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ABSTRACT: In the past 2 years, since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), multiple
SARS-CoV-2 variants have emerged. Whenever a new variant emerges, considerable time is required to analyze the binding affinity
of the viral surface proteins to human angiotensin-converting enzyme 2 (hACE2) and monoclonal antibodies. To efficiently predict
the binding affinities associated with hACE2 and monoclonal antibodies in a short time, herein, we propose a method applying
statistical analysis to simulations performed using molecular and quantum mechanics. This method efficiently predicted the trend of
binding affinity for the binding of the spike protein of each variant of SARS-CoV-2 to hACE2 and individually to eight commercial
monoclonal antibodies. Additionally, this method accurately predicted interaction energy changes in the crystal structure for 10 of 13
mutated residues in the Omicron variant, showing a significant change in the interaction energy of hACE2. S375F was found to be a
mutation that majorly changed the binding affinity of the spike protein to hACE2 and the eight monoclonal antibodies. Our
proposed analysis method enables the prediction of the binding affinity of new variants to hACE2 or to monoclonal antibodies in a
shorter time compared to that utilized by the experimental method.

1. INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) first emerged in China and has rapidly propagated, leading
to a pandemic.1 The SARS-CoV-2 genome encodes various
proteins referred to as spike (S), envelope (E), membrane
(M), and nucleocapsid (N). Additionally, six open reading
frames have been predicted to correspond to hypothetical
proteins with no known function.2 Each known protein has a
distinct function. In particular, the S protein mediates viral
invasion into host cells via human angiotensin-converting
enzyme 2 (hACE2), and the E protein is involved in the
formation and release of viral particles.3 The S protein, owing
to its presence on the surface of the virus, plays a key role in
mediating recognition of the host receptor, hACE2, and viral
entry through the cell membrane. The S protein is composed
of two subunits, S1 and S2.4 The S1 subunit contains a
receptor binding domain (RBD) that recognizes and binds to
the host receptor, whereas the S2 subunit mediates viral

membrane fusion.5 Therefore, it is imperative to investigate
how S protein mutations affect viral transmission and infection.
In the past 2 years, since the emergence of the pandemic, the

number of cumulative deaths from coronavirus disease
(COVID-19) caused by SARS-CoV-2 has surpassed five
million.6 Along with the large death toll, many variants of
SARS-CoV-2 have emerged. The first new SARS-CoV-2
variants detected were announced in December 2020 by the
COVID-19 Genomics U.K. Consortium and were named α
and β by the World Health Organization (WHO). These
variants had 17 mutations and 70% greater transmission ability
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than the wild type.7 The S protein mutations in the α variant
are ΔH69/ΔV70, Δ144/144, N501Y, A570D, D614G,
P681H, T716I, S982A, and D1118H. The N501Y mutation
being located in the RBD causes the S protein to have
increased binding affinity to hACE2 and a consequent increase
in the transmission ability of the virus.8 The α and β variants
thus became the dominant variants in most countries, and
many researchers consequently began to monitor for new
variants. In March 2021, another variant named Delta, which
had 20 mutations, was reported for the first time. The Delta
variant rapidly became dominant over the α and β variants.
The mutations of the S protein in the Delta variant are T19R,
E156G, Δ157/158, L452R, T478K, D614G, P681R, and
D950N. The L452R and T478K mutations are located in the
RBD, and they significantly increase the binding affinity of the
S protein to hACE2.9 Following the emergence of the Delta
variant, a new SARS-CoV-2 variant, called Omicron, was first
reported by the WHO on November 25, 2021, in South Africa.
Recently, there has been a marked increase in the number of
Omicron variant breakthrough infections. The Omicron
variant is a highly divergent variant having 32 mutations,
including substitutions, deletions, and an insertion in the S
protein, half of which reside within the RBD. Many of the
mutations in the Omicron variant have the potential to
increase the infectivity of the virus and confer resistance to
therapeutic agents, which are factors that may be associated
with immune escape and high transmissibility. Importantly, as
all mutations of the Omicron variant are still not precisely
known, there is considerable uncertainty regarding the effects
of the complete combination of deletions and mutations on the
viral behavior and susceptibility to human immunity.
Several studies have been conducted to predict the binding

force between SARS-CoV-2 RBD and hACE2 to determine the
propagation characteristics of the Omicron variant. Based on
docking studies with single-mutant S proteins, the Q493K,
N501Y, S371L, S373P, S375F, Q498R, and T478K mutations
have been reported to contribute significantly to the high
binding affinity of the Omicron S protein to hACE2.10 This
study has revealed that compared to the proteins of the Delta
variant, the complete S protein and RBD of the Omicron
variant possess a high proportion of hydrophobic amino acids,
such as leucine and phenylalanine, which are located within the
protein core and are required for its structural stability.
However, the exact structural changes caused by the
combination of two or more mutations have not been
accounted for by this approach. Another study has reported
the generation of RBD-hACE2 structures optimized using the
AMBER FF14SB force field for S proteins of Delta and
Omicron variants, wherein the steric hindrances were
calculated based on an ab initio quantum mechanical (QM)
model called the fragment bond order.11 Although the
interaction energy of each residue in the RBD or hACE2
was more accurate in the QM model used in this approach
than in the molecular mechanical (MM) model used in
docking studies, the overall accuracy of the generated
structures was dependent on the accuracy of the force field.
In addition, the RBD-hACE2 complex structure does not have
a fixed position and orientation but moves continuously and
changes form to drive the structure toward a state of global
optimum energy. The protein−protein binding structure of the
RBD-hACE2 complex being a markedly large system makes
the approximation of this multitude of structural states to the
global optimal energy state rather difficult.

