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Abstract

The relationship between human cytomegalovirus (HCMV) and glioblastoma (GBM) has

been debated for more than a decade. We investigated the presence of HCMV genes, RNA

and protein in GBMs and their relationships with tumor progression. Results of quantitative

PCR for HCMV UL73, nested PCR for HCMV UL144, in situ hybridization (ISH) for RNA

transcript, and immunohistochemistry (IHC) for protein expression and their relationship to

the prognosis of 116 patients with GBM were evaluated. Nine (7.8%) cases revealed a low

concentration of HCMV UL73, and only 2 of the 9 (1.7%) cases showed consistent positivity

on repeat PCR testing. HCMV UL144, ISH and IHC assays were all negative. The HCMV

UL73 positive cases did not show significant difference in the clinicopathological characters

including age, gender, Karnofsky performance status, extent of resection, bevacizumab

treatment, isocitrate dehydrogenase 1 mutation, O6-methylguanine-DNA-methyltranferase

status and Ki67 labeling index, and did not reveal prognostic significance. As only one

HCMV gene was detected at low concentration in 7.8% of GBMs and there was no evidence

of transcription, protein expression or prognostic impact, we cannot conclude a relationship

between HCMV and GBM in Taiwanese patients.

Introduction

Glioblastoma (GBM) is the most common malignant neoplasm of the central nervous system.

Patients’ survival has significantly improved since the use of radiotherapy with concomitant

and adjuvant temozolomide (TMZ) chemotherapy and its median survival is 20.0 months at

our institute [1, 2]. However, in comparing with other common malignancies in Taiwan, such

as colon and breast cancers, its survival is still poor. Therefore, studies to identify new thera-

peutic targets and/or better managements for GBM are needed.

The seroprevalence of human cytomegalovirus (HCMV) is high [3] and the virus estab-

lishes a lifelong latency in the host with periodic reactivations [4]. It is a neurotropic virus,

which can infect brain microvascular endothelial cells, astrocytes, pericytes, neurons, micro-

glial cells, neural stem cells and neural precursor cells, and impact neuronal differentiation in
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fetuses [4–6]. HCMV can also cross brain endothelium by virus-infected leukocytes [7]. In

2002, Cobbs, et al. have demonstrated that HCMV was commonly detected in GBM [8], and

suggested that HCMV gene products could promote GBM pathogenesis. The HCMV US28

protein is a chemokine receptor that promotes angiogenesis and tumor formation via activa-

tion of NFkB and inducing cyclooxygenase-2 (COX-2) expression [9]. Colocalization of US28

and phosphorylated STAT3 (p-STAT3) in GBM and poor prognosis of p-STAT3 abundant

GBM had also been reported [10]. However, the reported prevalence of HCMV in GBMs ran-

ged from 0% to 100% [11–27]. The roles of HCMV in glioma development and progression

are also controversial in recent years [28]. A study has demonstrated that GBM patients with

low-grade HCMV infection were associated with longer survival [29]. A randomized trial,

which included 42 GBM patients and 22 of them received anti-viral therapy (valganciclovir),

showed no survival benefit in the study period of 6 months [30]. However, prolonged overall

survival in patients receiving more than 6 months of valganciclovir was reported [30]. There-

fore, the relationship between HCMV and GBM should be seriously evaluated. Moreover,

Cobbs, et al. has also provided detailed methodology for detection of HCMV in GBMs that

they used in order to sort out the controversy in the literature [31].

In this study, we intended to use the methods that Cobbs, et al. described to study our

GBMs. Protein expression by immunohistochemical stains and RNA transcript by in situ

hybridization were used to confirm the viral DNA copies detected by PCR, and their relation-

ships with tumor progression were evaluated.

