may be achieved by keeping the incidence
of mastitis under very strict control, using novel treatment options.

Abstract: Nanomaterials have been used for diagnosis and therapy in the human medical field, while
their application in veterinary medicine and animal production is still relatively new. Nanotechnology,
however, is a rapidly growing field, offering the possibility of manufacturing new materials at the
nanoscale level, with the formidable potential to revolutionize the agri-food sector by offering
novel treatment options for prevalent and expensive illnesses such as bovine mastitis. Since current
treatments are becoming progressively more ineffective in resistant bacteria, the development of
innovative products based on both nanotechnology and phytotherapy may directly address a major
global problem, antimicrobial resistance, while providing a sustainable animal health solution that
supports the production of safe and high-quality food products. This review summarizes the
challenges encountered presently in the treatment of bovine mastitis, emphasizing the possibility of
using new-generation nanomaterials (e.g., biological synthesized nanoparticles and graphene) and
essential oils, as candidates for developing novel treatment options for bovine mastitis.
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1. Introduction

The livestock industry is presently centered on the genetic improvement of dairy cattle,
with the increase in yield milk being nearly double compared to 1960 [1]. The dairy sector
accounts today for around 15% of the total agricultural output. However, selecting for a
higher yield of milk production is correlated with the appearance of certain problems in
the udders of dairy cows, such as higher percentage of somatic cells and a higher incidence
of mastitis [2].

Bovine mastitis is the most prevalent and expensive illness affecting milk herds
worldwide. The disease leads to enormous financial losses to dairy industries as a result of
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decreased milk production and quality, condemnation of milk due to antibiotic residues
and culling of chronically infected cows, as well as associated therapy costs. When zoonotic
pathogens are involved, mastitis may pose a serious health risk due to the dispersion of
bacteria and toxins in milk.

In the clinical form, symptoms may vary depending on the causative agent, while
in the subclinical form, there are no visible changes in the aspect of the udder or milk.
Monitoring the number of somatic cells is a widely used practice in the European Union
(EU) for assessing milk quality [3,4].

Although significant progress has been made in the control and therapy of mastitis,
the frequency of this disease continues to be high in some livestock herds, having a negative
influence on productive parameters and implicitly on economic indices in dairy farms. In
Europe, the economic losses caused by mastitis to the dairy industry have been estimated
at around 2 billion euros annually. A poll conducted in the major milk-producing countries
indicates that this disease affects, each year, between 15% and 20% of the dairy cow popu-
lation. Based on the origin of the pathogen, mastitis may be classified as environmental,
caused by pathogens from the environment and contagious, spread from other infected
quarters [5]. According to previously conducted studies, the most common bacteria causing
intramammary inflammation are Staphylococcus aureus, Streptococcus agalactiae, Escherichia
coli and Streptococcus uberis [6–8].

The opportunity to address this problem resides in the fact that a country’s share of
the community market will only be maintained by increasing milk quality. It is imperative
for cattle farmers, milk producers, and national economies to obtain milk according to EU
standards in order to value it at advantageous, competitive prices. This objective may be
achieved by keeping the incidence of bovine mastitis under very strict control using novel
treatment options [9].

By the end of 2027, the worldwide bovine mastitis market is expected to hit USD
1.84 billion. It is estimated that recent breakthroughs, such as nanomaterials-based solutions
for the treatment and control of bovine mastitis, will lead the way to an interesting future of
the global market. According to the report entitled “Bovine Mastitis Market Size, Share &
COVID-19 Impact analysis, by type (Clinical, and Sub-Clinical), by product (antibiotics, and
others), by route of administration (Intra-mammary, and Systemic), by therapy (Lactating
Period and Dry Period) and Regional Forecast, 2020–2027”, published by Fortune Business
Insights, the market, which was estimated in 2019 at USD 1.23 billion, is forecasted to
experience a compound annual growth rate (CAGR) of 5.2% during 2020–2027 [10]. The
growth of the European market will be powered by a growing number of business alliances
aimed at developing novel treatment options for bovine mastitis in a number of countries,
including France, Germany and the UK.

Nanomaterials have been used for diagnosis and therapy in the human medical field,
while their application in veterinary medicine, for drug delivery, diagnostic and cell sorting
or antimicrobials [11–14] and animal production, especially animal nutrition [15–18], is still
relatively new. Nanotechnology, however, is a rapidly growing field, offering the possibility
of manufacturing new materials at the nanoscale level, with the formidable potential to
revolutionize the agri-food sector by offering novel treatment options for prevalent and
expensive illnesses such as bovine mastitis.

This review summarizes the challenges encountered presently in the treatment of
bovine mastitis, emphasizing the possibility of using new-generation nanomaterials, such
as biological synthesized nanoparticles and graphene, and essential oils as candidates for
developing novel treatment options for bovine mastitis.

2. Farm Model with “Low Antibiotic Consumption”

Owing to inadequate monitoring and data collection in many nations, figures of
overall annual global antibiotic use in the EU’s agricultural sector vary greatly, from
1770.4 tonnes per year in Spain to 0.6. tones in Iceland [19]. The differences between
countries are explained by a variety of factors. To begin with, animal populations, as well
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as production systems, differ considerably from one country to other. A second aspect
is the dose and treatment period, which are not included in the results because there
are significant differences across countries regarding the pharmaceutical formulations
used and the length of the therapy. Different antibiotics, as well as different amounts,
are needed depending on whether pigs, cows, sheep or chickens are treated. For this
reason, one of the key points of the ESVAC: Vision, Strategy and Objectives for 2016–2020
was the development of a system for collecting harmonized and standardized data on
antimicrobial use by animal species in order to conduct a more systematic study of patterns
in antimicrobial use [20].

In 2017, the European Commission and the EMA held a workshop on the compilation
of data on veterinary antimicrobial use in EU countries. Stakeholders were mostly in
agreement on the importance of collecting data on antimicrobial use by animal species,
as well as the advantages of doing so; therefore, on February 6th 2018, ESVAC adopted
a guide regarding the collection and provision of national data on antimicrobial use by
animal species/categories. Since the volume of veterinary antimicrobial agents sold across
the EU member states is related to the animal population structure, in order to normalize
the sales statistics for the animal population that may be treated with antimicrobial agents,
the European Commission requested that the European Centre for Disease Prevention and
Control (ECDC), European Food Safety Authority (EFSA) and European Medicines Agency
(EMA) use a common scientific opinion regarding some indicators that may be used for
the surveillance of antimicrobial resistance and antimicrobial consumption in humans
and food-producing animals [21]. The European Surveillance of Veterinary Antimicrobial
Consumption (ESVAC) employed a population correction unit (PCU) as a proxy for the
size of the animal population [19] (Figure 1).

Figure 1. Estimated PCU (in 1000 tonnes) of the population of food-producing species (including horses) for 2018 in some
EU member states according to the European database of sales of veterinary antimicrobial agents.

The proposed indicators used presently for antimicrobial surveillance are classified as
primary indicators—overall sales of veterinary antimicrobials expressed in mg/PC and
secondary indicators—sales of 3rd- and 4th-generation cephalosporins in mg/PCU; sales
of quinolones, specifying the % of fluoroquinolones in mg/PCU, and sales of polymyxins
in mg/PCU [21]. This format is considered more suitable for comparing sales data across
countries and years because it accounts for variations in the size and composition of the
animal population in the EU member states [19,20].

Veterinarians, fishermen, other livestock industry players, EU Member States, the
European Commission and the European Medicines Agency have all worked together to
reduce sales of antimicrobials. National strategies for antibiotic stewardship in livestock,
limitations regarding the use of certain antimicrobials in food-producing animals, the
removal of antibiotics as growth promoters and EU good practices guidelines are among
the measures taken to decrease veterinary antimicrobial purchases across Europe. These
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measures are part of the EU’s One Health Action Plan to Tackle Antimicrobial Resistance
(AMR). According to The European Medicines Agency (EMA), between 2011 and 2017, the
total sales of veterinary antibiotics in Europe fell by more than 32% [22].