Here, we propose a novel binding affinity prediction method
that can facilitate the understanding of the emergence of new
variants having unknown structures as well as the existence of
various binding poses of S proteins in predicted unknown
structures. Three-dimensional structures of proteins were
generated using AlphaFold to construct new variants having
unknown structures.12 We obtained conformational variation
of binding poses by performing protein−protein docking
simulations with constraints on the distance between the
residues of the RBD and receptor. These simulations generated
structural information of all binding poses located close to the
binding site that can be determined by energy calculations.
The binding affinity for all generated binding poses was
predicted using a QM model called the fragment molecular
orbital (FMO).13 FMO-based calculations have been applied
to various large biomolecular systems and used in analyses of
hot spot residues between hACE2 and S proteins.14,15 Our
research goal was to use statistical analyses to identify
significant differences among the interaction energies of all
binding poses as well as the most stable RBD-hACE2 complex
structures for each variant. In addition, the difference in
interaction energy between the hACE2 residues and S protein
residues of the wild type as well as the Omicron variant was
analyzed for all binding poses.

2. MATERIALS AND METHODS
2.1. Preparing Protein Structures. The omicron variant

has 15 mutations in the RBD domain of the S protein: G339D,
S371L, S373P, S375F, K417N, N440K, G446S, S477N,
T478K, E484A, Q493K/R, G496S, Q498R, N501Y, and
Y505H. In previous studies, viral particles of the Omicron
variant were further subclassified into two types: those
containing the Q493K and Q493R mutations. The structures
of complexes formed by the binding of hACE2 to the RBD of
the wild type (PDB ID:6M0J),16 Delta variant (PDB
ID:7V8B),17 and Omicron variant containing the Q493R
mutation (PDB ID:7T9L),18 and individually to eight different
monoclonal antibodies (Table S1), were downloaded from the
Protein Data Bank (https://www.rcsb.org/). The RBD
structure comprised a substructure of the S protein between
the Thr333 and Gly526 residues. The amino acid sequences of
RBDs required to predict the RBD structures of the Omicron
variant by means of AlphaFold were generated by changing the
mutant sequence for each mutant using data and tools from
the online resource GISAID.19,20 The RBD structures of the
Delta and Omicron variants were generated based on 10
structural models prepared using AlphaFold. The predicted
RBD structures of the wild-type and Delta variants were
generated based on the sequence of each type and compared
with the experimental structures. The complete database
provided by AlphaFold was used for structural predictions and
analysis. The maximum template release date was defined as
2020-05-14. The RBD structures generated using AlphaFold
had hydrogen atoms bound to heavy atoms, and the hydrogen
atoms in hACE2 and commercial antibody structures were
added using Chimera 1.14.21 The root-mean-square distance
(RMSD) was also calculated using Chimera 1.14.

2.2. Protein−Protein Docking Simulation. To generate
structures of complexes formed by the predicted RBDs and
hACE2, protein−protein docking simulations were performed
using PIPER.22 PIPER uses the method of rigid docking
simulations, which is a docking algorithm that does not involve
changing the RBD domain structure, and has a low calculation
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cost when using Fourier transformations. The binding site was
defined as the constrained distance between the residues of the
RBD and those of the receptors, namely, hACE2 and the eight
monoclonal antibodies. Residue pair sets were defined as the
residues of the RBD and the receptor having a distance less
than 5.0 Å between them. Changes in binding poses were
analyzed by considering binding within a range of 5.0 Å away
from the region defined by the calculated distance between the
RBD and the receptor in the crystal structure of the complex.
Structures of complexes with atoms close to less than the van
der Waals distance were filtered out to eliminate complex
structures having excessive proximity between the RBD and
the receptor. Up to 10 binding poses for each receptor and
RBD type were selected based on the docking score.
2.3. Molecular Dynamics. Considering the flexibility of

hACE2, molecular dynamics simulations were performed to
generate binding poses involving hACE2 binding to the three
predicted types of RBD structures. The initial binding poses
were generated by superimposing the predicted RBD structure
of each variant on the experimentally obtained hACE2-RBD
crystal structure of the wild type. One predicted RBD structure
of the wild type overlapped with hACE2 and hence was
excluded from the molecular dynamics simulations. Molecular
dynamics simulations were performed by means of NAMD

version 2.1223 using the CHARMM36m force field.24 The files
of the predicted complex structures were converted from the
Protein Data Bank format (.pdb) to the structure (.psf) and
coordinate file (.pdb) formats using CHARMM-GUI.25,26 The
water box was prepared using visual molecular dynamics
(VMD) version 1.9.4.27 Energy minimization for the super-
imposed structure of the Omicron variant was performed for
500 ps, with a time step of 1 fs. The simulation was performed
with a constant temperature set at 310 K. Energy minimization
for the superimposed structure of the RBDs was performed for
a maximum of 60 ns. Complexes categorized as top 10 energy
minimum structures were defined as candidate complex
structures. The RMSD of the structure of each complex was
defined in terms of its alignment to the initial complex
structure.