Materials and methods

Patients

The study protocol was approved by the Institutional Review Board (IRB) of the Taipei Veter-

ans General Hospital, Taiwan, ROC, and the IRB waived the need for written informed con-

sent. One hundred and sixteen patients with primary GBM were retrieved from the surgical

pathology file collected from October, 2007 to January, 2014. These patients had received post-

operative radiotherapy with concomitant and six cycles of adjuvant TMZ chemotherapy and

had adequate follow-up data. The general data of the patients, including age, gender, Kar-

nofsky performance status (KPS), date of surgery, extent of resection, history of radiotherapy

and medication were reviewed from the medical records. A 25% or more increase in size of

enhancing tumor or any new tumor on magnetic resonance imaging (MRI) was considered as

progression according the Macdonald criteria [32]. For each patient, the original histopathol-

ogy slides were reviewed for confirmation of the diagnosis. The data and samples were ana-

lyzed anonymously after a coding procedure.

Quantitative real-time PCR (qPCR) of HCMV UL73 gene

Genomic DNA was isolated from paraffin-embedded tissue using the PicoPure DNA extrac-

tion kit (Applied Biosystems, Foster City, CA, USA). The BIOMED-2 protocol was used to

screen the quality and amplifiability of the isolated DNA.

UL73 plasmid DNA control was generated as previously described [33]. Sequences of

primers and the TaqMan fluorogenic probe used for qPCR were as follows: forward primer

UL73-C-F 5’TGGTGGACTATGCTTAACGCTC3’, reverse primer UL73-C-R 5’TCTGGAAG
CAGCAATGTCGTA3’, and TaqMan MGB probe 5’ATTCTGATGGGAGCTTTT3’carrying a

5’ FAM reporter dye and a 3’ quencher dye. In brief, 2 μl of genomic DNA or UL73 plasmid

DNA control, at a concentration of 100 ng/μl, was added to a 20μl of real-time PCR reaction

containing 2 X TaqMan PCR Universal Master Mix, 300 nM each primer, 200 pmole fluoro-

genic probe. Each qPCR reaction was performed in duplicate. The qPCR condition was set as
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50˚C for 2 min and 95˚C for 10 min, followed by 45 cycles of 95˚C for 15 s and 60˚C for 1 min.

The number of UL73 copies was deduced from the PCR threshold cycle (Ct), which was

defined as the fractional cycle number at which the fluorescence reaches 10 times the standard

deviation (SD) of the baseline, and was determined by the qPCR software. Samples with an

average Ct value� 40.2 cycles (� 1.0 copies/200 ng) were considered as positive for the pres-

ence of HCMV. A previously immunohistochemistry (IHC) proven HCMV gastritis was used

as positive control, and a normal brain was used as negative control. The assay was validated

and matched with the results of HCMV IHC in 6 HCMV+ and 7 HCMV–formalin-fixed and

paraffin-embedded (FFPE) gastric and cerebral specimens. Of note, the reason for detecting

HCMV UL73 gene rather than US28 gene, which was used in the study of Soroceanu et al. [31,

34] was the higher sensitivity of detecting UL73 gene (100%, 6/6 HCMV IHC positive samples)

than US28 gene (83.3%, 5/6) in our preliminary study (S1 Table).

Nested PCR Amplification of HCMV UL144 gene

Two μl (200 ng) of genomic DNA were subjected to first-round PCR amplification with the

external forward primer 5’GGCATCTCTCACTCCGATAGG3’ and reverse primer 5’GTG
CGCACCTAAGAACCATACG3’.One μl of amplified PCR products were then used as templates

for second-round PCR amplification with nested forward primer 5’GAGAGACAACCAGGCT
AGAG3’ and reverse primer 5’CAACATCACAAGCAACGACAGC3’. Four μl of the nested PCR

products were mixed with fluorescent dye, subsequently separated with 2% agarose gel electro-

phoresis, and visualized under UV illumination. A previously IHC proven HCMV gastritis

was used as positive control, and a normal brain was used as negative control. The assay

was validated and completely matched with the results of HCMV IHC in 6 HCMV+ and 7

HCMV–formalin-fixed and paraffin-embedded (FFPE) gastric and cerebral specimens.

