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Preoperative brain connectome predicts 
postoperative changes in processing speed  
in moyamoya disease
Mengxia Gao,1,2,* Charlene L. M. Lam,1,2 Wai M. Lui,3 Kui Kai Lau2,4 and Tatia M. C. Lee1,2,*

* These authors contributed equally to this work.

Moyamoya disease is a rare cerebrovascular disorder associated with cognitive dysfunction. It is usually treated by surgical revascu
larization, but research on the neurocognitive outcomes of revascularization surgery is controversial. Given that neurocognitive im
pairment could affect the daily activities of patients with moyamoya disease, early detection of postoperative neurocognitive outcomes 
has the potential to improve patient management. In this study, we applied a well-established connectome-based predictive modelling 
approach to develop machine learning models that used preoperative resting-state functional connectivity to predict postoperative 
changes in processing speed in patients with moyamoya disease. Twelve adult patients with moyamoya disease (age range: 23–49 
years; female/male: 9/3) were recruited prior to surgery and underwent follow-up at 1 and 6 months after surgery. Twenty healthy 
controls (age range: 24–54 years; female/male: 14/6) were recruited and completed the behavioural test at baseline, 1-month fol
low-up and 6-month follow-up. Behavioural results indicated that the behavioural changes in processing speed at 1 and 6 months after 
surgery compared with baseline were not significant. Importantly, we showed that preoperative resting-state functional connectivity 
significantly predicted postoperative changes in processing speed at 1 month after surgery (negative network: ρ= 0.63, Pcorr = 0.017) 
and 6 months after surgery (positive network: ρ= 0.62, Pcorr = 0.010; negative network: ρ= 0.55, Pcorr = 0.010). We also identified 
cerebro-cerebellar and cortico-subcortical connectivities that were consistently associated with processing speed. The brain regions 
identified from our predictive models are not only consistent with previous studies but also extend previous findings by revealing their 
potential roles in postoperative neurocognitive functions in patients with moyamoya disease. Taken together, our findings provide 
preliminary evidence that preoperative resting-state functional connectivity might predict the post-surgical longitudinal neurocogni
tive changes in patients with moyamoya disease. Given that processing speed is a crucial cognitive ability supporting higher neurocog
nitive functions, this study’s findings offer important insight into the clinical management of patients with moyamoya disease.

1  The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong 999077, China
2  Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong 999077, China
3  Division of Neurosurgery, Queen Mary Hospital, Hong Kong 999077, China
4  Division of Neurology, Department of Medicine, The University of Hong Kong, Hong Kong 999077, China

Correspondence to: Tatia M. C. Lee, PhD  
Laboratory of Neuropsychology  
The University of Hong Kong  
Room 656, The Jockey Club Tower, Pokfulam Road  
Hong Kong 999077, China  
E-mail: tmclee@hku.hk

Keywords: moyamoya disease; processing speed; resting-state functional connectivity; connectome-based predictive modelling; 
neurocognitive functions

Received March 18, 2022. Revised June 09, 2022. Accepted August 19, 2022. Advance access publication August 20, 2022
© The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.

mailto:tmclee@hku.hk
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/braincomms/fcac213


2 | BRAIN COMMUNICATIONS 2022: Page 2 of 11                                                                                                                 M. Gao et al.

Abbreviations: AAL = automated anatomical labelling; BA = Brodmann area; CPM = connectome-based predictive modelling 
FD = frame-wise displacement; fMRI = functional magnetic resonance imaging; FOV = field of view; IPG = inferior parietal gyrus; 
LOOCV = leave-one-out cross-validation; MSFG = medial superior frontal gyrus; OFG = orbitofrontal gyrus; PS = processing 
speed; TE = echo time; TR = repetition time

Graphical Abstract

Introduction
Moyamoya disease is characterized by progressive stenosis 
or occlusion of the intracranial internal carotid artery or its 
terminal branches.1,2 Tiny collateral blood vessels then de
velop at the base of the brain in an attempt to supply the 
brain with blood, resulting in an abnormal vascular network 
in the brain (moyamoya vessels). The condition is known to 
cause strokes.3 Moyamoya disease is a relatively rare cere
brovascular disorder of unknown aetiology with low incidence 
(0.15 per 100 000) and prevalence (1.61 per 100 100).4 In 
paediatric patients with moyamoya disease, the usual presenta
tion is ischaemic stroke due to inadequate blood supply to the 
brain. In adult patients with moyamoya disease, the usual pres
entation is haemorrhagic stroke due to bleeding from these ab
normal brain vessels, which likely has a significant impact on 
neurocognitive functioning.5 Impairment of neurocognitive 
functions among patients with moyamoya disease is well docu
mented in the literature.6–9 Almost two-thirds of patients with 
this disease suffer from deficits in processing speed (PS), as well 
as other visuospatial deficits and problems with executive 
functioning.10,11

To decrease the risk of stroke, moyamoya disease is usual
ly treated with surgical revascularization. Intracranial blood 
flow is augmented using an external carotid system that al
lows direct bypass or pial synangiosis.12 In this regard, pre
vious studies have demonstrated that revascularization 
surgery established adequate collateral circulation in up to 
93% of patients with moyamoya disease and reduced the 

subsequent risk of recurrent ischaemic stroke in up to 88% 
of these patients.13 However, research on the neurocognitive 
outcomes of revascularization surgery is controversial. Some 
studies have reported improvement in the neurocognitive 
functioning of patients with moyamoya disease following 
surgery. For example, Kazumata et al.14 found that, relative 
to their preoperative baseline performance, patients with 
moyamoya disease who underwent revascularization sur
gery performed significantly better on PS and attention tasks 
at a 12-month follow-up assessment following their surgery. 
Similarly, other researchers have reported improvements to 
memory and executive functioning in patients with moya
moya disease 3–6 months post-surgery.15,16 However, other 
studies have reported that the neurocognitive functions of 
some patients with moyamoya disease did not improve or 
even worsened after surgical intervention.9 Therefore, a 
strategy or tool for determining the post-surgical neurocog
nitive outcomes of patients with moyamoya disease would 
be extremely beneficial for improving the clinical manage
ment of this population.