2.4. FMO Calculation and Pair Interaction Energy
Decomposition Analysis (PIEDA). To calculate the
interaction energy between RBDs and the receptors, FMO
calculations were performed using the predicted structures of
complexes via protein−protein docking simulations or
molecular dynamics simulations. FMO-based calculations are
reported to yield predicted values having a high correlation
with the experimental data.28 All FMO calculations in this
study were performed using the FMO-DFTB3 method.29 All

Figure 1. Distribution of pair interaction energy (a) between hACE2 and four types of spike proteins and (b) between each residue of hACE2 and
the spike protein of the wild type and the two Omicron variants. Asterisks indicate statistically significant variation (Student’s t-test, **P-value <
0.01, ***P-value < 0.001).
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input files were prepared in compliance with the hybrid orbital
projection fragmentation scheme.30 One fragment was defined
as two cysteine residues that were within a distance of 2.15 Å
from each other and were composed of disulfide bonds. The
polarizable continuum model was used considering that the
binding of the RBDs to the receptors occurs in a solution
state.31 The interaction energy between the RBD and receptor
is defined by the following equation

Δ = Δ − Δ + Δ·E E E E( )inter RBD receptor RBD receptor

where ΔEinter and ΔERBD·receptor are the pair interaction energy
(PIE) between the RBD and receptor and the total interaction
energy for the complex structure, respectively. ΔERBD and
ΔEreceptor are the total interaction energies for the RBD and
receptor, respectively. The binding affinity was not predicted
solely based on the minimum energy structure due to the
flexibility of the complex structures. Instead, it was defined as
the median value of PIE of all structures of each variant
obtained using protein−protein docking simulations or
molecular dynamics. When performing FMO calculation, the
binding pose between the two monomer proteins with a very
close distance cannot be calculated as energy divergence
because of some very large repulsive interactions between two
proteins. In this case, the total interaction energy will be a
highly positive total interaction energy compared to other
bonding structures. The average value cannot properly reflect
the distribution of most normal binding poses of the very close
distance. Therefore, the PIE distribution of the binding poses
as a single statistical value, and the median value was
considered more appropriate than the average value.
The PIE distribution of all binding poses of RBD with the

receptors was compared using the Kruskal−Wallis rank-sum
test to obtain a statistical difference in the median values of
PIE among all variants. In addition, the Wilcoxon rank-sum
test was used to compare the median of interaction energy of
all binding poses of variants to obtain the statistical differences
in values of PIE between the residues of the wild type and the
Omicron variant by comparing the median of interaction
energy of all binding poses of variants.
The statistical significance of binding affinity was described

as the P-value calculated by the Kruskal−Wallis rank-sum test
or the Wilcoxon rank-sum test. The P-value indicates the
statistical significance that two distributions of binding affinity
between the wild type and variant are the same or not. Since a
smaller P-value (P < 0.05) can indicate a high probability that
the two distributions are different, the binding affinity can be
analyzed for all possible binding poses of the S protein with
receptors not specific to one binding pose. We determined that
the difference of median PIEs between the wild type and
variant of the S protein has statistical significance when the P-
value is less than 0.05. In addition, we determined whether the
median PIE for the 15 mutant residues of the Omicron variant
was significantly based on the P-value between the wild type
and the Omicron variant. After selecting the residues with a
significant median PIE difference based on the P-value, the
residue with a strong interaction energy for hACE2 and the
residues with a weak interaction energy for monoclonal
antibodies were selected and analyzed.
To analyze interaction types of the residue of the S protein,

we performed pair interaction energy decomposition analysis
(PIEDA) with FMO calculation. In PIEDA, the pair
interaction energy of a set of residue pairs consisting of S
protein residues and hACE2 receptor residues could be

analyzed by dividing them into five interaction energy types.
The five interaction energy types are electrostatic energy,
exchange energy (also called steric repulsion), charge transfer
energy, dispersion energy, and solvation energy. To determine
the significantly different interaction energy types in 13
mutation positions of the Omicron variant, the same method
as the previous PIE distribution comparison was used.
FMO calculation and PIEDA were performed using the

version June 30, 2020, R1 GAMESS.32 Statistical analysis for
PIE was performed using R, version 4.1.0. PIE distribution
plots were generated using the ggplot2 library in R, version
4.1.0.