Antimicrobial resistance is a worldwide issue that affects all countries and populations,
regardless of wealth or socioeconomic status, but the challenges are proportionally higher
in underdeveloped countries and emergent economies [23]. Resistant organisms have
no territorial or biological boundaries: they may quickly propagate by the migration of
humans, plants, food or water, and certain resistance genes can be transferred from one
species to another [9]. Apart from being a naturally occurring phenomenon, antimicrobial
resistance occurs in both humans and animals when antibiotics are used excessively or
inappropriately, subsequently leading to environmental pollution as well (Figure 2).

Figure 2. Main sources of antimicrobial resistance.

Studies conducted by various authors showed that sub-lethal antibiotic therapy may
lead to multidrug resistance due to reactive oxygen species (ROS)-induced mutagene-
sis [24–27]. Moreover, a study conducted by Li et al. (2021) [28] in a simulated sublethal
concentration of copper and tetracycline co-contaminated environment showed that the
contamination of the environment with metals and antibiotics may accelerate the emer-
gence of antibiotic-resistant bacteria and their dissemination.

Given the near interdependence between humans and animals that share the same
ecosystem, excessive veterinary use of these compounds poses a potential public health
threat [29,30]. For example, in Romania, the high consumption rates and the widespread
use of broad-spectrum antibiotics for both human and animals has led to growing concerns
over antimicrobial resistance. The country ranked 3rd among the EU countries for total
consumption (community and hospital sector) of antibacterials for systemic use (ATC group
J01) in 2019 [31] (Figure 3) and 12th regarding the use of antimicrobials for food-producing
species (including horses), expressed in mg per population correction unit (mg/PCU), in
2018 (Figure 4) [22]

The situation raised the awareness of the European Public Health Alliance (EPHA),
which subsequently commissioned a study regarding the current AMR situation in Roma-
nia. According to the conducted study, Romania is “in the red zone” due to inadequate
multidisciplinary collaboration between clinicians, microbiologists and epidemiologists;
the limited collaboration between human and veterinary domains with regard to AMR;
and the lack of robust data regarding the infections with “superbugs” in both humans and
animals. Unfortunately, several other EU member states are confronted with similar threats,
which tend to affect Europe’s safety network [32], thus becoming a growing cross-border
threat to public health in Europe and around the world [33,34]. Antimicrobial-resistant
infections are believed to kill 700,000 people per year around the world. If urgent actions
are not taken, the number is expected to climb to 10 million people by 2050, with associ-
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ated costs of $100 trillion. Many of the Sustainable Development Goals (SDGs) are also
compromised by AMR. The World Bank predicts that an additional 28 million people will
be plunged into extreme poverty by 2050 if AMR is not regulated adequately [35–39].

Figure 3. Total consumption (community and hospital sector) of antibacterials for systemic use (ATC group J01) by country,
EU/EEA, 2018–2019 (expressed as DDD per 1000 inhabitants per day).

Figure 4. Overall sales for food-producing animals (including horses), in mg per population correction unit (mg/PCU), of
the various veterinary antimicrobial classes, by country, for 2017 and 2018.

One of the specific objectives of the new Commune Agricultural Policy (CAP), after
2020, is to improve the response of EU agriculture to society’s food and health demands.
The European Commission’s proposal for a new CAP contains several key points to
support the transition towards a European farm model with “low antibiotic consumption”.
If successful, this will help to achieve the EU’s vision of a region of ”best practices” to
counteract AMR, as stipulated in the Health Action Plan against AMR. The new policies
represent an opportunity for the transition to high-health production systems that will
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provide healthy, more profitable livestock, improved financial results for farmers, and
decreased antibiotic use [40–44].

Bovine mastitis is the most costly disease affecting cows worldwide. Reduced milk
production, changes in milk composition, discarded milk, higher replacement costs, addi-
tional labour, care costs and veterinarian services all add to substantial economic losses for
dairy farmers and the milk processing sector. The risk factors that predisposes dairy cows to
mastitis may be classified as cow-related, microorganism-related or management-practices-
related risk factors. Some of the cow-related risk factors are age, lactation, somatic cell count,
breed, udder and teat anatomy and the immune status of the animal (Figure 5) [45–52].

Figure 5. Host, microorganism and environmental factors with the potential of inducing mastitis in dairy cows.

The main pathogens that cause mastitis include infectious microorganisms that sur-
vive and proliferate on skin and teat wounds, such as Streptococcus agalactiae, Staphylococ-
cus aureus and Streptococcus dysgalactiae, as well as environmental microorganisms such
as Streptococcus uberis, Escherichia coli and other coliforms [53,54]. In comparison to con-
tagious pathogens, environmental pathogens typically do not survive on the skin of the
cow’s udder and teat; they are better characterized as pathogens that are opportunistic,
often reside in the bedding and housing, searching for the ability to cause an infection.
When the natural immunity of cows is affected, bacteria enter the cow’s mammary glands
through the teat canal, where they colonize, proliferate, and release toxins, damaging the
mammary gland cells. The most common Gram-positive pathogen believed to be involved
with different types of clinical and sub-clinical mastitis is Staphylococcus aureus. The main
reservoir for Staphylococcus aureus is the cows with chronic infection in the mammary
gland; thus, improved udder hygiene will shield healthy cows from infected ones, thereby
reducing infection. The intra-mammary administration of antibiotics such as penicillin,
ampicillin, tetracycline and gentamycin has always been the first choice for the therapy
against bovine mastitis. However, the inappropriate use and overuse of antibiotics in many
bacterial species have resulted in an alarming increase in multi-drug-resistant bacterial dis-
eases [55,56]. Since some strains are resistant to almost all frequently available agents such
as beta-lactams, tetracyclines and amino-glycosidases, there is a major worldwide threat
to public health. Since current treatments are becoming progressively more ineffective in
resistant bacteria, there is a growing need to increase funding for research and develop-
ment of new products and technologies to tackle AMR in humans and animals. Thus, the
development of innovative products based on both nanotechnology and phytotherapy
may directly address a major global problem, antimicrobial resistance, while providing a
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sustainable animal health solution that supports the production of safe and high-quality
food products.

3. New Approaches for the Development of Bovine Mastitis Products—Nanomaterials
and Essential Oils

Not surprisingly, many recent research studies have been aimed at identifying possible
alternatives to antibiotic therapy in order to prevent antibiotic resistance [57–72]. A study
by Bouari et al. (2016) [73] assessed the in vitro antimicrobial susceptibility of bacteria
isolated from mastitic milk to design specific control programs for bovine mastitis in the
Transylvanian area (Romania). Among the pathogens identified was Staphylococcus aureus,
in which the authors observed increased resistance to penicillin and tetracycline.

Since ancient times, people have widely used natural herbal products as medicines
against various diseases. Almost 25% of the main pharmaceutical compounds and their
derivatives available today are produced from natural resources [74], so phytotherapy may
be a good starting point for the development of antimicrobial products.

The antimicrobial, immunomodulatory efficacy of medicinal plants has been high-
lighted in numerous studies over the last few years [75–78], while the potential applica-
tions of natural polymers such as chitosan and eco-friendly metal nanoparticles for the
development of innovative antimicrobial products have been highlighted in studies by
Burdusel et al. (2018) [79], Baican and Vasile (2018) [80], Olaru et al. (2019) [81], Ahmed et al.
(2020) [82] and Sánchez-López et al. (2020) [83].