In situ hybridization (ISH)

ISH was performed using in vitro diagnostic HCMV fluorescein-conjugated oligonucleotide

probe (Bond™ Ready-to-Use ISH CMV Probe, Catalog No: PB0614, Leica biosystem, Newcas-

tle, UK) to identify early gene RNA transcript according to the manufacturer’s recommenda-

tion on BOND-MAX immunostainer (Leica Microsystems). The procedures were as follows:

(1) deparaffinization of tissue on the slides with Bond Dewax Solution (Leica Microsystems) at

72˚C for 30 minutes, (2) tissue pretreatment with Bond Enzyme 1 (Leica Microsystems) for 15

minutes at 37˚C, (3) incubation with HCMV probe over night at 37˚C, (4) incubation with

Anti-Fluorescein Antibody (Leica Microsystems) for 20 minutes at ambient temperature, (5)

incubation with Post Primary reagent (Leica Microsystems) for 8 minutes at ambient tempera-

ture, followed by washing with Bond Wash solution (Leica Microsystems) for 6 minutes, (6)

Bond Polymer (Leica Microsystems) for 8 minutes at ambient temperature, followed by wash-

ing with Bond Wash and distilled water for 4 minutes, (7) peroxidase for 5 minutes, (8) color

development with 3,3’-diaminobenzidine tetrahydrochloride for 5 minutes at ambient temper-

ature, and (9) hematoxylin counterstaining for 5 minutes at ambient temperature, followed by

mounting of the slides. A previously proven cytomegalovirus gastritis was used as positive con-

trol, and intense, brown predominately cytoplasmic staining was regarded as positive (S1 Fig).

All slides were read by CFY, DMH and CYH.

Immunohistochemical study (IHC)

Tissue sections were immunostained using anti-HCMV IE1/IE2 antibody, clone 8B1.2 (1:40;

Millipore, Temecula, CA) and followed the protocol of Cobbs et al. [31]. In brief, deparaffi-

nized tissue sections (6 μm thick) were performed post fixation with 10% normal buffered
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formalin, pepsin digestion, heat antigen retrieval and blocking with endogenous peroxidase,

avidin, biotin, Fc receptor, and then the sections were incubated with primary antibody in a

humidified container overnight at 4–8˚C. Visualization was carried out using goat anti-mouse

secondary antibody (1:18, BioGenex Laboratories, San Ramon, CA, USA), peroxidase-labeled

streptavidin and 3,3’-diaminobenzidine. All sections were counterstained with hematoxylin. A

previously proven cytomegalovirus gastritis was used as positive control, and nuclear staining

was regarded as positive (S2 Fig). All slides were read by CFY, DMH and CYH.

Statistical analysis

The Fisher’s exact test was used to compare the distribution of categorical variables. Differ-

ences in continuous variables were compared by Mann–Whitney Wallis test. Progression-free

survival (PFS) was measured from the date of surgery to the date of progression. Overall sur-

vival (OS) was measured from the date of surgery to the date of death or last follow-up. PFS

and OS curves were plotted by Kaplan-Meier method, and their differences were calculated by

log-rank test. Cox regression model was used to adjust the influence of age, gender, KPS,

extent of resection, bevacizumab treatment, isocitrate dehydrogenase 1 (IDH1) mutation and

O6-methylguanine-DNA-methyltranferase (MGMT) status. The data of the MGMT status

were from our previous study [2] and samples with methylation-specific PCR products of any

intensity were regarded as a positive result. P-values were derived from two-tailed tests and

p< 0.05 was considered significant.

Results

The clinical characteristics of the patients are listed in the S2 Table. Nine of 116 (7.8%) cases

showed positivity for HCMV UL73 qPCR, and the Ct values ranged from 35 to 40 cycles

(Table 1). For each genomic DNA fraction of 200 ng, the copy number of HCMV UL73 gene

ranged from 1.2 to 38.2 (median 3.5) copies. However, the ISH and IHC of these 9 HCMV

UL73 positive cases were negative.

The clinicopathological characters, including age, gender, KPS, extent of resection, bevaci-

zumab treatment, IDH1 status and MGMT status, did not show significant difference between

the HCMV UL73 positive and negative cases (Table 2). The median of Ki67 labeling index of

the HCMV UL73 positive cases (60%) was higher than that of the HCMV UL73 cases (45%)

(S3 Fig), but the difference did not reach statistical significance (p = 0.327).