3. RESULTS AND DISCUSSION
3.1. Predicted RBD Structures of the Wild-Type,

Delta, and Omicron Variants. Assuming the RBD structure

of the Omicron variant to be unknown and a stable RBD
structure generated among various possible flexible RBD
structures, we used AlphaFold to generate 10 models of each of
the four predicted types of RBD structures. The predicted
structure superimposed on the crystal structure is described in
Figure S1. The average RMSD with the crystal structure of
each variant was 4.455 Å for the wild type and 3.655 Å for the
Delta variant. The lowest values of RMSD among those
obtained with the crystal structures were 2.996 Å for the wild
type, 2.932 Å for the Delta variant, and 2.963 Å for the
Omicron variant containing the Q493R mutation. The RMSD
for the Omicron variant containing Q493K could not be
calculated since Gln493 was substituted with a different

Table 1. Median Interaction Energy of Residues in the
Receptor Binding Domain Interacting with hACE2
Obtained Using Protein−Protein Docking Simulationsa

Omicron (Q493K) Omicron (Q493R)

residue

energy
with wild
type

(kcal/mol) energy P-value energy P-value

G339D 12.7 38.1 5.4 × 10−32 40.0 4.3 × 10−31

S371Lb −13.3 −12.5 2.6 × 10−1 −11.8 2.6 × 10−3

S373P −13.4 −2.2 6.3 × 10−28 −1.9 5.0 × 10−29

S375F −4.6 −9.4 5.1 × 10−6 −9.7 6.8 × 10−4

K417N −69.6 5.6 6.8 × 10−22 6.7 1.9 × 10−22

N440K 24.1 2.1 1.6 × 10−31 0.4 1.5 × 10−29

G446S −2.0 10.7 1.9 × 10−15 12.4 1.5 × 10−12

S477N 13.8 16.6 1.1 × 10−3 16.3 1.5 × 10−3

T478K −6.9 −14.5 1.1 × 10−18 −15.5 2.8 × 10−22

E484A 26.2 3.3 2.3 × 10−28 2.7 5.5 × 10−27

Q493K/R −1.9 −61.9 3.4 × 10−25 −46.5 5.8 × 10−14

G496S −5.9 4.9 9.0 × 10−3 −4.0 2.8 × 10−1

Q498R 0.7 −51.7 4.8 × 10−21 −54.5 5.8 × 10−19

N501Y −9.1 −0.4 2.1 × 10−4 −0.7 2.2 × 10−6

Y505H 16.4 13.6 5.9 × 10−1 0.3 1.5 × 10−1

aUnderlined residues and values indicate significantly stronger
interactions in the Omicron variants than those in the wild type for
which the P-value was less than 5.0 × 10−2 and the median interaction
energy for the Omicron variant was lower than that for the wild type.
bThe Omicron variant containing Q493K showed no significantly
stronger interaction, but the Omicron variant containing Q493R
showed a significantly stronger interaction than that observed in the
wild type.
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residue in the structure generated using AlphaFold than that
present in the original crystal structure.
The loop structure formed by residues between Leu455 and

Phe490 has various conformations, but the other structures of
the RBD are the same in the wild type and the Delta variant.
The average RMSD for the RBD structures was 4.439 Å for the
wild type, 2.865 Å for the Delta variant, and 2.794 Å for the
Omicron variant. The Omicron variant had the least structural
deviation among the three types of predicted RBD structures.
The lowest RMSDs of the three types of RBDs were 2.292 Å
for the wild type, 1.701 Å for the Delta variant, and 2.505 Å for
the Omicron variant containing the Q493R mutation. The
highest RMSDs of the three types of RBDs were 7.852 Å for
the wild type, 7.488 Å for the Delta variant, and 3.253 Å for the
Omicron variant containing the Q493R mutation. As structure
prediction using AlphaFold included the structure relaxation
process, the structure corresponding to the energy minimum
could be predicted. The RBD structure of the Omicron variant
was relatively rigid compared to the other RBD structures.

3.2. Prediction of the Binding Affinity between RBD
and hACE2. Molecular dynamics is a popular in silico method
for predicting the binding affinity and analyzing the interaction
energy. However, the use of molecular dynamics to predict
binding affinity in massive protein−protein complex structures

Table 2. Pair Interaction Energy of Residues of hACE2 and
Residues of the Receptor Binding Domain in Crystal
Structuresa

pair interaction energy (kcal/mol) with hACE2

residue wild type Omicron (Q493R)

G339D 15.9 36.0
S371L −21.9 −12.0
S373P −11.2 4.9
S375F −4.8 −7.9
K417N −135.8 7.9
N440K 21.0 −7.0
G446S −5.6 18.7
S477N 15.3 14.3
T478K −5.1 −20.8
E484A 39.9 4.1
Q493R −5.2 −125.0
G496S 1.2 −16.5
Q498R −16.8 −170.0
N501Y −11.6 −13.5
Y505H 4.0 6.8

aUnderlined residues and values represent stronger interactions in the
Omicron variant than those in the wild type.

