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ABSTRACT Sphaerosporella brunnea is a pioneer ectomycorrhizal fungus with facul-
tative saprophytic capacities. Here, we sequenced the genome of S. brunnea strain
Sb_GMNB300, which is estimated at 51.6 Mb in size with 872 assembled contigs ac-
counting for 12,597 predicted coding genes. This genome will be useful for compar-
ative studies of Pezizales ectomycorrhizal symbioses.

Sphaerosporella brunnea (Alb. & Schwein.) Svrček & Kubička is an ectomycorrhizal
ascomycete in the Pyronemataceae family (Pezizales) that produces cup-shaped

apothecia (1), often after rain or disturbance (2). S. brunnea grows in North America,
Europe, Asia, and Oceania in association with trees and shrubs (3). It is a common
cooccurring fungus of truffle-mycorrhized seedlings (2, 4, 5).

Sphaerosporella brunnea strain Sb_GMNB300 (NRRL 66913) was isolated from soil in
Perugia, Italy, in April 2014. Mycelium from a single spore was grown in potato dextrose
agar (PDA) medium for 10 days at 24°C. DNA was extracted with a modified cetyltrim-
ethylammonium bromide (CTAB) protocol (6) and sequenced with PacBio technology using
a low-input protocol for 10-kb libraries. The genome was assembled with Falcon v. 0.3.0 (7),
improved with finisherSC v. 2.1 (8), and polished with Arrow SMRTLink v. 6.0.0.47841 (Pacific
Biosciences, CA). Genome completeness was assessed using CEGMA v. 2.5 (9) and BBTools
v. 38.38 (http://sourceforge.net/projects/bbmap). Contigs of less than 1,000 bp were
excluded from the assembly. Mitochondrial reads were assembled separately. The
genome was annotated using the Joint Genome Institute (JGI) annotation pipeline v.
2.0 (10, 11). The contents of the annotation pipeline are described in detail at https://
mycocosm.jgi.doe.gov/programs/fungi/FungalGenomeAnnotationSOP.pdf.

For transcriptome analysis, mycelium was grown in PDA and malt extract agar (MEA)
media at 24°C and 4°C for 10 and 20 days, respectively. RNA was extracted with the
RNeasy plant minikit (Qiagen, Germany), and the library was prepared with an Illumina
TruSeq stranded mRNA HT sample prep kit with poly(A) selection of mRNA and sequenced
using a NovaSeq 6000 2 � 150-bp sequencer (Illumina, CA). After sequencing, read
artifacts (kmer � 25 bp, 1 mismatch) were detected with BBDuk v. 38.34 (https://
sourceforge.net/projects/bbmap/). Detected artifacts were trimmed from the 3= end of
reads. General quality trimming was performed with the Phred trimming method set at
Q6. Reads shorter than 25 bp or one-third of the original read length were removed, as
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well as RNA spike-in reads, PhiX reads, and reads containing any ambiguous characters
(Ns). Clean transcriptome sequencing (RNA-Seq) reads were assembled in Trinity v. 2.3.2
(12). RNA-Seq capture was performed by aligning a 1% subsample of RNA reads to the
final DNA assembly using BBTools v. 38.67. Gene clusters of interest were searched in
the clustering table available at the JGI MycoCosm portal (https://mycocosm.jgi.doe
.gov/clm/run/Sphbr2-comparative-qc.3266?organism�Sphbr2). Clusters were com-
puted following the TRIBE-Markov cluster (MCL) clustering method of Enright et al. (13),
from all-versus-all BLAST analysis of the proteins in the set of organisms included in a
clustering run.

The Sphaerosporella brunnea draft genome had an estimated size of 51,598,955 bp,
sequence coverage depth of 907.91�, 872 (�2 kbp) total contigs (and scaffolds), an
N50 value (i.e., the smallest number of contigs whose length sum makes up half of the
genome size) of 130, an L50 value (i.e., half of the genome sequence is in contigs larger than
or equal to this length) of 119,241 bp, and an estimated average GC content of
52.64% � 2.33%. The mitochondrion genome is in 5 contigs and is 265,525 bp in size
(N50 � 2, L50 � 78,073 bp). A Core Eukaryotic Genes Mapping Approach (CEGMA) complete-
ness score of 99.34% and an RNA-Seq capture of 96.85% were obtained for the final assembly.

The Sphaerosporella brunnea genome size is similar to those of other Pyronemata-
ceae species (e.g., Pyronema confluens [50.0 Mbp] [14]) but smaller than those of
Tuberaceae species (e.g., Tuber aestivum [145.0 Mbp] [15], Tuber melanosporum [125.0
Mbp] [16], and Tuber borchii [97.2 Mbp] [17]). A total of 12,597 protein-coding genes
were detected, with average lengths of 1,555 bp and 397 amino acids for genes and
proteins, respectively. The number of genes is similar to those of P. confluens (13,367)
and T. borchii (12,346) but greater than those of T. melanosporum (10,058) and T.
aestivum (9,344). Predicted proteins in the genome of S. brunnea demonstrate an
enriched capacity to produce plant cell wall-degrading enzymes compared to that of its
relatives, which includes 2 genes in glycoside hydrolase family 6 (GH6) compared to 1
present in P. confluens and 3 genes in GH7 compared to 2 in P. confluens that are absent
in Tuber spp. (16). Only the mating type locus MAT1-2-1 with the high-mobility-group
(HMG) box (protein identifier 924729, https://mycocosm.jgi.doe.gov/cgi-bin/disp
GeneModel?db�Sphbr2&id�924729) was identified in the genome of S. brunnea
Sb_GMNB300, in contrast to reports by Sánchez and colleagues (3) and expectations of
homothallism.

Data availability. This whole-genome shotgun project has been deposited at DDBJ/
ENA/GenBank under the accession number VXIS00000000. The version described in this
paper is the first version, VXIS01000000. Genome and transcriptome data are available
in DDBJ/ENA/GenBank under BioProject number PRJNA554466, BioSample number
SAMN12268380, and Sequence Read Archive accession numbers SRP214822 and
SRP215074, or on the U.S. Department of Energy (DOE) JGI MycoCosm portal (9) (comparative).
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