Although the medians of PFS and OS of the HCMV UL73 positive cases were shorter than

those of the HCMV UL73 negative cases, their differences were not significant (Fig 1). Cox

regression model with adjustment of the influence of age, gender, KPS, extent of resection,

bevacizumab treatment, IDH1 status and MGMT status, HCMV UL73 positivity did not reveal

the prognostic significance in both PFS and OS (p = 0.122 and p = 0.193).

Due to low copy number of the HCMV UL73 gene in the nine cases with positive qPCR

result, we repeated the HCMV UL73 test for further confirmation. Only two of the nine cases

got positive result in repeat HCMV UL73 tests and their HCMV copy numbers were 1.2 and

19.1 copies / 200 ng. Nested PCR assay for HCMV UL144 of all the 116 cases was negative.

Discussion

HCMV is a DNA virus of the family Herpesviridae. After primary infection of HCMV, the

virus persists in latency and involves expression of specific latency-associated viral gene prod-

ucts in the latently infected cell [35]. Since Cobbs and colleagues reported the presence of

HCMV in malignant gliomas [8], the relationship between HCMV and GBM has been debated

for more than a decade. Several studies reported high prevalence of HCMV in GBMs [11–19],
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while the others failed to identify any HCMV [20–27]. The discrepancy could be the differ-

ences in the sensitivities of the assays employed in different studies.

In this study, we evaluated HCMV in 116 GBM by qPCR for the viral gene UL73, nested

PCR for UL144, ISH and IHC, and only 9 (7.8%) cases revealed a low concentration of viral

DNA copies by qPCR. The reason to choose HCMV UL73 and UL144 in the present study was

based on their sensitivity of the primers. The qPCR for HCMV UL73 gene was very sensitive

and it could detect� 1.0 copies/200 ng sample. Its sensitivity was better than that for detecting

HCMV US28 gene (S1 Table). Our colleagues from our department had detected HCMV

UL73 gene in 42.2% (35/83) of the colorectal tumor samples [36] and shown good correlation

with the result of PCR for HCMV UL55 in 23 pairs of colorectal cancer and adjacent non-neo-

plastic specimen [33]. In regard to the age of the specimen, Ranganathan et al. had demon-

strated that detecting HCMV UL144 gene in GBMs was more sensitive than detecting UL28

and UL55, especially for older formalin-fixed, paraffin-embedded (FFPE) samples [37]. The

HCMV UL73 gene assay had also been validated and did not show positivity in non-neoplastic

cerebral controls [33]. In our study, only 2 of the 9 (22.2%) UL73 gene positive cases showed a

Table 1. Characteristics of the glioblastomas with HCMV_UL73 positivity.

Age (yr) Sex UL73 (Ct) UL73 repeat (Ct) UL144 IHC ISH MSP IDH1 Ki67 (%) PFS (mo) OS (mo)

67 m 35 36 – – – + – 25 10.3 16.7

40 m 39 40 – – – + R132H 85 2.9 13.3

9 f 38 – – – – – – 70 5.6 14.6

72 m 38 – – – – – – 50 5.5 13.1

56 f 38.3 – – – – + – 40 8.4 15.5

75 m 38.4 – – – – + – 90 16.4 20.3

37 f 39 – – – – + – 20 7.6 23.9

54 f 39 – – – – – – 70 4.7 10.7

57 m 40 – – – – – – 60 3.1 8.9

Ct, PCR threshold cycle; MSP, MGMT methylation specific PCR; IDH1, isocitrate dehydrogenase 1 mutation; PFS, progression-free survival; OS, overall

survival.

https://doi.org/10.1371/journal.pone.0179366.t001

Table 2. Comparisons of HCMV_UL73 positive and negative cases.