Figure 2. Distribution of pair interaction energy (a) between hACE2 and three types of spike proteins and (b) between each residue of hACE2 and
the spike protein of the wild type and Omicron variant. Asterisks indicate statistically significant variation (Student’s t-test, ***P-value < 0.001).
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has a high cost, and the determination of the initial structure is
difficult. The calculation cost involved in protein−protein
docking simulations is relatively lower than that of molecular
dynamics. We used protein−protein docking simulations as
well as molecular dynamics for an in silico analysis of the S
protein−receptor complex based on predictions of binding
affinity between the hACE2 receptor and crystal structures for
three mutations.
First, we performed protein−protein docking simulations to

predict the binding affinity of different RBDs with hACE2. Our
results showed 96 binding poses in the wild type, 98 in the
Delta variant, 90 in the Omicron variant containing the Q493K
mutation, and 85 in the Omicron variant containing the
Q493R mutation. Among the binding poses that can be
determined by docking simulations, a binding pose with a high
probability of being located around the binding site of hACE2
was selected, and the distributions of PIE between the three
types of RBDs and hACE2 were accordingly analyzed using
FMO-based calculations (Figure 1a).
The median values of pair interaction energies were 340.0

kcal/mol for the wild type, 25.2 kcal/mol for the Delta variant,
and −382.1 and −196.4 kcal/mol for the Omicron variants
containing the Q493K and Q493R mutations, respectively.
The P-values obtained by the Kruskal−Wallis rank-sum test
were 2.940 × 10−15 and 1.140 × 10−11 for the Omicron
variants containing the Q493K and Q493R mutations,
respectively, indicating that the median interaction energies
for each RBD type were significantly different. The median PIE
of the Omicron variant was stronger than that of the other
variants. In a previous study, the binding affinity between
hACE2 and the RBD of the Delta variant (Kd = 4.6 nM) was
shown to be stronger than that observed in the wild type (Kd =
21.3 nM).33 Another study shows the binding affinity between

hACE2 and the RBD of the Omicron variant containing
Q493K to be stronger than that of the wild type.34 In our
study, the predicted binding affinity of the RBD of the wild
type and the Delta variant for hACE2 could be considered
reliable due to the strong correlation between the predicted
values and experimental data.
The interaction energy types between 13 mutation residues

and hACE2 using PIEDA are described in Tables S2−S6.
Among five interaction energy types, electrostatic energy was
the major type of energy that the Omicron variant had a
stronger pair interaction than the wild type. Among the seven
mutation residues in the Omicron variant, six mutation
residues in the Omicron variant except for S375F had a
stronger electrostatic energy than those in the wild type. Only
S375F in the Omicron variant had a stronger solvation energy
than that in the wild type. Dispersion energy, known as the
major interaction type in protein−protein interaction, was
calculated to have a value between −1.5 and 0.0 kcal/mol in
the wild type and −1.2 and 0.0 in the Omicron variant (Table
S5).
The PIE in the crystal structures was −894.4 kcal/mol for

the wild type, −980.8 kcal/mol for the Delta variant, and
−1444.5 kcal/mol for the Omicron variant. The Pearson

Table 3. Median Interaction Energy of Residues in the
Receptor Binding Domain Interacting with hACE2
Generated Using Molecular Dynamicsab

median interaction energy (kcal/mol)
with hACE2

residue wild type Omicron (Q493R) P-value

G339D 9.7 35.5 3.3 × 10−29

S371L −7.8 −14.6 1.6 × 10−5

S373P −9.6 1.5 9.6 × 10−21

S375F −4.3 −10.3 4.1 × 10−5

K417N −67.7 12.6 9.6 × 10−29

N440K 13.2 −10.9 7.2 × 10−22

G446S −0.6 7.0 2.8 × 10−15

S477N 3.9 6.7 4.9 × 10−2

T478K −7.4 −15.0 5.7 × 10−18

E484R 10.5 6.3 6.1 × 10−8

Q493K −30.0 −230.0 3.3 × 10−29

G496S −4.2 −2.4 1.7 × 10−1

Q498R −8.8 −117.4 4.7 × 10−29

N501Y −31.7 −23.9 9.3 × 10−4

Y505H −4.6 −2.1 3.1 × 10−1

aUnderlined residues and values indicate significantly stronger
interactions in the Omicron variant than those in the wild type for
which the P-value was less than 5.0 × 10−2, and the median
interaction energy of the Omicron variant was lower than that of the
wild type. bBold residues and values represent residues having
significantly stronger interactions in protein−protein docking
simulations for the Omicron variant than those of the wild type.

Figure 3.Mutation points of the spike protein of the Omicron variant
depicted in the spike protein of the wild type. Cyan-colored residues
represent residues in the Omicron variant with weaker interactions
than those in the wild type. Orange-colored residues represent
residues in the Omicron variant with stronger interactions than those
in the wild type.
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correlation value of the interaction energy for various docking
poses and crystal structures was 0.95, which indicates a high
correlation and the consequent high predictability of our
method. The PIE between each residue of the RBDs and all
residues of hACE2 was calculated to determine differences in
the interaction energy of RBD residues and hACE2 between
the wild type and the Omicron variant (Figure 1b). PIE values
for S375F, N440K, T478K, E484A, Q493K/R, and Q498R in
the RBD of the two Omicron variants indicated that they had a
stronger interaction than the corresponding residues in the
wild type (Table 1). The PIE value of the S371L fragment,

which was only present in the RBD of the Omicron variant
containing the Q493R mutation, indicated the fragment to
have a significantly stronger interaction than the corresponding
residues of the wild type. The G339D, S373P, K417N, G446S,
S477N, G496S, and N501Y fragments of the two Omicron
variants were found to have weaker interactions than the
corresponding residues of the wild type (Table 1). In the
crystal structure, S375F, N440K, S477N, T478K, E484A,
Q493R, G496S, Q498R, and N501Y interacted more strongly
with the omicron variant than with the wild type (Table 2).
The six residues apart from S371L that were predicted to