Recently, connectome-based predictive modelling (CPM) 
has been used extensively to develop machine learning mod
els that associate the brain with human behaviour.17–19 CPM 
is a data-driven approach that uses whole-brain connectivity 
as input features and behaviour scores as outputs. By em
ploying the cross-validation approach, it selects brain con
nections that are significantly associated with the given 
behavioural variable and generates linear models based on 
network strength to predict the behaviour of novel 
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individuals. Indeed, the CPM approach has been demon
strated to predict the cognitive function in attention con
trol20 and clinical outcomes.21–23 Furthermore, the CPM 
approach is useful for identifying brain networks that reflect 
the neural representation of a specific behaviour. Moreover, 
Finn et al.17 established that the brain’s functional connect
ivity patterns are useful for characterizing individual vari
ability. The variability of these patterns could be useful for 
understanding the neurocognitive status of patients with 
brain injuries such as stroke24,25 and moyamoya disease.16,26

Specifically, resting-state functional MRI (fMRI) data have 
been successfully applied to predict sustained attention18

and neurocognitive impairment in people with mild cogni
tive impairments.22 Gao et al.27 applied the CPM approach 
to predict PS using resting-state fMRI data. Therefore, using 
resting-state fMRI to measure the functional organization of 
the intact brain in patients with moyamoya disease, the CPM 
approach could provide neuromarkers28 and estimate the 
post-surgical neurocognitive outcomes of patients with 
moyamoya disease.

In this study, we employed a longitudinal design using the 
CPM approach to examine how well preoperative resting- 
state fMRI data could predict postoperative changes in PS 
in patients with moyamoya disease. We studied PS because 
of its significant association with general neurocognitive sta
tus,29,30 which makes it a sensitive index for reflecting neuro
cognitive status.31 In addition, PS is often a major cognitive 
complaint in patients with moyamoya disease.10,11

Materials and methods
Participants
We recruited 12 right-handed Chinese individuals with a 
diagnosis of moyamoya disease (3 males; mean age = 36.58 
± 9.60 years) who were scheduled to receive surgical revas
cularization. Moyamoya disease was diagnosed using estab
lished criteria.32 Supplementary Figure 1 shows the cerebral 
angiogram of a patient with moyamoya disease. The size of 
the sample corresponded with the incidence of moyamoya 
disease in China (0.15 people per 100 000 people).4 Other in
clusion criteria were as follows: (i) aged between 18 and 60 
years old; (ii) no evidence of recent or remote intracerebral 
haemorrhage or infarct in the cerebral cortex, basal ganglia, 
brainstem or cerebellum,7 (iii) no history of surgical treat
ment for the disease; (iv) absence of any other neurological 
diseases or psychiatric disorders that significantly affect daily 
functioning; (v) ability to complete neuropsychological tests; 
and (vi) ability to undergo MRI scanning. This study was ap
proved by the institutional review board of the University of 
Hong Kong and was conducted in accordance with the 
guidelines of the Declaration of Helsinki. All patients pro
vided written informed consent.

Participants were asked to complete neuropsychological 
tests assessing their PS at three stages of the study. The first 
round of testing was performed to determine their baseline 

performance before surgery (preoperative T0). The second 
was performed within 1 month after the surgery (post
operative T1). The third was performed ∼6 months after 
the surgery (postoperative T2). They were also asked to 
undergo MRI scanning at each stage. Two participants 
dropped out of the study during T2, leaving 10 participants 
available when analysing T2 data points. Due to technique 
issues, one participant’s behavioural score was missing at 
T1. Therefore, there were 11 participants when comparing 
T0 and T1, 10 participants when comparing T0 and T2 
and 9 participants when comparing T1 and T2.

We also recruited 20 age-matched right-handed healthy 
controls whose age ranged from 24 to 54 years old (fe
male/male: 14/6; mean age = 38.4±9.8 years). The two 
groups did not significantly differ in age, sex ratio and years 
of education (Ps > 0.066). Behavioural data of the healthy 
control group were collected at baseline (T0), 1-month 
follow-up (T1) and 6-month follow-up (T2). Informed con
sents were obtained from all the participants.

Psychometric assessment of 
processing speed
To measure the PS of the patient group and control group, 
we conducted the Digit Symbol-Coding and Symbol Search 
tests, which are two pencil–paper subtests of the Chinese ver
sion of the Wechsler Adult Intelligence Scale-III.33,34 The 
correct answers on the two tests were then computed and 
transformed to the PS score for each participant. Details of 
the tests can be found in the online Supplementary Materials.

Because the purpose of this study was to predict post
operative changes in PS over two time points (T1 and T2), we 
extracted two behavioural scores by subtracting the PS score 
of T0 from that of T1 and subtracting the PS score of T0 
from that of T2. These values can be expressed as ΔT1 and 
ΔT2, respectively. Positive values indicate an increase from 
T0 at T1 and T2, and negative values indicate a decrease. To 
explore whether PS significantly changed across the three 
time points, repeated-measures ANOVA was conducted using 
SPSS v.28. To further explore whether the improvement in PS 
in moyamoya group was due to practice effect, a two-way 
ANOVA (group × time point) was implemented.