Total UL73+ UL73– p

N 116 (100%) 9 (100%) 107 (100%)

Age (year) 55 56 55 0.857

Male 69 (59%) 5 (56%) 64 (60%) 1.000

KPS�80 63 (54%) 5 (56%) 58 (54%) 1.000

Total resection 94 (81%) 7 (78%) 87 (81%) 0.679

Bevacizumab+ 25 (22%) 2 (22%) 23 (21%) 1.000

IDH1+ 10 (9%) 1 (11%) 9 (8%) 0.569

MSP+ 59 (51%) 5 (56%) 54 (50%) 1.000

Ki67 (%) 45 60 45 0.327

PFS (month) 7.5 5.6 7.5 0.147

OS (month) 18.0 14.6 19.2 0.141

Data presented as N (%) or median

KPS, Karnofsky performance status; IDH1, isocitrate dehydrogenase 1; MSP, MGMT methylation specific PCR; PFS, progression-free survival; OS, overall

survival.

https://doi.org/10.1371/journal.pone.0179366.t002
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Fig 1. Survival curves of GBM patients stratified by the results of HCMV UL73. (A) The median

progression-free survival of HCMV UL73 positive cases (5.6 months) was shorter than that of HCMV UL73

negative cases (7.5 months). However, their difference was not significant (p = 0.147). (B) The median overall

survival of HCMV UL73 positive cases (14.6 months) was shorter than those of HCMV UL73 negative cases

(19.2 months). However, their difference was not significant (p = 0.141).

https://doi.org/10.1371/journal.pone.0179366.g001
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consistent positivity in the repeat qPCR tests, suggesting that the viral gene within these

tumors was few and it was not correlated with viral protein expression by IHC. Although

nested PCR is very sensitive and could be served as a screening tool, our nested PCR assays for

UL144 were all negative. This could be attributed to variations at primer/probe binding sites

and low viral DNA copy numbers. The primers that we used for UL144 were the same as our

colleagues used to study colorectal cancer, of which they detected UL144 gene in 42.6% (49/

230) of colorectal carcinomas and in 11.3% (13/230) of adjacent non-neoplastic specimens

[38].

Due to the negative results of this investigation, the potential etiology of false negative

results including the measurement errors and small sample size might be concerning. In this

study, the immunohistochemical stains were strictly followed the methodology by Cobbs,

et al., which included section thickness, deparaffinization method, post-fixation, pepsin diges-

tion, antigen retrieval method, blocking methods, antibody concentration and incubation.

Proper staining results were observed in both positive and negative control tissues. However,

all the studied GBMs showed negative staining. As the effectiveness of ISH biotinylated probes

could be affected by tissue with high endogenous biotin expression, we used an in vitro diag-

nostic HCMV fluorescein-conjugated probe and performed on autostainer. Negative results

were seen in all the study cases, which were accompanied with proper positive control. In addi-

tion to the probes, denaturation, hybridization and detection could be different, and might

account for the different outcomes. Similar to our results, a recent report showed no expres-

sion of HCMV in 32 GBM by IHC and RT-PCR HCMV assay [39].

Although tissue fixation/processing might mask antigen and have influence on IHC stain-

ing results, a previous study did not reveal significant differences between FFPE tissue and fro-

zen tissue. Of the nine GBMs that they studied, one case showed positivity in both FFPE and

frozen tissues, one showed positivity on FFPE tissue, while it was negative in frozen tissue, and

the rest were negative in either FFPE or frozen tissues. (Fisher’s exact test p = 0.22) [11]. They

also suggested that IHC with anti-IE1 antibody was the most reliable and the simplest tech-

nique for detecting HCMV on fixed or frozen tissue sections [11]. However, Yamashita et al

using liquid chromatography-tandem mass spectrometry analysis revealed that proteins

extracted from the IE1 and pp28 positive bands were non-viral human proteins such as

human serum albumin (HSA) and myelin basic protein (MBP), suggesting previously

unknown cross-reactivity of these antibodies [24]. Furthermore, a large-scale transcriptome

sequencing study of 167 GBMs from the Cancer Genome Atlas Research Network found

absence of relevant HCMV expression [22]. RNA-Seq by next-generation sequencer revealed

no viral RNA from DNA viruses such as HCMV was present in glial tumors [40]. To our

knowledge, there has been no HCMV viral particle ever isolated from glioma tissue to date.

From the previous reports, the relationship between HCMV and GBM did not show signifi-

cant differences among populations with different ethnic origins. Of the studies from the

United States, although several reports supported their relationship [8, 12–14, 41, 42], others

did not [20, 23, 43]. The reports from Sweden were also conflicting [19, 22, 27, 29, 44]. In the

Far East region, reports from China showed high prevalence of HCMV viral protein in GBMs

[17, 18], while reports from Japan were unable to demonstrate the presence of HCMV genome

in GBMs [24, 26].