have strong interactions with hACE2 in protein−protein
docking simulations also showed strong interactions with
hACE2 in the Omicron variant than those in the wild type
when analyzed experimentally. The 10 of 13 mutated residues
in the Omicron variant with significantly different PIEs showed
that the trends of predicted differences in PIE between the wild
type and Omicron variants were consistent when used for the
predicted binding poses and when using the crystal structure.
Therefore, the predictions for the binding affinity between
hACE2 and the RBD of the predicted structures in our study
can be considered to indicate the reliability of our method.
The energies of five interaction types using PIEDA for the

crystal structures are described in Table S7. Electrostatic
energy is a major interaction type that makes pair interaction
energy in Omicron stronger than in the wild type. Pearson’s
correlation values of five interaction energy types in the crystal
structure and the predicted structure were 0.99 in electrostatic
energy, 0.04 in exchange energy, 0.83 in charge transfer energy,
0.77 in dispersion energy, and 0.98 in solvation energy. In

Table 4. Median Pair Interaction Energy between the Receptor Binding Domain and Eight Different Monoclonal Antibodiesa

median total interaction energy (kcal/mol)

monoclonal antibody wild type Delta Omicron (Q493K) Omicron (Q493R)

regdanvimab 909.6 1078.2 1347.0 1401.9
(1.2 × 10−4)b (8.1 × 10−11)c (7.1 × 10−10)c

(7.8 × 10−4)d (1.6 × 10−3)d

bamlavimab 1202.1 1371.2 1661.9 1858.2
(1.3 × 10−2)b (1.4 × 10−8)c (8.0 × 10−14)c

(5.5 × 10−4)d (2.3 × 10−8)d

etesivimab 895.4 1052.2 925.2 907.8
(4.2 × 10−3)b (4.9 × 10−1)c (9.5 × 10−1)c

(4.2 × 10−2)d (1.1 × 10−2)d

casirivimab 1002.6 990.0 976.5 1149.2
(8.0 × 10−1)b (8.2 × 10−1)c (1.9 × 10−1)c

(8.7 × 10−1)d (1.0 × 10−1)d

imdevimab 967.4 910.3 1147.3 1133.1
(9.7 × 10−1)b (4.3 × 10−4)c (2.4 × 10−3)c

(5.6 × 10−4)d (3.6 × 10−3)d

cilgavimab 744.1 734.8 711.8 669.3
(8.2 × 10−1)b (9.0 × 10−1)c (3.1 × 10−1)c

(9.3 × 10−1)d (4.137 × 10−1)d

tixagevimab 990.4 958.9 1118.2 1089.5
(9.1 × 10−1)b (3.7 × 10−2)c (2.3 × 10−2)c

(5.3 × 10−2)d (3.3 × 10−2)d

sotrovimab 1006.8 873.7 1004.5 949.7
(4.1 × 10−2)b (8.2 × 10−2)c (1.1 × 10−1)c

(3.4 × 10−2)d (6.3 × 10−1)d

aUnderlined monoclonal antibodies are monoclonal antibodies for which the binding affinity with the Omicron variant was significantly weaker
than that with the wild type and the Delta variant. bValues represent the P-value for the median total interaction energy between the wild type and
the Delta variant. cValues represent the P-value for the median total interaction energy between the wild type and the Omicron variant. dValues
represent the P-value for the median total interaction energy between the Delta and Omicron variants.

Table 5. Residues in the Spike Protein Having Lower Pair
Interaction Energy Compared to the Wild Type and the
Omicron Varianta

monoclonal
antibody residues

regdanvimab S375F, N440K, T478K, E484A, Q493K, Q498R,
Y505H

bamlavimab S375F, N440K, T478K, E484A, Q493K, Q498R,
Y505H

etesivimab S375F, N440K, T478K, Q493K, Q498R
casirivimab G339D, S375F, S477N, Q498R
imdevimab G339D, S375F, N501Y, Y505H
cilgavimab G339D, S371L, S373P, K417N, S477N, N501Y
tixagevimab G339D, S375F, Y505H
sotrovimab K417N, N440K

aUnderlined residues are the residues in which the pair interaction
energy for the Omicron variant was weaker than that of the wild type
for the highest number of monoclonal antibodies.
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N501Y, the difference of dispersion energy between the crystal
structure of the wild type and the Omicron variant was
calculated to be 4.3 kcal/mol, which is the biggest among the
other residues due to the T-shaped π−π stacking interaction
between Tyr41 in hACE2 and Tyr501 in the S protein of the
Omicron variant (Figure S2). The π−π stacking interaction
energy changes sensitively with the location and angle between
two benzene substructures. Since the positions and angles
between the two benzene substructures were T-shaped, π−π
stacking interactions could be formed in the predicted
structures, which differ from one predicted structure to
another; the residues where strong dispersive interactions
can be formed could not be predicted. Since the energies of
five interaction types were high, there was a correlation
between the crystal structure and the predicted structure,
except for the exchange energy, and the energy trends of the
five interaction types of each residue in the S protein could be
predicted with our method with high accuracy.
The binding affinities of the predicted RBDs to hACE2 were