3.1. Essential Oils and Vegetal Extracts

Essential oils (EO), which may be derived from various parts of a plant, contain
compounds of various types that have both physiological and therapeutic benefits. They
can act either individually or in synergy, with antibacterial, antifungal, antiviral and anti-
inflammatory properties. For example, the biological activities of cinnamon, including
its anti-inflammatory characteristics, which are determined by their phenolic and volatile
compounds, have been the central subject of several studies conducted in recent years.
Studies in vitro and in vivo showed that cinnamon essential oil has bactericidal effects
against bovine mastitis pathogenic isolates by impairing the membrane integrity of bacteria,
thus constituting an alternative organic antimicrobial to ensure milk safety [84]. Further-
more, cinnamon may reduce both inflammation and the damage of the mammary tissue
associated with bovine mastitis disease [85,86].

A study conducted by Nardoni et al. (2018) [87] showed the antialgal efficacy of
30 types of essential oils against Prototheca zopfii and Prototheca blaschkeae, agents that deter-
mine protothecal mastitis, an emergent animal health problem in dairy herds. Furthermore,
the antimicrobial activity of other essential oils such as thyme, oregano or lavender on
common bovine mastitis pathogen such as Staphylococcus sp., Streptococcus sp., Bacillus
cereus, Escherichia coli as well as the effect of other plant extract was investigated in
different studies [78,88–91] (Table 1).

Table 1. Summary of recent studies regarding the use of essential oils (EO) and plant extracts against mastitis pathogens.

Type of Oil/Plant Extract Type of Study Tested Pathogens Effect References

Siam weed EO (Chromolaena squalida)
Guabiroba Verde EO (Campomanesia

sessiliflora)
Rapanea punctata EO (Myrsine

guianensis)
(Matayba guianensis) EO

Negramina EO (Siparuna guianensis)
Canelinha EO (Ocotea minarum)

Endlicheria EO (Endlicheria
paniculata)

In vitro

Staphylococcus aureus
Escherichia coli
Escherichia coli

(β−lactamase producer)
Pseudomonas aeruginosa

All of the tested oils
demonstrated moderate to

excellent activity against four
bacterial species, including

Salmonella Typhi and
oxacillin-resistant Staphylococcus

aureus.

de Jesus et al.
2020 [92]
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Table 1. Cont.

Type of Oil/Plant Extract Type of Study Tested Pathogens Effect References

FMexican Avocado Seed
(Persea americana var. drymifolia) In vitro Staphylococcus aureus

Lipid extract from avocado seed
inhibits the Staphylococcus aureus

internalization into bovine
mammary epithelial cells

(bMECs) and modulates the
innate immune response (IIR)

Báez-Magaña et al.
2019 [93]

Pink Powderpuff (Calliandra
surinamensis) In vitro

Staphylococcus isolates
from either bovine
(Ssp6PD and Sa) or
caprine (Ssp5D and
Ssp01) mastitic milk

samples

Calliandra surinamensis leaf
pinnulae lectin displayed a

bacteriostatic and antibiofilm
agent against certain bovine and
caprine mastitis isolates. When
used in conjunction with either
ampicillin (against one isolate)

or tetracycline (against two
isolates), it showed synergistic

effect.

Procópio et al.
2019 [94]

Southern blue gum (Eucalyptus
globulus)

Walnut (Juglans regia)
In vitro Staphylococcus aureus

Eucalyptus globulus extract alone
appeared to have a bacteriostatic

effect against Staphylococcus
aureus, up to 8 hours of

incubation. When opposed to
the positive control, Eucalyptus

globulus and Juglans regia extracts
alone had a minor inhibitory

effect over time.

Gomes et al. 2019
[95]

Black Myrobalan (Terminalia chebula)
extract In Vitro Staphylococcus aureus

The 500 µg/mL concentration of
Terminalia chebula ethyl acetate

extract was as effective as
standard amoxicillin

Kher et al. 2019
[96]

Rose Myrtle Rhodomyrtus
tomentosa (Rose myrtle) leaves In vitro In vivo Staphylococcus aureus

The ethanolic extract showed
good antibacterial activity

in vitro, a reduction of activity
being observed in vivo.

Mordmuang et al.
2019 [97]

Wild cabbage (Brassica oleracea) In vitro
Staphylococcus aureus

Escherichia coli Klebsiella
pneumoniae

Interferes in the mechanisms of
action of genes such as MTOR

and TP53, thus may be a possible
alternative for developing herbal
formulations for bovine mastitis.

Sobrinho Santos
et al. 2019 [98]

Piperina EO (Minthostachys
verticillata) In vitro

Escherichia coli Bacillus
pumilus Enterococcus

faecium

EO affected the formation of
biofilm and revealed the

antibacterial capacity of EO and
limonene.

Cerioli et al. 2018
[90]

Oregano EO (Origanum floribundu)
Morrocan Thyme EO (Thymus

ciliatus)
Rosemary EO (Rosmarinus officinalis)

In vitro Candida albicans

The three essential oils showed
highly anticandidal activity, with

values ranging from 15.02 to
31.08 g/mL.

Ksouri et al. 2017
[99]

Cinnamon EO
(Cinnamomum zeylandicum)
Geranium EO (Pelargonium

graveolens)
Clove EO (Syzygium aromaticum)

Thyme EO (Thymus vulgaris)
Lavender EO (Lavandula angustifolia)

Basil EO (Ocimum basilicum)
Rosemary EO (Rosmarinus officinalis)

Clary sage EO (Salvia sclarea)

In vitro
Eight strains of

Prototheca zopfii isolated
from mastitic milk

Many of the oils tested were
effective against algal strains,

but cinnamon, clove, and thyme
were the most effective.

Grzesiak et al.
2016 [91]

Oregano EO (Origanum vulgare) In vivo Staphylococcus aureus
and Escherichia coli

In the group of cows treated
intramammary with oregano

essential oil (OEO), the number
of somatic cells (SCCs) and
number of white blood cells

(WBC) were significantly
decreased and Staphylococcus

aureus and Escherichia coli were
not present in milk samples.

Cho et al. 2015
[100]
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Table 1. Cont.

Type of Oil/Plant Extract Type of Study Tested Pathogens Effect References

Thyme EO (Thymus vulgaris);
Lavender EO (Lavandula angustifolia)

In vitro
In vivo

Intramammary
and External

applications (oils
mixed in vaseline)

Staphylococcus sp. And
Streptococcus sp.

External use of these oils in
vaseline resulted in a greater

antibacterial action, for a 100%
recovery rate with thymus

essential oils.

Abboud et al.
2015
[51]

Cinnamon EO (Cinnamomum
zeylanicum)

Bergamot EO (Citrus bergamia Risso)
Tasmanian blue gum EO (Eucalyptus

globulus)
Fennel EO (Foeniculum vulgare)

Marjoram EO (Origanum majorana)
Oregano EO (Origanum vulgare)

Rosemary EO (Rosmarinus officinalis)
Winter savory EO (Satureja montana)

Thyme EO (Thymus vulgaris)

In vitro

Staphylococcus aureus
Staphylococcus

chromogenes
Staphylococcus sciuri

Staphylococcus warneri
Staphylococcus xylosus

Escherichia coli

The mixture containing Thymus
vulgaris and Winter savory

essential oils exhibited the best
inhibitory activity against all the

tested bacterial strains. The
artificial mixtures composed of
carvacrol/thymol, respectively
carvacrol/thymol/p-cymene
presented strong inhibition

against Staphylococcus aureus and
Staphylococcus sciuri

Fratini et al. 2014
[101]

Summer savory (Satureja hortensis)
Silver fir (Abies alba) In vitro

Prototheca zopfii isolates
(from mastitic milk and
bovine feces) Prototheca

wickerhami

Fir oil is presented lower
anti-algae activity as compared

to summer savory

Bouari et al. 2011
[102]

Worldwide products based on herbal extracts and essential oils under the form of a
spray or ointment have been used for the treatment of mastitis in ruminants, especially
in organic farms [103]. However, despite their great potential as non-antibiotic antibacte-
rial agents, essential oils have several disadvantages, including instability, intense smell,
biodegradability and low solubility in certain solutions. These issues have limited the
applications of essential oils in the food and medical industries. Moreover, newer research
has shown that the effectiveness of phytotherapy could be greatly improved, including
against antibiotic-resistant pathogens, by its association with metal nanoparticles, en-
abling the development of systems for the distribution and controlled release of essential
oils [104,105].