MRI data acquisition 
and preprocessing
The imaging data were collected using a 3T Philips MRI scan
ner at the University of Hong Kong. For each participant, 
resting-state fMRI data were obtained using a gradient-echo 
echo-planar imaging pulse sequence with the following para
meters: 160 volumes in total; repetition time (TR) = 3000 ms; 
echo time (TE) = 30 ms; flip angle = 90°; matrix size = 72 × 
68; field of view (FOV) = 230 × 230 × 160 mm3; slice num
ber = 40; and slice thickness = 4 mm. T1-weighted high- 
resolution structural MRI data were acquired using the 
magnetization prepared rapid acquisition gradient-echo se
quence with the following parameters: 164 sagittal slices in 

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac213#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac213#supplementary-data
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total; TR = 7.0 ms; TE = 3.2 ms; flip angle = 8°; matrix size = 
256 × 240; FOV = 256 × 240 × 164 mm3; and slice thickness 
= 1 mm.

All data were preprocessed with SPM 12 (https://www.fil. 
ion.ucl.ac.uk/spm/) and DPABI 3.135 using the pipeline be
low. For the resting-state fMRI data, we first discarded the 
first five volumes to avoid the initial MRI signal instability. 
The remaining images were then processed for slice-timing 
correction and realignment. After that, nuisance noises 
were regressed out of the images, including the Friston 
24-motion parameters, mean signals from white matter, 
cerebral-spinal fluid signals and grey matter signals. Global 
signal regression was applied to strengthen the association 
between resting-state functional connectivity and behaviour
al measurements.36 Volumes with a mean frame-wise dis
placement (FD) of >0.5 mm were also added as covariates, 
as well as the one volume prior to these volumes and the 
two volumes after.37 All the patients had less than 20% vo
lumes with FD > 0.5 mm (Supplementary Table 1). 
Afterward, the resulting images were normalized to the 3 × 
3 × 3 mm3 Montreal Neurological Institute standard space 
using their co-registered T1 images and the Diffeomorphic 
Anatomical Registration Through Exponentiated Lie alge
bra,38 spatially smoothed using a Gaussian kernel (full width 
at half maximum = 6 mm) and temporally band-pass filtered 
at 0.01–0.1 Hz. The normalized images were checked visual
ly, and no participant needed to be excluded due to poor 
registration. To control for head motion, one subject was ex
cluded for excessive motion greater than 3 mm and 3°. The 
mean FD values of all the participants were <0.2 mm.

Resting-state functional connectivity 
construction
Because moyamoya is rarely studied using fMRI, we adopted 
the automated anatomical labelling (AAL-116) template that 
has been used previously to construct functional connectivity 
networks in patients with moyamoya disease.26,39 For each 
participant, we extracted the mean time series from the 
116 brain regions in the AAL template by averaging the 
time series of all the voxels in the brain nodes. A 116 × 116 
whole-brain functional connectivity matrix was then gener
ated for each participant by calculating the Pearson correl
ation coefficients between the mean time series from each 
pair of nodes to be used in the prediction analyses.

Connectome-based predictive models
To investigate whether the brain imaging data at baseline T0 
could predict the changes in PS after surgery, we applied the 
CPM approach using a leave-one-out cross-validation 
(LOOCV) method19,27 and carried out the analyses in 
MATLAB (R2017b, MathWorks). For each training set of 
n − 1 participants, we first selected edges that were signifi
cantly positively and negatively correlated with the behav
ioural variable and that passed the predefined P threshold 
using Spearman’s rank correlation, controlling for age, sex 

and education. Spearman’s correlation was used because 
one of the behavioural scores was not normally distributed, 
as assessed by the Kolmogorov–Smirnov test (P < 0.05). For 
consistency across ΔT1 and ΔT2 models, we used 
Spearman’s correlation in both analyses. To maximize pre
dictive accuracy, the predefined P thresholds were acquired 
for the positive and negative networks separately by testing 
a range of values from 0.0001 to 0.05 with an interval of 
0.0001.40 The P thresholds that generated the strongest cor
relation between the observed behavioural scores and pre
dicted scores were then used in the CPM analysis. The 
prediction results across a range of P values are shown in 
Fig. 1. The optimal P values for ΔT1 model were 0.0052 
(positive network) and 0.0011 (negative network). The opti
mal P values for ΔT2 model were 0.040 (positive network) 
and 0.0352 (negative network).

After defining the positive and negative networks, we 
summed their values separately and generated two network 
strength scores. Next, we fitted the positive and negative net
work strengths into two linear regression models, obtaining a 
coefficient and an intercept from each model. We extracted 
the positive and negative network strengths for the left-out 
participant and fitted the parameters in the regression mod
els. In this way, a predicted value for the left-out participant 
was generated. Once we obtained the predicted values for all 
participants, we tested the Spearman’s rank correlation (ρtrue) 
between the predicted values and observed true behavioural 
scores to assess the model’s predictive accuracy. We applied 
correlation in this study as a relative index to measure the 
model’s accuracy instead of using absolute error measure
ments such as the mean absolute error.41 Because this study’s 
aim was to generate predictive models that can predict the de
gree of changes in cognitive functions (e.g. higher versus low
er scores) among the participants, we used the Spearman 
correlation coefficients to achieve the goal. Nevertheless, 
our results should be interpreted from this perspective, as 
high correlations may also result in high absolute errors.42

Because the LOOCV analyses were not independent from 
each other, the significance of the CPM models was tested 
using non-parametric permutation methods.18 In brief, we 
randomly rearranged the observed behavioural scores and 
repeated the CPM analysis 5000 times. The Ppermu value 
was calculated using the following formula,

Ppermu =
sum(ρnew > ρtrue + 1)

5001
(1) 

where ρnew is the new generated Spearman correlation coeffi
cient and ρtrue is the Spearman correlation coefficient between 
the predicted values and the observed behavioural scores. The 
permutated P values were further corrected using the false dis
covery rate.43 Statistical significance was set at P < 0.05.