also predicted using molecular dynamics. The contact regions
of hACE2 and the S protein are located on their surfaces and
are thus in a hydrophilic environment. The RBD of the
Omicron variant has a relatively high frequency of mutations
owing to its sequence being comparatively longer than that of
the other variants. Hence, it is highly likely that there might be
major changes in the RBD structure of the Omicron variant
compared to that of the wild type. The altered structure of the
RBD of the Omicron variant might also have led to changes in
the structure of the binding site of hACE2. Such flexibility of
hACE2 not being considered in molecular docking simulations
necessitated molecular dynamics simulations to be performed
to generate binding poses that take this flexibility into
consideration.
Figure S1d shows a predicted RBD structure (purple color)

overlapping with the hACE2 structure. As all RBD structures
of the Omicron variant containing the Q493R mutation
obtained by superimposition were seen to overlap with
hACE2, we used the RBD structures of the wild type and
the Omicron variant containing the Q493K mutation for
molecular dynamics but excluded those of the Omicron variant
containing the Q493R mutation.
The three initial types of S protein structures are shown in

Figure S1. Changes in RMSD of the complexes formed
between hACE2 and the three types of S proteins are shown in
Figures S3−S5. The RMSD of the S protein structures of the
complex formed between hACE2 and the RBD of the Delta
variant was greater than 20 Å. Therefore, this complex was
considered to have unstable binding poses. Each of the top 10
complex structures was selected based on their potential
energy minima from 28 structures of complexes formed by
hACE2 with the three types of S proteins. FMO calculations
were performed using 280 complex structures to determine the
interaction energy distribution of each variant. We obtained
258 calculable complex structures, of which 81 were those of
the wild type, 90 were of the Delta variant, and 87 were of the
Omicron variants containing the Q493K mutation. In addition,
considering the changes in the hACE2 and S protein structures
occurring in the molecular dynamic simulations, FMO
calculations were performed on the structures of 516
monomers of the selected complex structures to calculate the
total interaction energy of the monomers. The median PIE was
−759.9 kcal/mol for the wild type, −1164.1 kcal/mol for the

Delta variant, and −1553.4 kcal/mol for the Omicron variant
containing the Q493K mutation (Figure 2a).
The results of protein−protein docking simulations showed

the S protein of the Omicron variant to have the highest
binding affinity to hACE2 compared to that of the wild type
and the Delta variant. In addition, the Pearson correlation
value between the median PIEs obtained using protein−
protein docking simulations and those obtained using
molecular dynamics was 0.995. However, compared to the
PIE calculated by means of molecular dynamics, the PIE
calculated by means of protein−protein docking simulations
differs to a large extent from the experimentally obtained PIE
of the crystal structure, and a high correlation is observed
between the median PIE of both simulation-based approaches.
We analyzed pair interaction energy to binding poses

obtained from molecular dynamics simulations to determine
the accuracy of differences in PIE between RBD residues and
hACE2 obtained using protein−protein docking simulations.
The residues S371L, S375F, N440K, T478K, E484A, Q493K,
and Q498R showed significantly stronger interactions in the
Omicron variant than the corresponding residues in the wild
type (Table 3). The residues G339D, S373P, K417N, G446S,
S477N, and N501Y showed significantly weaker interactions in
the Omicron variant than the corresponding residues in the
wild type (Table 3). The strongly interacting residues obtained
by the protein−protein docking simulations formed a subset of
those obtained by molecular dynamics, and S371L, which did
not show significant differences in PIE obtained from protein−
protein docking simulations between the wild type and the
Omicron variant, was newly identified as a strongly interacting
residue. The weakly interacting residues obtained by molecular
dynamics were identical to those obtained from the protein−
protein docking simulations. As observed with the protein−
protein docking simulations, 10 out of 13 residues, except for
two residues that did not have significant differences in PIE,
showed that the trends of predicted differences in PIE between
the wild type and Omicron variant were consistent with the
trends of differences in experimentally observed PIE values.
The S protein of the Omicron variant has a stronger

interaction with hACE2 in the region of contact, and the chain
that mainly interacts with hACE2 is different from that present
in the wild type. The mutated residues of the Omicron variants
are shown in Figure 3. The left image of Figure 3 shows the
main interacting residue in the S protein to be shifted from the
left to the right chain.
Comparing the results of protein−protein docking simu-

lations and molecular dynamics for binding affinity prediction
showed S371L or G496S to be residues with significant
differences in PIE. The Y505H residue did not show a
significant difference in PIE between the two prediction
methods. Therefore, the protein−protein docking simulation
method could be considered better for binding affinity
prediction than molecular dynamics considering these metrics
and the calculation cost of each prediction method. In
addition, the interaction energy between the residues of the
RBD and the receptor or between the entire RBD and the
receptor was described well by the median PIE.