3.2. Metallic Nanoparticles

Metallic nanoparticles are submicron-size entities with a metal core composed of
inorganic metal or metal oxide, and they are usually covered by a shell layer of organic
or inorganic material or metal oxide. The use of nanoparticles in numerous fields such
as energy [106,107], biomedicine [108–112], assisted reproduction [113–115], wood indus-
try [116–118], food industry [119–121] and agriculture [122–127] has risen exponentially in
recent years.

Metallic nanoparticles may be synthesized by various methods, through top-down
(e.g., laser ablation, ball milling and chemical etching) and bottom-up approaches (e.g., chem-
ical vapor deposition, sol-gel process, spray pyrolysis and green synthesis). The top-down
strategy implies that the bulk material is converted into small, nano-sized structures, using
different reagents and physical treatments. In the bottom-up approach, nanoparticles are
grown to a specific size and shape from simpler molecules [128–132].

In contrast with the nanoparticles derived from physical and chemical synthesis,
which pose a high health and toxicity risk, the green synthesized nanoparticles are safer,
eco-friendly alternatives because the obtaining process is clean and non-toxic [133–135].
Green synthesized metallic nanoparticles may be obtained using leaves [136–138], flow-
ers [139,140], seeds [141,142], peel [143,144] or roots [145,146] (Figure 6). Moreover, the
production of different types of metallic nanoparticles using agro-waste has become more
and more popular [147–150].
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Figure 6. Schematic representation of silver nanoparticles green synthesis.

The antimicrobial effects of metallic nanoparticles (NPs) are mainly due to the release
of metallic ions, disruption of the cell membrane/wall, generation of ROS and inhibition
of proper DNA replication [151–154]. The reaction parameters such as pH, temperature
and reaction time may be adapted in order to produce metallic nanoparticles with desired
shape and size [155,156].

These physical characteristics may be further exploited for the development of antimi-
crobial products. Besides their antibacterial activity, metallic nanoparticles may be effective
against bovine mastitis pathogens (Table 2) and methicillin-resistant bacteria, inhibiting
biofilms [157–159].

Table 2. Summary of recent studies regarding the use of nanoparticles against bovine mastitis pathogens.

Type of Nanoparticles Type of Study Tested Pathogens Effect References

Silver nanoparticles
(AgNPs) in vitro Streptococcus agalactiae

AgNPs showed reasonable
antimicrobial and relatively low

antibiofilm activities, while cinnamon
oil showed high antimicrobial and

antibiofilm against biofilms of
Streptococcus agalactiae isolates.

Abd El-Aziz et al.
2021 [160]

Chitosan nanoparticles
(Ch-NPs) in vitro Staphylococcus aureus

The smaller Ch-NPs were active in
preventing Staphylococcus aureus from

entering the cells, but they did not
stimulate the formation of

pro-inflammatory cytokines. The
results support the assertion that

Ch-NPs are an excellent bacteriostatic
agent, capable of preventing the

replication of bovine mastitis
pathogens in the udder.

Orellano et al. 2021
[161]



Animals 2021, 11, 1625 11 of 21

Table 2. Cont.

Type of Nanoparticles Type of Study Tested Pathogens Effect References

Chitosan nanoparticles
(Ch-NPs) in vitro

Pseudomonas sp. strain
isolated from bovine milk

samples

The nanoparticles inhibited biofilm
formation and could eliminate
pre-existing mature biofilms.

Rivera Aguayo et al.
2020 [162]

Chitosan nanoparticles
(Ch-NPs) in vitro Staphylococcus aureus

The antimicrobial activity of Ch-NP
was higher than that of the native

polymer used in the nanocomposites’
preparation. Ch-NPs impaired
bacterial cell membranes and

prevented the development of bacterial
biofilms without impacting the

viability of bovine cells.

Orellano et al, 2019
[163]

inc oxide nanoparticles
(ZnO-NPs) in vitro

Staphylococcus aureus
Escherichia coli Klebsiella

pneumoniae isolated from
milk of affected cows.

At the same concentrations, capped
dispersed ZnO-NPs demonstrated

greater antibacterial activity against
Staphylococcus aureus, Escherichia coli

Klebsiella pneumoniae than non-capped
nanoparticles. Gram-positive

Staphylococcus aureus showed higher
resistance to ZnO-NPs synthesized as
compared to Gram-negative Escherichia

coli Klebsiella pneumoniae.

Hozyen et al. 2019
[164]

Silver-nanoparticle-
decorated quercetin

nanoparticles
(QA NPs)

in vitro

Escherichia coli multi-drug
resistant strain isolated
from a dairy cow with

mastitis

QA NPs showed higher antibacterial
and anti-biofilm properties in a

multi-drug resistant Escherichia coli
strain isolated from a dairy cow with
mastitis, as compared to Ag NPs and

quercetin alone.

Yu et al. 2018 [165]

Honey and Gold
Nanoparticles in vitro

Methicillin-resistant
(MRSA) and

vancomycin-resistant
(VRSA) coagulase-positive

Staphylococcus aureus
isolated from contagious
bovine clinical mastitis

AuNPs, 30 nm in size, presented
visible anti- Methicillin-resistant

(MRSA) and anti-vancomycin-resistant
(VRSA) activities in vitro

Omara et al. 2017
[166]

Moreover, in the treatment of bovine mastitis, nanoparticles show greater effects
on bacteria than their micro-counterparts and may serve as potential delivery systems
because they may be ingested by phagocytes [11,167]. According to Pinheiro Machado et al.
(2019) [168], nanoparticles may be used as a carrier for the efficient delivery of nano-
propolis formulation [169–172]. Due to its improved antimicrobial activity as well as low
cytotoxicity, this type of therapeutical alternative for bovine mastitis control is gaining
popularity in organic dairy farms. Furthermore, studies conducted by Soni and Yadav
(2016) [173], Krishna et al. (2017) [174], Mohsenabadi et al. (2018) [175] and Vasile et al.
(2020) [176], have shown that nanogels may be an outstanding method to address the
therapeutic challenges posed by intracellular pathogens such as Staphylococcus aureus.

More recently, the potential of new-generation antibacterial materials such as graphene-
based nanomaterials were also exploited [177,178]. Graphene oxide (GO) and reduced
graphene oxide (rGO) showed excellent potential in drug delivery and photodynamic/
photothermal therapy, as well as antimicrobial properties due to their composition and
physicochemical characteristics [178–180]. According to some studies, these materials may
be used in synergism with other biocidal material, such as rare metal nanoparticles [181,182]
or essential oils [183] with applications in various sectors such as biomedicine and food
safety. By enriching their antibacterial properties, these materials may be a promising tool
even against multidrug-resistant agents such as Methicillin-resistant Staphylococcus aureus
(MRSA) [184–187].

According to recent studies, graphene-based materials are being used successfully in
tissue engineering and regenerative medicine due to their potential to improve both the
wound-healing process and infection control at the injury site [188–191]. Since the lesions on
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teat skin commonly harbor bacteria that may cause mastitis, consequently leading to partial
or complete damage to udder tissues and reduced milk production, the anti-inflammatory
and regenerative properties of graphene may be exploited in the development of innovative
formulations. According to Pelin et al. (2017) [192], the cytotoxicity of graphene oxide
at skin level is low, which is why graphene-based products may be safely used for the
development of a nanogel with topical applications on the udder skin for the treatment
and prevention of bovine mastitis.