Functional anatomy of CPM models
As different sets of edges may be selected in different itera
tions, we extracted the edges that were selected in all the 

https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac213#supplementary-data
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cross-validated iterations for the positive and negative net
works to ensure that the edges we extracted were most ro
bustly correlated with the true behaviour score.

Results
Demographics and behaviour 
outcomes
Table 1 shows the demographic information of the 12 pa
tients with moyamoya disease. Further comparison of the 
pre- and postoperative PS scores revealed that, from T0 to 

T1, the PS of the majority of patients with moyamoya disease 
decreased (7 of 11, 63.64%), whereas from T1 to T2, the PS 
of the majority of patients increased (6 of 9, 66.67%) 
(Fig. 2). Moreover, we found that most patients (7 of 10, 
70%) demonstrated increased PS 6 months after the surgery 
when comparing T0 and T2. However, the repeated- 
measures ANOVA demonstrated that PS did not significant
ly differ across the three time points [F(2,16) = 2.31, 
P = 0.13]. Post hoc analyses with a Bonferroni correction 
showed that PS did not significantly change between any of 
the two time points (P > 0.12). Moreover, there was no 
significant interactive effect between group and time points 
(P = 0.089). Paired sample t-tests showed that the PS 

Figure 1 Testing a range of P thresholds for the predictive models. ΔT1 indicates the difference in PS between baseline (T0) and 1 month 
after surgery (T1). ΔT2 indicates the difference in PS between T0 and 6 months after surgery (T2). Dots refer to the optimal P thresholds applied in 
the CPM analysis. The optimal P values for the ΔT1 model were 0.0052 (positive network) and 0.0011 (negative network). The optimal P values for 
the ΔT2 model were 0.0026 (positive network) and 0.0183 (negative network).
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significantly improved at T2 in the healthy control group 
compared with T0 (P = 0.002). On the other hand, the PS 
in the moyamoya group did not significantly improve at T2 
compared with T0 (P = 0.403). These results suggested that 
patients with moyamoya disease did not show significant im
provement in PS at 6 months after the surgery.

Brain–behaviour prediction results
Our CPM analyses demonstrated that preoperative resting- 
state functional connectivity significantly predicted post
operative changes in PS (Fig. 3), namely ΔT1 (negative 
network: ρ= 0.63, Pcorr = 0.017) and ΔT2 (positive network: 
ρ= 0.62, Pcorr = 0.010; negative network: ρ= 0.55, Pcorr = 
0.010). The positive network only showed a significant trend 
when predicting ΔT1 (ρ= 0.31, Pcorr = 0.071).

Functional anatomy of CPM models
For the significant CPM models, we identified connectivities 
that were robustly associated with changes in PS (Table 2
and Fig. 4). From the negative network of the ΔT1 model, 
we found that the connectivity between the left median cin
gulate and paracingulate gyri (Brodmann area, BA24) and 
the right cerebellum III was well-represented. From the nega
tive network of the ΔT2 model, we mainly identified the con
nectivity between the orbitofrontal regions (OFGs; i.e. 
medial superior orbitofrontal gyrus) and the medial superior 
frontal gyrus (MSFG, BA9), the connectivity between the 
OFG and the subcortical region (i.e. putamen), the connect
ivity between the parietal regions [i.e. inferior parietal gyrus 
(IPG), angular gyrus] and the subcortical regions (i.e. para
hippocampus and hippocampus) and cerebellum (lobule 
VI), as well as the connectivity between the visual cortex 
(i.e. middle occipital gyrus) and cerebellum VI.

Discussion
Using the CPM approach, our data provided the preliminary 
evidence that the preoperative resting-state functional neural 
connectivity patterns of patients with moyamoya disease 
might predict their postoperative PS performance at 1- and 
6-month post-surgery. The significant correlation between 
the pattern of brain connectivities and behavioural changes 
in PS at the 6 months postoperation provided evidence for 
the potential application of resting-state fMRI data to reflect 
neurocognitive status. Our preliminary findings suggest that 
the preoperative brain data have the potential application of 

Table 1 Demographic information and cognitive scores 
of patients with moyamoya disease

Patients with moyamoya disease

Mean SD

Age (years) 36.58 9.60
Sex (female/male) 9/3
Education (years) 13.42 3.55
MoCA 27.18 2.48
PS_T0a 116.50 30.38
PS_T1b 109.64 33.03
PS_T2c 115.50 28.61

MoCA, Montreal Cognitive Assessment; SD, standard deviation. 
aData obtained from 12 patients. 
bData obtained from 11 patients. 
cData obtained from 10 patients.

Figure 2 Changes in processing speed over three time points. Repeated-measures ANOVA was conducted to explore whether PS 
significantly changed across the three time points. The repeated-measures ANOVA demonstrated that PS did not significantly differ across the 
three time points [F(2,16) = 2.31, P = 0.13]. Post hoc analyses with a Bonferroni correction showed that PS did not significantly change between any 
of the two time points (P > 0.12). Each data point represents the PS score of each moyamoya participant in the three time points. PS, processing 
speed; T0, baseline before the surgery; T1, 1 month after surgery; T2, 6 months after surgery.
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predicting the longitudinal post-surgical neurocognitive 
changes in patients with moyamoya disease. This observa
tion would have significant potential implications for the 
clinical management of this population.

Our results showed that preoperative resting-state func
tional connectivity could predict changes in PS among 
patients with moyamoya disease 6 months after revascular
ization surgery. To the best of our knowledge, our study is 
at the forefront of developing machine learning models for 
predicting postoperative neurocognitive changes using 
resting-state functional connectivity. A large body of litera
ture has established that the functional connectivity can 
capture individual differences in neurocognitive func
tions.18,27,44–46 Moreover, studies have demonstrated that 
resting-state fMRI can be used to predict phenotypes and 
clinical outcomes,47–49 suggesting it can provide promising 
imaging-based biomarkers in clinical populations.50,51

Notably, the CPM approach utilized in our study has high 
generalizability, as the connectome-based models identified 
in one population could be applied to predict the same or 
related behavioural variables in another independent popu
lation.18,21,27,52 Overall, our findings indicate that pre
operative brain connectome data has the potential to 
provide valuable information to help guide patient manage
ment in clinical settings.