There has been no consistent correlation between HCMV seroprevalence rates and GBM

incidence rates. An epidemiology study in the United States showed HCMV seroprevalence is

significantly lower in whites than in blacks or Hispanics, while the incidence of GBM is higher

in whites [45]. The HCMV seroprevalence in the United States is 45.2%– 55.5%, which is

much lower than that in Taiwan being 91.1% [46], however, the annual incidence of malignant

glioma in the United States is more than double of that in Taiwan (5 cases per 100,000
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population vs. 2 cases per 100,000 population) [47]. Therefore, the correlation HCMV sero-

prevalence and GBM cannot be substantiated.

It is possible that detection of HCMV in GBM tissues is related to latent HCMV reactiva-

tion secondary to treatment-related immunosuppression. Of the previous works that detected

HCMV in tumors and had detailed treatment information, none of them had received radio-

therapy or chemotherapy prior to surgery [13, 15, 17, 18]. Our patients also did not receive

any radiotherapy or chemotherapy before removal of the tumors. Therefore, viral reactivation

secondary to treatment-related immunosuppression is not likely.

Despite HCMV could be a pathogen or bystander for gliomagenesis, some studies also pro-

posed that HCMV might be oncomodulatory and enhance tumor progression by a specific

mechanism [48, 49]. CMV proteins could control cell cycle, induce telomerase activity, inhibit

apoptosis, induce angiogenesis, activate cell migration and metastasis, avoid immune destruc-

tion, increase genome instability, and promote stemness by blocking cellular differentiation

[50, 51]. As the consequence, presence of CMV in GBMs would promote tumor progression

and associate with a worse prognosis [29, 42, 52]. However, our results revealed a low concen-

tration of HCMV UL73 gene in 7.8% of GBMs and had no prognostic impact on PFS and OS.

The later could be a statistical bias caused by a small sample size of HCMV UL73 positive

cases. Further studies including more HCMV UL73 positive cases are needed to clarify this

issue. However, there was also no prognostic difference reported from the data of Chinese Gli-

oma Genome Atlas [17]. The Swedish trial also did not show clear clinical benefit of anti-viral

therapy for GBM and survival benefit [30]. All these results showed insufficient evidence to

recommend routine testing for CMV in GBM or to treat HCMV as an add-on therapy.

Besides the usual limitations of a retrospective study, the following restrictions should be

considered when interpreting the results of this study. First, as HCMV+ GBM was not avail-

able, HCMV gastritis was used as the IHC positive control. This may not be ideal as the viral

load in these two conditions and the method of fixation/tissue preparation of these two types

of tissues could be different. Second, since we only studied HCMV UL73 and UL144, the pos-

sibility of existence of HCMV could not be totally excluded as different primer/probe binding

sites could exist. Third, the case number of HCMV UL73 positive cases was small and the

prognostic impact of which could not be confidently assessed.

In conclusion, our results revealed a very low concentration of HCMV UL73 gene present

in 7.8% of our 116 GBMs studied. However, HCMV RNA and protein were not detected. The

results suggested that HCMV is unlikely to be implicated in the development of GBMs at least

in the Taiwanese cases.

Supporting information

S1 Fig. Positive control of in situ hybridization. A case of cytomegalovirus gastritis was used

as positive control for in situ hybridization. Intense, brown predominately cytoplasmic stain-

ing was regarded as positive.

(TIF)

S2 Fig. Positive control of immunohistochemical (IHC) stain. A case of cytomegalovirus

gastritis was used as positive control for IHC stain. Nuclear staining was regarded as positive.

(TIF)

S3 Fig. Examples of Ki67 immunohistochemical stain. (A) An HCMV UL73 positive case

(Ki67 labeling index = 78%), and (B) an HCMV UL73 negative case (Ki67 labeling index = 45%).

(TIF)
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S1 Table. Results of detecting UL73 gene and US28 gene in gastrointestinal tract and brain

tissues.

(PDF)

S2 Table. Clinico-pathological features of the analyzed patients.

(PDF)
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