4. Challenges

The administration of oral pharmacological substances is, so far, the most convenient
and accepted way of administering drugs, but in recent years, the science of drug delivery
has reached unprecedented landmarks, thus, presently there is considerable interest in
the administration of drugs to the systemic circulation, in a non-invasive manner, through
mucosal routes (ophthalmic, rectal, vaginal) or skin [193]. The development of innovative
drug delivery methods and the nanotechnological advancements have catapulted topical
drug delivery to a whole new era [194,195]. However, delivering the active substances into
the bloodstream topically, using a non-invasive manner, remains a challenge.

An effective topical formulation must meet two concomitant characteristics, namely
being thermodynamically stable while allowing the transport of the active substance
through the stratum corneum of the skin, thus guaranteeing that the necessary therapeutic
amount of drug reaches the targeted region [196–200]. A poor percutaneous penetration
capability for most topical antibacterial and anti-inflammatory formulations is one of the
main causes compromising their therapeutic effects [201]. The transdermal delivery of ac-
tive compounds is a challenge that may be solved by hydrogels [202–204]. These promising
3D materials have demonstrated increasing applications in the encapsulation and topical
delivery of drugs due to specific properties such as high hydrophilicity, unique three-
dimensional network, fine biocompatibility and cell adhesion [204,205]. These distinctive
properties give hydrogels the ability to protect the pharmacological substance against
biodegradation while also ensuring its controlled and regulated release. Furthermore, hy-
drogels may be functionalized using different nanomaterials such as nanotubes, graphene,
dendrimers, ceramic and metallic nanoparticles. The integration of nanomaterials within
a polymeric hydrogel network is an appealing method for personalizing the mechanical
properties of the hydrogels and/or improving the responsiveness to external stimuli [206].

Nanoparticles may act as a multifunctional cross-linking point in three-dimensional
polymeric chains; thus, the size and shape of the nanoparticles may influence the mechan-
ical strength of the nanocomposite hydrogel [207,208]. Metallic nanoparticles are well
known for their antimicrobial activity against a broad range of bacteria strains, including
an antibiotic-resistant strain, making them suitable for the formulation of nanogels with
antimicrobial activity [201,207,209–212].

Graphene-based nanomaterials also show impressive antimicrobial characteristics [213,214].
However, due to their powerful inter-plane interactions, they tend to aggregate, which
is why their surface area and mode of action is presently limited. Therefore, different
functionalization and surface modification with metal ions/oxides/sulfides NPs, poly-
mers and enzymes must be conducted on graphene in order to decrease aggregation and
improve biosafety.

Many attempts have been made over the last several years to produce selective drug
delivery systems that allow medication to be delivered to particular locations such as
muscles, tissues and cells in the body to enhance treatment management. Nanogels are
among the most promising drug delivery systems due to their unique structure that
combines the properties and features of both hydrogels and nanoparticles.

5. Conclusions

Routine animal health assessments, as a core technique for infection prevention and
control on farms, as well as the dissemination of best practices at the regional and national
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levels, may enhance animal health and food safety. This strategy might help limit food
contamination and antibiotic consumption on farms. In the same way as reducing human
infection reduces antimicrobial use (and so the risk of AMR), reducing animal infection
reduces antimicrobial use and hence the risk of AMR.

However, more resistance might naturally arise as a result of evolution. Therefore,
any strategy to counteract AMR must have an emphasis on enhancing the manufacturing
and use of highly effective new antimicrobials, vaccines and infection prevention therapies.

Nanomaterials have great potential in the development of new drug formulas, as an
alternative to current therapy products, the benefits of these new types of formulas being
determined both by the diversity of excipients and by their particularly advantageous
specific properties such as relative abundance, biocompatibility, biodegradability, non-
irritability, innocuity and low-cost price.

In addition, essential oils are recognized as biocompatible, biodegradable and non-
toxic, and due to their ability to penetrate the skin barrier, these compounds may be used
alongside other nanomaterials to improve both the transdermal transport of the newly
developed products, as well as their efficiency.
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from the Survey of Antibiotic Resistance (SOAR) 2014–16 in Bulgaria, Romania, Serbia and Croatia. J. Antimicrob. Chemother. 2018,
73, v2–v13. [CrossRef] [PubMed]

34. Tiseo, K.; Huber, L.; Gilbert, M.; Robinson, T.P.; Van Boeckel, T.P. Global Trends in Antimicrobial Use in Food Animals from 2017
to 2030. Antibiotics 2020, 9, 918. [CrossRef]

35. Nolte, O. Antimicrobial resistance in the 21st century: A multifaceted challenge. Protein Pept. Lett. 2014, 21, 330–335. [CrossRef]
36. Barriere, S.L. Clinical, economic and societal impact of antibiotic resistance. Expert Opin. Pharmacother. 2015, 16, 151–153.

[CrossRef]
37. Friedman, N.; Temkin, E.; Carmeli, Y. The negative impact of antibiotic resistance. Clin. Microbiol. Infect. 2016, 22, 416–422.

[CrossRef]
38. Naylor, N.R.; Atun, R.; Zhu, N.; Kulasabanathan, K.; Silva, S.; Chatterjee, A.; Knight, G.M.; Robotham, J.V. Estimating the burden

of antimicrobial resistance: A systematic literature review. Antimicrob. Resist. Infect. Control. 2018, 7, 58. [CrossRef]
39. Nathan, C. Resisting antimicrobial resistance. Nat. Rev. Genet. 2020, 18, 259–260. [CrossRef]
40. Addressing Antimicrobial Resistance: Progress in the Animal Sector, But This Health Threat Remains a Challenge for the EU.

Special Report by European Court of Auditors. 2019. Available online: https://www.stopamr.eu/wp-content/uploads/2019/11/
ECA-AMR-report.pdf (accessed on 8 March 2021).

41. Amann, S.; Neef, K.; Kohl, S. Antimicrobial resistance (AMR). Eur. J. Hosp. Pharm. 2019, 26, 175–177. [CrossRef]
42. Davies, R.; Wales, A. Antimicrobial Resistance on Farms: A Review Including Biosecurity and the Potential Role of Disinfectants

in Resistance Selection. Compr. Rev. Food Sci. Food Saf. 2019, 18, 753–774. [CrossRef] [PubMed]

http://doi.org/10.1007/s13593-014-0274-x
http://doi.org/10.3923/ijp.2017.724.731
http://doi.org/10.1155/2018/5927058
http://doi.org/10.17140/VMOJ-5-148
https://esvacbi.ema.europa.eu/analytics/saw.dll?PortalPages
https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/european-surveillance-veterinary-antimicrobial-consumption-esvac-vision-strategy-2016-2020_en.pd
https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/european-surveillance-veterinary-antimicrobial-consumption-esvac-vision-strategy-2016-2020_en.pd
http://doi.org/10.2903/j.efsa.2017.5017
https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2018-trends-2010-2018-tenth-esvac-report_en.pdf
https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2018-trends-2010-2018-tenth-esvac-report_en.pdf
http://doi.org/10.1186/s13756-020-0697-x
http://doi.org/10.1111/j.1574-6968.2011.02453.x
http://doi.org/10.1128/AAC.00493-13
http://www.ncbi.nlm.nih.gov/pubmed/23774442
http://doi.org/10.1038/nrmicro3270
http://www.ncbi.nlm.nih.gov/pubmed/24861036
http://doi.org/10.3389/fmicb.2016.01091
http://doi.org/10.1186/s13568-020-01173-6
http://doi.org/10.3390/molecules23040795
http://www.ncbi.nlm.nih.gov/pubmed/29601469
http://doi.org/10.3390/molecules26082276
http://www.ncbi.nlm.nih.gov/pubmed/33919993
https://www.ecdc.europa.eu/sites/default/files/documents/Antimicrobial-consumption-in-the-EU-Annual-Epidemiological-Report-2019.pdf
https://www.ecdc.europa.eu/sites/default/files/documents/Antimicrobial-consumption-in-the-EU-Annual-Epidemiological-Report-2019.pdf
https://epha.org/wp-content/uploads/2017/06/In-the-red-zone-EPHA.pdf
https://epha.org/wp-content/uploads/2017/06/In-the-red-zone-EPHA.pdf
http://doi.org/10.1093/jac/dky066
http://www.ncbi.nlm.nih.gov/pubmed/29659882
http://doi.org/10.3390/antibiotics9120918
http://doi.org/10.2174/09298665113206660106
http://doi.org/10.1517/14656566.2015.983077
http://doi.org/10.1016/j.cmi.2015.12.002
http://doi.org/10.1186/s13756-018-0336-y
http://doi.org/10.1038/s41579-020-0348-5
https://www.stopamr.eu/wp-content/uploads/2019/11/ECA-AMR-report.pdf
https://www.stopamr.eu/wp-content/uploads/2019/11/ECA-AMR-report.pdf
http://doi.org/10.1136/ejhpharm-2018-001820
http://doi.org/10.1111/1541-4337.12438
http://www.ncbi.nlm.nih.gov/pubmed/33336931