From the CPM models, we identified several brain regions 
and connectivities that were robustly associated with post
operative changes in PS from the negative network. Among 
all of the brain regions, the cerebellum was derived from 
both the ΔT1 and ΔT2 models. The role of the cerebellum 
in cognitive processes is supported by the cerebro-cerebellar 
pathway, which links the cerebellum with associated 
cortical brain regions.53–55 In particular, the structure of 
the cerebellum predicted age-related changes in PS56 and 

Figure 3 Results of connectome-based modelling analyses. ΔT1 indicates the difference in PS between baseline (T0) and 1 month after 
surgery (T1). ΔT2 indicates the difference in PS between T0 and 6 months after surgery (T2). Values were standardized for visualization. Pcorr, 
permutated P values after multiple comparison correction.



8 | BRAIN COMMUNICATIONS 2022: Page 8 of 11                                                                                                                 M. Gao et al.

PS impairments in patients with neurodegenerative dis
eases.57 In our study, we found that connectivity between 
the anterior part of the cerebellum (lobule III) and the me
dian cingulate gyrus (BA24), as well as connectivity between 
the posterior part of the cerebellum (lobule VI) and inferior 
parietal and middle occipital gyrus, contributed to the pre
dictive models. This finding is in line with our previous study, 
which shows that the connectivity between the cerebellum 
and frontal and visual networks contributes substantially 
when predicting PS in older adults.27 It has been suggested 
that the anterior part of the cerebellum contributes to sen
sorimotor functions, whereas the posterior part of the cere
bellum tends to be involved in more complex cognitive 
processes.58,59 Our findings suggest that the cerebellum 
might play an important role in the postoperative recovery 

period among patients with moyamoya disease, especially re
garding PS. Given that the cerebellum has rarely been studied 
in previous literature on moyamoya disease, our findings in
dicate potential directions for future research when studying 
PS or other neurocognitive functions.

Besides the connectivities between the cerebellum and 
other brain regions, we also identified brain regions that 
were consistently reported in moyamoya disease studies 
using resting-state fMRI. For instance, altered resting-state 
activity in patients with moyamoya disease has been found 
in the MSFG (BA9), OFG, IPG and hippocampus.16,26,28

Moreover, activity in the frontal lobe and connectivity be
tween the MSFG and cerebellum increased in patients with 
moyamoya disease after revascularization surgery.14,60

Connectivity between the MSFG and inferior occipital gyrus, 

Table 2 Functional connectivity identified from predictive models

Node 1 Node 2 Node 1 (abbreviation) Node 2 (abbreviation)

ΔT1: Positive network
— — — —
ΔT1: Negative network
Cingulum_Mid_L Cerebellum_3_R DCG.L CRBL3.R
ΔT2: Positive network
— — — —
ΔT2: Negative network
Frontal_Mid_L Frontal_Med_Orb_R MFG.L ORBsupmed.R
ParaHippocampal_R Parietal_Inf_R PHG.R IPL.R
Hippocampus_R Angular_L HIP.R ANG.L
Frontal_Mid_Orb_R Putamen_R ORBmid.R PUT.R
Parietal_Inf_R Cerebellum_6_L IPL.R CRBL6.L
Occipital_Mid_R Cerebellum_6_R MOG.R CRBL6.R

Cerebelum_3, cerebellum lobule III; Cerebellum_6, cerebellum lobule VI; Cingulum_Mid, median cingulate and paracingulate gyri; Inf, inferior; L, left hemisphere; Med, medial; Mid, 
middle; Orb, orbital; R, right hemisphere. 
A solid line indicates there is no connectivity identified from the predictive models.

Figure 4 Connectivities that contributed consistently in the predictive models. ΔT1 indicates the difference in PS between baseline 
(T0) and 1 month after surgery (T1). ΔT2 indicates the difference in PS between T0 and 6 months after surgery (T2). The names of the brain 
regions can be found in Table 2.
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as well as the fusiform gyrus, was shown to be negatively cor
related with postoperative PS.28 The MSFG is an important 
brain region that belongs to the cognitive control network,61

which is involved in multiple cognitive functions.62

Stimulation of this region using transcranial direct current 
stimulation or transcranial magnetic stimulation could en
hance PS performance.63,64 In line with previous studies, 
our results indicate that the MSFG is a potential target for 
treatment aimed at increasing neurocognitive functions in 
patients with moyamoya disease. The IPG65 and angular 
gyrus66 are two important regions in the default-mode net
work, the activity of which have been suggested to be closely 
associated with cognitive functions.67 A recent study re
vealed that the MFG, angular gyrus and cerebellum contrib
uted substantially when classifying patients with moyamoya 
disease from healthy participants.26 Taken together, the 
brain regions identified from our predictive models are not 
only consistent with previous studies but also extend previ
ous findings by revealing their potential roles in post
operative neurocognitive functions in patients with 
moyamoya disease.

Behaviourally, we observed that the majority of patients 
(7 of 11) showed a decline in PS performance at 1 month 
after the surgery. Also, most of them (7 of 10) showed signs 
of recovery at 6 months after the surgery. However, the im
provement in PS at 6-month follow-up in patients with 
moyamoya disease was not significant. Our findings were 
consistent with a study conducted in the USA that reported 
that most patients (>70%) demonstrated no significant 
changes in the postoperative neurocognitive testing at a 
6-month follow-up. However, a small proportion (11%) of 
them did show increased cognitive functions.9 On the other 
hand, several previous studies among Asian patients with 
moyamoya disease that reported improvements in PS, as 
well as in attention (Japan),14 memory (Korea)15 and execu
tive function (China)16 at 6-month follow-up assessments 
following surgical revascularization. In addition to meth
odological discrepancies between studies that may contrib
ute to these inconsistent findings, the outcomes of patients’ 
neurocognitive recovery from moyamoya disease can be 
quite heterogeneous, depending on the degree of injury to 
the brain. If this is the case, pre-surgical prediction of post- 
surgical outcomes will be particularly beneficial, as it can 
help to inform, in advance, appropriate clinical management 
and planning for every patient with moyamoya disease.

Our study has a couple of limitations that must be ad
dressed. The sample size of this study was limited by the 
low incidence and prevalence of moyamoya disease. While 
our findings offer significant insight into the relationship be
tween PS and resting-state functional connectivity, future 
studies of larger sample sizes are required to validate the con
clusion of our study. In addition, due to resource constraints, 
we could only follow-up with the patients for 6 months. 
Additional postoperative follow-ups would add significant 
data for identifying post-surgical recovery trends, as well 
as verifying the usefulness of the CPM approach in predict
ing long-term neurocognitive outcomes.

Conclusion
Our findings provide significant preliminary evidence show
ing that the preoperative resting-state fMRI data may make 
useful predictions about post-surgical changes in PS among 
patients with moyamoya disease using CPM approach. 
Based on the predictive models, we identified cerebro- 
cerebellar and cortico-subcortical connectivities that were 
consistently associated with PS. This extends previous find
ings by demonstrating the important roles of these brain re
gions in the postoperative recovery of neurocognitive 
functions. These findings will help to guide future research 
and the development of predictive models that can be 
adapted to other clinical populations with brain lesions, 
thus offering important insights into the management and 
planning of patients with moyamoya disease.

Funding
This work was supported by The University of Hong Kong 
May Endowed Professorship in Neuropsychology and the 
Hong Kong Research Grants Council Collaborative 
Research Fund (C7069-19GF) to T.M.C.L.; The Research 
Grants Council Postdoctoral Fellowship Scheme (PDFS 
2122-7H04) to M.G.

Competing interests
The authors report no competing interests.

Supplementary material
Supplementary material is available at Brain 
Communications online.

Data availability
The processed data used in this study are available upon rea
sonable request from the corresponding authors. The raw 
data are not publicly available due to a lack of informed con
sent from the participants and ethical approval for public 
data sharing. The source code for running the CPM analysis 
is available at https://github.com/MengxiaGAO/NeuroImage 
2020/tree/master/Matlab_functions.

References
1. Kuroda S, Houkin K. Moyamoya disease: Current concepts and fu

ture perspectives. Lancet Neurol. 2008;7(11):1056–1066.
2. Suzuki J, Takaku A. Cerebrovascular moyamoya disease: Disease 

showing abnormal net-like vessels in base of brain. Arch Neurol. 
1969;20(3):288–299.

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac213#supplementary-data
https://github.com/MengxiaGAO/NeuroImage2020/tree/master/Matlab_functions
https://github.com/MengxiaGAO/NeuroImage2020/tree/master/Matlab_functions


10 | BRAIN COMMUNICATIONS 2022: Page 10 of 11                                                                                                             M. Gao et al.

3. Liu XJ, Zhang D, Wang S, et al. Clinical features and long-term out
comes of moyamoya disease: A single-center experience with 528 
cases in China. J Neurosurg. 2015;122(2):392–399.

4. Chen PC, Yang SH, Chien KL, Tsai IJ, Kuo MF. Epidemiology of 
moyamoya disease in Taiwan: A nationwide population-based 
study. Stroke. 2014;45(5):1258–1263.

5. Nakamizo A, Amano T, Michiwaki Y, et al. Long-term neurocogni
tive outcomes in patients with adult moyamoya disease. World 
Neurosurg. 2018;119:e441–e448.

6. Araki Y, Takagi Y, Ueda K, et al. Cognitive function of patients with 
adult moyamoya disease. J Stroke Cerebrovasc Dis. 2014;23(7): 
1789–1794.

7. Karzmark P, Zeifert PD, Bell-Stephens TE, Steinberg GK, Dorfman 
LJ. Neurocognitive impairment in adults with moyamoya disease 
without stroke. Neurosurgery. 2012;70(3):634–638.

8. Weinberg DG, Rahme RJ, Aoun SG, Batjer HH, Bendok BR. 
Moyamoya disease: Functional and neurocognitive outcomes in 
the pediatric and adult populations. Neurosurg Focus. 2011;30(6): 
E21.

9. Zeifert PD, Karzmark P, Bell-Stephens TE, Steinberg GK, Dorfman 
LJ. Neurocognitive performance after cerebral revascularization in 
adult moyamoya disease. Stroke. 2017;48(6):1514–1517.

10. Festa JR, Schwarz LR, Pliskin N, et al. Neurocognitive dysfunction 
in adult moyamoya disease. J Neurol. 2010;257(5):806–815.

11. Hertza J, Loughan A, Perna R, Davis AS, Segraves K, Tiberi NL. 
Moyamoya disease: A review of the literature. Appl Neuropsychol 
Adult. 2014;21(1):21–27.

12. Cho WS, Kim JE, Kim CH, et al. Long-term outcomes after com
bined revascularization surgery in adult moyamoya disease. 
Stroke. 2014;45(10):3025–3031.

13. Kim SH, Choi JU, Yang KH, Kim TG, Kim DS. Risk factors for post
operative ischemic complications in patients with moyamoya dis
ease. J Neurosurg Pediatr. 2005;103(5):433–438.

14. Kazumata K, Tha KK, Tokairin K, et al. Brain structure, connectiv
ity, and cognitive changes following revascularization surgery in 
adult moyamoya disease. Neurosurgery. 2019;85(5):E943–E952.