Animals 2021, 11, 1625 15 of 21

43. Blake, O.; Glaser, M.; Bertolini, L.; te Brömmelstroet, M. How policies become best practices: A case study of best practice making
in an EU knowledge sharing project. Eur. Plan. Stud. 2020, 1–21. [CrossRef]

44. Deruelle, T. A tribute to the foot soldiers: European health agencies in the fight against antimicrobial resistance. Health Econ.
Policy Law 2021, 16, 23–37. [CrossRef]

45. Sinha, M.K.; Thombare, N.N.; Mondal, B. Subclinical Mastitis in Dairy Animals: Incidence, Economics, and Predisposing Factors.
Sci. World J. 2014, 2014, 523984. [CrossRef] [PubMed]

46. Krömker, V.; Leimbach, S. Mastitis treatment-Reduction in antibiotic usage in dairy cows. Reprod. Domest. Anim. 2017, 52, 21–29.
[CrossRef] [PubMed]

47. Kumar, N.; Manimaran, A.; Kumaresan, A.; Jeyakumar, S.; Sreela, L.; Mooventhan, P.; Sivaram, M. Mastitis effects on reproductive
performance in dairy cattle: A review. Trop. Anim. Health Prod. 2017, 49, 663–673. [CrossRef] [PubMed]

48. Getaneh, A.M.; Gebremedhin, E.Z. Meta-analysis of the prevalence of mastitis and associated risk factors in dairy cattle in
Ethiopia. Trop. Anim. Health Prod. 2017, 49, 697–705. [CrossRef]

49. Derakhshani, H.; Fehr, K.B.; Sepehri, S.; Francoz, D.; De Buck, J.; Barkema, H.W.; Plaizier, J.C.; Khafipour, E. Invited review:
Microbiota of the bovine udder: Contributing factors and potential implications for udder health and mastitis susceptibility. J.
Dairy Sci. 2018, 101, 10605–10625. [CrossRef] [PubMed]

50. Heikkilä, A.-M.; Liski, E.; Pyörälä, S.; Taponen, S. Pathogen-specific production losses in bovine mastitis. J. Dairy Sci. 2018, 101,
9493–9504. [CrossRef] [PubMed]

51. Ashraf, A.; Imran, M. Diagnosis of bovine mastitis: From laboratory to farm. Trop. Anim. Health Prod. 2018, 50, 1193–1202.
[CrossRef] [PubMed]

52. Deng, Z.; Koop, G.; Lam, T.; Van Der Lans, I.; Vernooij, J.; Hogeveen, H. Farm-level risk factors for bovine mastitis in Dutch
automatic milking dairy herds. J. Dairy Sci. 2019, 102, 4522–4535. [CrossRef]

53. Gomes, F.; Saavedra, M.J.; Henriques, M. Bovine mastitis disease/pathogenicity: Evidence of the potential role of microbial
biofilms. Pathog. Dis. 2016, 74, 74. [CrossRef] [PubMed]

54. Ruegg, P.L. A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017, 100, 10381–10397. [CrossRef]
[PubMed]

55. Fair, R.J.; Tor, Y. Antibiotics and Bacterial Resistance in the 21st Century. Perspect. Med. Chem. 2014, 6, 25–64. [CrossRef]
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119. Motelica, L.; Ficai, D.; Ficai, A.; Truşcă, R.-D.; Ilie, C.-I.; Oprea, O.-C.; Andronescu, E. Innovative Antimicrobial Chitosan/ZnO/Ag
NPs/Citronella Essential Oil Nanocomposite—Potential Coating for Grapes. Foods 2020, 9, 1801. [CrossRef]

120. Tan, C.; McClements, D. Application of Advanced Emulsion Technology in the Food Industry: A Review and Critical Evaluation.
Foods 2021, 10, 812. [CrossRef]

121. Alirezalu, K.; Yaghoubi, M.; Poorsharif, L.; Aminnia, S.; Kahve, H.; Pateiro, M.; Lorenzo, J.; Munekata, P. Antimicrobial Polyamide-
Alginate Casing Incorporated with Nisin and ε-Polylysine Nanoparticles Combined with Plant Extract for Inactivation of Selected
Bacteria in Nitrite-Free Frankfurter-Type Sausage. Foods 2021, 10, 1003. [CrossRef]

122. Medina, J.; Calabi-Floody, M.; Aponte, H.; Santander, C.; Paneque, M.; Meier, S.; Panettieri, M.; Cornejo, P.; Borie, F.; Knicker, H.
Utilization of Inorganic Nanoparticles and Biochar as Additives of Agricultural Waste Composting: Effects of End-Products on
Plant Growth, C and Nutrient Stock in Soils from a Mediterranean Region. Agronomy 2021, 11, 767. [CrossRef]

123. Semida, W.; Abdelkhalik, A.; Mohamed, G.; Abd El-Mageed, T.A.; Abd El-Mageed, S.A.; Rady, M.; Ali, E. Foliar Application of
Zinc Oxide Nanoparticles Promotes Drought Stress Tolerance in Eggplant (Solanum melongena L.). Plants 2021, 10, 421. [CrossRef]

124. Picchi, V.; Gobbi, S.; Fattizzo, M.; Zefelippo, M.; Faoro, F. Chitosan Nanoparticles Loaded with N-Acetyl Cysteine to Mitigate
Ozone and Other Possible Oxidative Stresses in Durum Wheat. Plants 2021, 10, 691. [CrossRef]

125. García-Sánchez, S.; Gala, M.; Žoldák, G. Nanoimpact in Plants: Lessons from the Transcriptome. Plants 2021, 10, 751. [CrossRef]
[PubMed]

126. Khalofah, A.; Kilany, M.; Migdadi, H. Phytostimulatory Influence of Comamonas testosteroni and Silver Nanoparticles on Linum
usitatissimum L. under Salinity Stress. Plants 2021, 10, 790. [CrossRef] [PubMed]

127. Sawalha, H.; Abiri, R.; Sanusi, R.; Shaharuddin, N.; Noor, A.; Ab Shukor, N.; Abdul-Hamid, H.; Ahmad, S. Toward a Better
Understanding of Metal Nanoparticles, a Novel Strategy from Eucalyptus Plants. Plants 2021, 10, 929. [CrossRef]

128. Iravani, S. Methods for Preparation of Metal Nanoparticles. In Metal Nanoparticles; Wiley-VCH Verlag GmbH & Co. KGaA:
Weinheim, Germany, 2017.