15. Baek HJ, Chung SY, Park MS, Kim SM, Park KS, Son HU. Preliminary 
study of neurocognitive dysfunction in adult moyamoya disease and 
improvement after superficial temporal artery-middle cerebral artery 
bypass. J Korean Neurosurg Soc. 2014;56(3):188–193.

16. Lei Y, Li YJ, Guo QH, et al. Postoperative executive function in 
adult moyamoya disease: A preliminary study of its functional anat
omy and behavioral correlates. J Neurosurg. 2017;126(2):527–536.

17. Finn ES, Shen X, Scheinost D, et al. Functional connectome finger
printing: Identifying individuals using patterns of brain connectiv
ity. Nat Neurosci. 2015;18(11):1664–1671.

18. Rosenberg MD, Finn ES, Scheinost D, et al. A neuromarker of sus
tained attention from whole-brain functional connectivity. Nat 
Neurosci. 2016;19(1):165–171.

19. Shen X, Finn ES, Scheinost D, et al. Using connectome-based pre
dictive modeling to predict individual behavior from brain connect
ivity. Nat Protoc. 2017;12(3):506–518.

20. Fountain-Zaragoza S, Samimy S, Rosenberg MD, Prakash RS. 
Connectome-based models predict attentional control in aging 
adults. NeuroImage. 2019;186:1–13.

21. Lake EM, Finn ES, Noble SM, et al. The functional brain organiza
tion of an individual allows prediction of measures of social abilities 
transdiagnostically in autism and attention-deficit/hyperactivity dis
order. Biol Psychiatry. 2019;86(4):315–326.

22. Lin Q, Rosenberg MD, Yoo K, et al. Resting-state functional con
nectivity predicts cognitive impairment related to Alzheimer’s dis
ease. Front Aging Neurosci. 2018;10:94.

23. Yip SW, Scheinost D, Potenza MN, Carroll KM. Connectome- 
based prediction of cocaine abstinence. Am J Psychiatry. 2019; 
176(2):156–164.

24. Diciotti S, Orsolini S, Salvadori E, et al. Resting state fMRI regional 
homogeneity correlates with cognition measures in subcortical vas
cular cognitive impairment. J Neurol Sci. 2017;373:1–6.

25. Siegel JS, Ramsey LE, Snyder AZ, et al. Disruptions of network con
nectivity predict impairment in multiple behavioral domains after 
stroke. Proc Natl Acad Sci USA. 2016;113(30):E4367–E4376.

26. Lei Y, Chen X, Su JB, et al. Recognition of cognitive impairment in 
adult moyamoya disease: A classifier based on high-order resting- 
state functional connectivity network. Front Neural Circuits. 
2020:14:603208.

27. Gao M, Wong CH, Huang H, et al. Connectome-based models can 
predict processing speed in older adults. NeuroImage. 2020;223: 
117290.

28. Kazumata K, Tha KK, Uchino H, et al. Mapping altered brain con
nectivity and its clinical associations in adult moyamoya disease: A 
resting-state functional MRI study. PLoS One. 2017;12(8): 
e0182759.

29. Bai L, Bai G, Wang S, et al. Strategic white matter injury associated 
with long-term information processing speed deficits in mild trau
matic brain injury. Hum Brain Mapp. 2020;41(15):4431–4441.

30. Hillary FG, Genova HM, Medaglia JD, et al. The nature of process
ing speed deficits in traumatic brain injury: Is less brain more? Brain 
Imaging Behav. 2010;4(2):141–154.

31. Hara S, Hori M, Murata S, et al. Microstructural damage in normal- 
appearing brain parenchyma and neurocognitive dysfunction in 
adult moyamoya disease. Stroke. 2018;49(10):2504–2507.

32. Fukui M. Guidelines for the diagnosis and treatment of spontaneous 
occlusion of the circle of Willis (‘moyamoya’ disease). Research 
Committee on Spontaneous Occlusion of the Circle of Willis 
(Moyamoya Disease) of the Ministry of Health and Welfare, 
Japan. Clin Neurol Neurosurg. 1997;99:S238–S240.

33. Wechsler D. WAIS-3, Wechsler adult intelligence scale, WMS-3, 
Wechsler memory scale. Technical manual. Psychological 
Corporation; 1997.

34. Chen R, Chen C. Wechsler adult intelligence scale: (WAIS-III) 
Chinese version. Bookstore for Chinese Behavioral Science; 2002.

35. Yan CG, Wang XD, Zuo XN, Zang YF. DPABI: Data processing & 
analysis for (resting-state) brain imaging. Neuroinformatics. 2016; 
14(3):339–351.

36. Li J, Kong R, Liegeois R, et al. Global signal regression strengthens 
association between resting-state functional connectivity and be
havior. NeuroImage. 2019;196:126–141.

37. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimiza
tion for the robust and accurate linear registration and motion cor
rection of brain images. NeuroImage. 2002;17(2):825–841.

38. Ashburner J. A fast diffeomorphic image registration algorithm. 
NeuroImage. 2007;38(1):95–113.

39. Lei Y, Song B, Chen L, et al. Reconfigured functional network dy
namics in adult moyamoya disease: A resting-state fMRI study. 
Brain Imaging Behav. 2020;14(3):715–727.

40. Yu J, Rawtaer I, Fam J, Feng L, Kua EH, Mahendran R. The indivi
dualized prediction of cognitive test scores in mild cognitive impair
ment using structural and functional connectivity features. 
NeuroImage. 2020;223:117310.

41. Poldrack RA, Huckins G, Varoquaux G. Establishment of best prac
tices for evidence for prediction: A review. JAMA Psychiatry. 2020; 
77(5):534–540.

42. Finn ES, Bandettini PA. Movie-watching outperforms rest for func
tional connectivity-based prediction of behavior. NeuroImage. 
2021;235:117963.

43. Benjamini Y, Hochberg Y. Controlling the false discovery rate: A 
practical and powerful approach to multiple testing. J R Stat Soc 
Series B Stat Methodol. 1995;57(1):289–300.

44. Jangraw DC, Gonzalez-Castillo J, Handwerker DA, et al. A func
tional connectivity-based neuromarker of sustained attention gener
alizes to predict recall in a reading task. NeuroImage. 2018;166: 
99–109.

45. Liu J, Liao X, Xia M, He Y. Chronnectome fingerprinting: 
Identifying individuals and predicting higher cognitive functions 
using dynamic brain connectivity patterns. Hum Brain Mapp. 
2018;39(2):902–915.



Brain connectome predicts processing speed                                                                BRAIN COMMUNICATIONS 2022: Page 11 of 11 | 11

46. Yoo K, Rosenberg MD, Hsu WT, et al. Connectome-based predict
ive modeling of attention: Comparing different functional connect
ivity features and prediction methods across datasets. NeuroImage. 
2018;167:11–22.

47. Carter AR, Astafiev SV, Lang CE, et al. Resting interhemispheric 
functional magnetic resonance imaging connectivity predicts per
formance after stroke. Ann Neurol. 2010;67(3):365–375.

48. Miller KL, Alfaro-Almagro F, Bangerter NK, et al. Multimodal 
population brain imaging in the UK Biobank prospective epidemio
logical study. Nat Neurosci. 2016;19(11):1523–1536.

49. Stonnington CM, Chu C, Klöppel S, Jack CR, Ashburner J, 
Frackowiak RSJ. Predicting clinical scores from magnetic resonance 
scans in Alzheimer’s disease. NeuroImage. 2010;51(4):1405–1413.

50. Li A, Zalesky A, Yue W, et al. A neuroimaging biomarker for stri
atal dysfunction in schizophrenia. Nat Med. 2020;26(4):558–565.

51. Sui J, Qi S, van Erp TG, et al. Multimodal neuromarkers in schizophre
nia via cognition-guided MRI fusion. Nat Commun. 2018;9(1):3028.

52. Rosenberg MD, Scheinost D, Greene AS, et al. Functional connect
ivity predicts changes in attention observed across minutes, days, 
and months. Proc Natl Acad Sci USA. 2020;117(7):3797–3807.

53. Keren-Happuch E, Chen SHA, Ho MHR, Desmond JE. A 
meta-analysis of cerebellar contributions to higher cognition from 
PET and fMRI studies. Hum Brain Mapp. 2014;35(2):593–615.

54. Stoodley CJ, Schmahmann JD. Functional topography in the human 
cerebellum: A meta-analysis of neuroimaging studies. NeuroImage. 
2009;44(2):489–501.

55. Stoodley CJ, Schmahmann JD. Evidence for topographic organiza
tion in the cerebellum of motor control versus cognitive and affect
ive processing. Cortex. 2010;46(7):831–844.

56. Eckert MA. Slowing down: Age-related neurobiological predictors 
of processing speed. Front Neurosci. 2011;5:25.

57. Moroso A, Ruet A, Lamargue-Hamel D, et al. Posterior lobules of 
the cerebellum and information processing speed at various stages 

of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2017;88(2): 
146–151.

58. Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of 
the cerebellum—Insights from the clinic. Cerebellum. 2007;6(3): 
254–267.

59. Tavano A, Grasso R, Gagliardi C, et al. Disorders of cognitive and 
affective development in cerebellar malformations. Brain. 2007; 
130(10):2646–2660.

60. Wang Y, Wang L, Qiao P, et al. Impact of aberrant cerebral perfu
sion on resting-state functional MRI: A preliminary investigation of 
moyamoya disease. PLoS One. 2017;12(4):e0176461.

61. Cole MW, Schneider W. The cognitive control network: Integrated 
cortical regions with dissociable functions. NeuroImage. 2007; 
37(1):343–360.

62. Barbey AK, Colom R, Grafman J. Dorsolateral prefrontal contribu
tions to human intelligence. Neuropsychologia. 2013;51(7): 
1361–1369.

63. Curtin A, Ayaz H, Tang Y, Sun J, Wang J, Tong S. Enhancing 
neural efficiency of cognitive processing speed via training and neu
rostimulation: An fNIRS and TMS study. NeuroImage. 2019;198: 
73–82.

64. Plewnia C, Schroeder PA, Kunze R, Faehling F, Wolkenstein L. Keep 
calm and carry on: Improved frustration tolerance and processing 
speed by transcranial direct current stimulation (tDCS). PLoS 
One. 2015;10(4):e0122578.

65. Davey CG, Pujol J, Harrison BJ. Mapping the self in the brain’s de
fault mode network. NeuroImage. 2016;132:390–397.

66. Long XY, Zuo X-N, Kiviniemi V, et al. Default mode network as 
revealed with multiple methods for resting-state functional MRI 
analysis. J Neurosci Methods. 2008;171(2):349–355.

67. Mevel K, Chételat G, Eustache F, Desgranges B. The default mode 
network in healthy aging and Alzheimer’s disease. Int J 
Alzheimers Dis. 2011;2011:535816.


	Preoperative brain connectome predicts postoperative changes in processing speed �in moyamoya disease
	Introduction
	Materials and methods
	Participants
	Psychometric assessment of processing speed
	MRI data acquisition and preprocessing
	Resting-state functional connectivity construction
	Connectome-based predictive models
	Functional anatomy of CPM models

	Results
	Demographics and behaviour outcomes
	Brain–behaviour prediction results
	Functional anatomy of CPM models

	Discussion
	Conclusion
	Funding
	Competing interests
	Supplementary material
	Data availability
	References