129. Singh, J.; Dutta, T.; Kim, K.-H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ synthesis of metals and their oxide nanoparticles:
Applications for environmental remediation. J. Nanobiotechnol. 2018, 16, 84. [CrossRef]

130. Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of
preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019, 53, 53. [CrossRef]

131. Neculai-Văleanu, S.; Ariton, A.-M.; Matei, A.-C.; Mădescu, B.-M.; Davidescu, M.-A.; Poros, nicu, I.; Creangă, S, . Green Synthesis of
Silver Nanoparticles Using Curcuma Longa Plant Extract and Their Possible Applications. In Proceedings of the International
Scientific Congress “Life Sciences, A Challenge for The Future”, Ias, i, Romania, 23–25 October 2014; Filodiritto Editore: Ias, i,
Romania, 2019; pp. 288–293.

132. Marinescu, L.; Ficai, D.; Oprea, O.; Marin, A.; Ficai, A.; Andronescu, E.; Holban, A.-M. Optimized Synthesis Approaches of Metal
Nanoparticles with Antimicrobial Applications. J. Nanomater. 2020, 2020, 6651207. [CrossRef]

133. Devatha, C.P.; Thalla, A.K. Green Synthesis of Nanomaterials. In Synthesis of Inorganic Nanomaterials; Elsevier: Amsterdam, The
Netherlands, 2018.

134. Noah, N. Green synthesis: Characterization and application of silver and gold nanoparticles. In Green Synthesis, Characterization
and Applications of Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2019.

135. Cele, T. Preparation of Nanoparticles. In Engineered Nanomaterials—Health and Safety; IntechOpen: London, UK, 2020.
136. Raj, S.; Mali, S.C.; Trivedi, R. Green synthesis and characterization of silver nanoparticles using Enicostemma axillare (Lam.) leaf

extract. Biochem. Biophys. Res. Commun. 2018, 503, 2814–2819. [CrossRef] [PubMed]
137. Das, P.E.; Abu-Yousef, I.A.; Majdalawieh, A.F.; Narasimhan, S.; Poltronieri, P. Green Synthesis of Encapsulated Copper Nanoparti-

cles Using a Hydroalcoholic Extract of Moringa oleifera Leaves and Assessment of Their Antioxidant and Antimicrobial Activities.
Molecules 2020, 25, 555. [CrossRef]

138. Kamath, V.; Chandra, P.; Jeppu, G.P. Comparative study of using five different leaf extracts in the green synthesis of iron oxide
nanoparticles for removal of arsenic from water. Int. J. Phytoremediat. 2020, 22, 1278–1294. [CrossRef] [PubMed]

139. Muthu, K.; Priya, S. Green synthesis, characterization and catalytic activity of silver nanoparticles using Cassia auriculata flower
extract separated fraction. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 179, 66–72. [CrossRef] [PubMed]
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151. Bedlovičová, Z.; Salayová, A. Green-Synthesized Silver Nanoparticles and Their Potential for Antibacterial Applications. In
Bacterial Pathogenesis and Antibacterial Control; InTech: London, UK, 2018.

152. Mousavi, S.M.; Hashemi, S.A.; Ghasemi, Y.; Atapour, A.; Amani, A.M.; Savar Dashtaki, A.; Babapoor, A.; Arjmand, O. Green
synthesis of silver nanoparticles toward bio and medical applications: Review study. Artif. Cells Nanomed. Biotechnol. 2018, 46,
S855–S872. [CrossRef]

153. Ogunyemi, S.O.; Abdallah, Y.; Zhang, M.; Fouad, H.; Hong, X.; Ibrahim, E.; Masum, M.I.; Hossain, A.; Mo, J.; Li, B. Green
synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv.
oryzae. Artif. Cells Nanomed. Biotechnol. 2019, 47, 341–352. [CrossRef]

154. El-Sherbiny, I.M.; Sedki, M. Green Synthesis of Chitosan-Silver/Gold Hybrid Nanoparticles for Biomedical Applications. Breast
Cancer 2019, 2000, 79–84. [CrossRef]

155. Ibrahim, S.; Ahmad, Z.; Manzoor, M.Z.; Mujahid, M.; Faheem, Z.; Adnan, A. Optimization for biogenic microbial synthesis
of silver nanoparticles through response surface methodology, characterization, their antimicrobial, antioxidant, and catalytic
potential. Sci. Rep. 2021, 11, 770. [CrossRef]

156. Ekaji, F.A.; Akujobi, C.O.; Umeh, S.I. Optimization of Selected Process Parameters Affecting Yield of Green Synthesized Silver
Nanoparticles and Their Antibacterial Activity. Biotechnol. J. Int. 2021, 25, 25–36. [CrossRef]

157. Wady, A.F.; Machado, A.L.; Foggi, C.C.; Zamperini, C.A.; Zucolotto, V.; Moffa, E.B.; Vergani, C.E. Effect of a Silver Nanoparticles
Solution onStaphylococcus aureusandCandidaspp. J. Nanomater. 2014, 2014, 545279. [CrossRef]

158. Mocan, L.; Matea, C.; Tabaran, F.A.; Mosteanu, O.; Pop, T.; Puia, C.; Agoston-Coldea, L.; Gonciar, D.; Kalman, E.; Zaharie, G.; et al.
Selective in vitro photothermal nano-therapy of MRSA infections mediated by IgG conjugated gold nanoparticles. Sci. Rep. 2016,
6, 39466. [CrossRef]

159. Hibbitts, A.; O’Leary, C. Emerging Nanomedicine Therapies to Counter the Rise of Methicillin-Resistant Staphylococcus aureus.
Materials 2018, 11, 321. [CrossRef] [PubMed]

160. Abd El-Aziz, N.K.; Ammar, A.M.; El-Naenaeey, E.-S.Y.M.; El Damaty, H.M.; Elazazy, A.A.; Hefny, A.A.; Shaker, A.; Eldesoukey,
I.E. Antimicrobial and antibiofilm potentials of cinnamon oil and silver nanoparticles against Streptococcus agalactiae isolated
from bovine mastitis: New avenues for countering resistance. BMC Vet. Res. 2021, 17, 136. [CrossRef]

161. Orellano, M.S.S.; Bohl, L.P.; Breser, M.L.; Isaac, P.; Falcone, R.D.; Porporatto, C. A comparative study of antimicrobial activity of
differently-synthesized chitosan nanoparticles against bovine mastitis pathogens. Soft Matter 2021, 17, 694–703. [CrossRef]

162. Aguayo, P.R.; Larenas, T.B.; Godoy, C.A.; Rivas, B.C.; González-Casanova, J.; Rojas-Gómez, D.; Fuentes, N.C. Antimicrobial
and Antibiofilm Capacity of Chitosan Nanoparticles against Wild Type Strain of Pseudomonas sp. Isolated from Milk of Cows
Diagnosed with Bovine Mastitis. Antibiotics 2020, 9, 551. [CrossRef]

163. Orellano, M.S.; Isaac, P.; Breser, M.L.; Bohl, L.P.; Conesa, A.; Falcone, R.D.; Porporatto, C. Chitosan nanoparticles enhance the
antibacterial activity of the native polymer against bovine mastitis pathogens. Carbohydr. Polym. 2019, 213, 1–9. [CrossRef]

164. Hozyen, H.F.; Ibrahim, E.S.; Khairy, E.A.; El-Dek, S.I. Enhanced antibacterial activity of capped zinc oxide nanoparticles: A step
towards the control of clinical bovine mastitis. Vet. World 2019, 12, 1225–1232. [CrossRef]

165. Yu, L.; Shang, F.; Chen, X.; Ni, J.; Yu, L.; Zhang, M.; Sun, D.; Xue, T. The anti-biofilm effect of silver-nanoparticle-decorated
quercetin nanoparticles on a multi-drug resistant Escherichia coli strain isolated from a dairy cow with mastitis. PeerJ 2018, 6,
e5711. [CrossRef]

166. Omara, S.T. MIC and MBC of Honey and Gold Nanoparticles against methicillin-resistant (MRSA) and vancomycin-resistant
(VRSA) coagulase-positive S. aureus isolated from contagious bovine clinical mastitis. J. Genet. Eng. Biotechnol. 2017, 15, 219–230.
[CrossRef]

167. Sankar, P. New Therapeutic Strategies to Control and Treatment of Bovine Mastitis. Vet. Med. Open J. 2016, 1, e7–e8. [CrossRef]

http://doi.org/10.1016/j.envpol.2020.116295
http://doi.org/10.1016/j.ijbiomac.2018.11.101
http://doi.org/10.3390/nano10122383
http://doi.org/10.1016/j.micpath.2018.08.025
http://doi.org/10.1155/2020/4505787
http://doi.org/10.3390/ma13194241
http://doi.org/10.1080/21691401.2018.1517769
http://doi.org/10.1080/21691401.2018.1557671
http://doi.org/10.1007/978-1-4939-9516-5_7
http://doi.org/10.1038/s41598-020-80805-0
http://doi.org/10.9734/bji/2021/v25i230136
http://doi.org/10.1155/2014/545279
http://doi.org/10.1038/srep39466
http://doi.org/10.3390/ma11020321
http://www.ncbi.nlm.nih.gov/pubmed/29473883
http://doi.org/10.1186/s12917-021-02842-9
http://doi.org/10.1039/D0SM01179G
http://doi.org/10.3390/antibiotics9090551
http://doi.org/10.1016/j.carbpol.2019.02.016
http://doi.org/10.14202/vetworld.2019.1225-1232
http://doi.org/10.7717/peerj.5711
http://doi.org/10.1016/j.jgeb.2017.02.010
http://doi.org/10.17140/VMOJ-1-e004


Animals 2021, 11, 1625 20 of 21

168. Machado, G.T.P.; Veleirinho, M.B.; Mazzarino, L.; Filho, L.C.P.M.; Maraschin, M.; Cerri, R.L.A.; Kuhnen, S. Development of
propolis nanoparticles for the treatment of bovine mastitis: In vitro studies on antimicrobial and cytotoxic activities. Can. J. Anim.
Sci. 2019, 99, 713–723. [CrossRef]

169. Seven, P.T.; Seven, I.; Baykalir, B.G.; Mutlu, S.I.; Salem, A.Z.M. Nanotechnology and nano-propolis in animal production and
health: An overview. Ital. J. Anim. Sci. 2018, 17, 921–930. [CrossRef]

170. Kazemi, F.; Divsalar, A.; Saboury, A.A.; Seyedarabi, A. Propolis nanoparticles prevent structural changes in human hemoglobin
during glycation and fructation. Colloids Surf. B Biointerfaces 2019, 177, 188–195. [CrossRef] [PubMed]

171. El Hamid, H.M.A.; Abdel-Aziz, M.S.; Abu Naeem, F.M. Antimicrobial Efficacy of Nanopropolis Coated Vs Silver-Curcumin
Nanoparticles Coated Gutta-Percha Points on Various Microbial Species. A Comparative In Vitro Study. Egypt. Dent. J. 2020, 66,
1893–1902. [CrossRef]

172. Seven, P.T.; Seven, I.; Karakus, S.; Mutlu, S.I.; Arkali, G.; Sahin, Y.M.; Kilislioglu, A. Turkish Propolis and Its Nano Form Can
Ameliorate the Side Effects of Cisplatin, Which Is a Widely Used Drug in the Treatment of Cancer. Plants 2020, 9, 1075. [CrossRef]
[PubMed]

173. Soni, G.; Yadav, K.S. Nanogels as potential nanomedicine carrier for treatment of cancer: A mini review of the state of the art.
Saudi Pharm. J. 2016, 24, 133–139. [CrossRef]

174. Krishna, A.N.; Reddy, M.V.Y.; Reddy, M.C.B.; Padmini, I. Formulation, Evaluation of Nano Copper Gel for Treatment of Clinical
Mastitis. J. Pharmacol. Res. 2017, 11, 547–554.

175. Mohsenabadi, N.; Rajaei, A.; Tabatabaei, M.; Mohsenifar, A. Physical and Antimicrobial Properties of Starch-Carboxy Methyl
Cellulose Film Containing Rosemary Essential Oils Encapsulated in Chitosan Nanogel. Int. J. Biol. Macromol. 2018, 112, 148–155.
[CrossRef] [PubMed]

176. Vasile, C.; Pamfil, D.; Stoleru, E.; Baican, M. New Developments in Medical Applications of Hybrid Hydrogels Containing
Natural Polymers. Molecules 2020, 25, 1539. [CrossRef] [PubMed]

177. Nguyen, V.H. Recent Advances in Experimental Basic Research on Graphene and Graphene-Based Nanostructures. Adv. Nat. Sci.
Nanosci. Nanotechnol. 2016, 7, 023001. [CrossRef]

178. Xia, M.-Y.; Xie, Y.; Yu, C.-H.; Chen, G.-Y.; Li, Y.-H.; Zhang, T.; Peng, Q. Graphene-based nanomaterials: The promising active
agents for antibiotics-independent antibacterial applications. J. Control. Release 2019, 307, 16–31. [CrossRef]

179. Teodorescu, F.; Quéniat, G.; Foulon, C.; Lecoeur, M.; Barras, A.; Boulahneche, S.; Medjram, M.S.; Hubert, T.; Abderrahmani, A.;
Boukherroub, R.; et al. Transdermal skin patch based on reduced graphene oxide: A new approach for photothermal triggered
permeation of ondansetron across porcine skin. J. Control. Release 2017, 245, 137–146. [CrossRef] [PubMed]

180. Mohammed, H.; Kumar, A.; Bekyarova, E.; Al-Hadeethi, Y.; Zhang, X.; Chen, M.; Ansari, M.S.; Cochis, A.; Rimondini, L.
Antimicrobial Mechanisms and Effectiveness of Graphene and Graphene-Functionalized Biomaterials. A Scope Review. Front.
Bioeng. Biotechnol. 2020, 8, 8. [CrossRef]

181. Prasad, K.; Lekshmi, G.S.; Ostrikov, K.; Lussini, V.; Blinco, J.; Mohandas, M.; Vasilev, K.; Bottle, S.; Bazaka, K.; Ostrikov, K.
Synergic bactericidal effects of reduced graphene oxide and silver nanoparticles against Gram-positive and Gram-negative
bacteria. Sci. Rep. 2017, 7, 1591. [CrossRef] [PubMed]

182. El-Shafai, N.; El-Khouly, M.E.; El-Kemary, M.; Ramadan, M.; Eldesoukey, I.; Masoud, M. Graphene oxide decorated with zinc
oxide nanoflower, silver and titanium dioxide nanoparticles: Fabrication, characterization, DNA interaction, and antibacterial
activity. RSC Adv. 2019, 9, 3704–3714. [CrossRef]

183. Arfat, Y.A.; Ahmed, J.; Ejaz, M.; Mullah, M. Polylactide/graphene oxide nanosheets/clove essential oil composite films for
potential food packaging applications. Int. J. Biol. Macromol. 2018, 107, 194–203. [CrossRef]

184. De Moraes, A.C.M.; Lima, B.A.; de Faria, A.F.; Brocchi, M.; Alves, O.L. Graphene oxide-silver nanocomposite as a promising
biocidal agent against methicillin-resistant Staphylococcus aureus. Int. J. Nanomed. 2015, 10, 6847–6861. [CrossRef]

185. Yousefi, M.; Dadashpour, M.; Hejazi, M.; Hasanzadeh, M.; Behnam, B.; de la Guardia, M.; Shadjou, N.; Mokhtarzadeh, A.
Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. Mater. Sci. Eng.
C 2017, 74, 568–581. [CrossRef] [PubMed]

186. Jaworski, S.; Wierzbicki, M.; Sawosz, E.; Jung, A.; Gielerak, G.; Biernat, J.; Jaremek, H.; Łojkowski, W.; Woźniak, B.; Wojnarowicz,
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