3.3. Prediction of Individual Binding Affinity be-
tween the RBD and Eight Different Monoclonal
Antibodies. Protein−protein docking simulations can be
performed in the antigen-binding domain of monoclonal
antibodies since it is a relatively rigid structure. In addition,
based on results we obtained for the prediction of binding
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affinity between RBD and hACE2, protein−protein docking
simulations could be considered for predicting binding affinity
than molecular dynamics. We therefore performed a protein−
protein docking simulation to predict the individual binding
affinity between three types of RBD and eight different
monoclonal antibodies that were used to predict the
neutralizing antibody titer compared to that of the wild type.
The median PIE of the eight monoclonal antibodies with three
types of RBD is shown in Figures S6−S13. The median
interaction energy of the RBD of the Omicron variant with
regdanvimab, bamlavimab, estesivimab, and imdevimab was
significantly lower than that of the wild type (Table 4). The
binding affinity of the Omicron variant for estesivimab was
stronger than that of the Delta variant. Tixagevimab showed
significantly lower binding affinity to the Omicron variant
containing the Q493R mutation but not to the one containing
the Q493K mutation, compared to the wild type and the Delta
variant. In a previous study, analysis of binding with
regdanvimab showed that the Delta variant (Kd = 0.540 nM)
has a lower binding affinity with hACE2 than that of the wild
type (Kd = 0.056 nM).35 Another study showed that, for all
eight monoclonal antibodies, the binding affinity of the
Omicron variant was lower than that of the Delta variant,
and six monoclonal antibodies, excluding cilgavimab and
sotrovimab, did not bind to all S proteins in the Omicron
variant.36 Excluding three out of the total eight monoclonal
antibodies analyzed, the binding affinity did not show a
significant difference for four among five monoclonal antibod-
ies and was lower for the Omicron variant containing the
Q493R mutation than for the Delta variant. Therefore,
considering that the tendencies of binding affinity between
monoclonal antibodies and each of the three types of RBD
were predicted with high accuracy, the binding affinity between
RBD structures and novel monoclonal antibodies can be
efficiently predicted using protein−protein docking simulations
and our proposed energy analysis method.
To identify the key mutation site that significantly lowered

PIE in the binding of the RBD to the four monoclonal
antibodies, we performed PIEDA using all of the binding poses
of the eight monoclonal antibodies. The median PIEs of 15
mutation sites are described in Tables S8−S15. Among the 15
mutation sites in the S protein of the Omicron variant, S375F
was a common mutation site showing the interaction to be
weakened with four monoclonal antibodies, and not with
sotrovimab, among the antibodies that had significantly
differing PIE from that of the wild type (Table 5). For median
PIEs between the residues of the RBD and hACE2, S375F
showed a stronger interaction with hACE2 in the Omicron
variant than that in the wild type. Therefore, the S375F
mutation can be associated with increased infectivity and
immune escape ability.
In our study, the analysis of PIE distribution focused on the

RBD domain of the spike protein. When developing a new
antibody that increases the binding affinity of the spike protein
with the RBD domain by modifying the existing antibody, the
analysis of PIE distribution was focused on the existing
antibodies. The antibody residues with lower binding affinity in
the Omicron mutant RBD compared to the wild-type RBD
should be identified. The interaction energy between the
residues of RBD and the antibody could be obtained using
FMO calculation, and interaction types were determined by
PIEDA. The amino acid sequences of new antibodies are made
by changing the residues in the antibody with a low binding

affinity by reflecting the chemical properties of the residues in
the mutated RBD domain that lower the binding affinity. The
amino acid sequence of the candidate antibody having a higher
binding affinity than the existing antibody can be identified by
predicting the binding affinity using this method.

4. CONCLUSIONS
In this study, we proposed a new binding affinity prediction
method, the accuracy of which was confirmed by using it to

predict the binding affinity among three types of RBDs and
hACE2. The tendencies of differences in PIE between the
three types of S proteins and hACE2 could be predicted using
the proposed binding affinity prediction method. The
predicted PIE differences between hACE2 and the three
types of S proteins obtained using protein−protein docking
simulations or molecular dynamics simulations were highly
correlated with the PIE difference using the crystal structure.

Figure 4. Flowchart showing (a) protein−protein docking simulation
using the receptor binding domain of the spike protein, hACE2, and
eight monoclonal antibodies and (b) molecular dynamic simulation
using the predicted receptor binding domain structure superimposed
on the crystal structure of the wild-type receptor binding domain.
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The six residues of Omicron variants that increased the
binding affinity of the virus to hACE2 were predicted using the
proposed method. The proposed method was applied to the
monoclonal antibody as well as to receptors. Among the eight
commercial monoclonal antibodies, four monoclonal antibod-
ies showed a significantly decreased binding affinity with the
RBD of the Omicron variant. S375F was found to be a residue
that commonly increases the binding affinity of hACE2 with
the RBD of the Omicron variant, and it can be considered as a
residue that majorly affects the immune escape capability of
SARS-CoV-2.
The advantage of the proposed binding affinity prediction

method was that the significance of the prediction result could
be statistically confirmed. This enabled a more accurate
analysis since the significance was presented by a statistical
method rather than an absolute numerical value of energy
determined by the researcher. The high accuracy of the newly
proposed binding affinity prediction method can thus enable
efficient prediction of binding affinity using protein−protein
docking simulations for any new variant of SARS-CoV-2 that
might emerge. Furthermore, if the three-dimensional structures
of the receptor or ligand and the binding site of the receptor
protein are known, using the approach employed for predicting
the binding affinity of RBD-hACE2 or RBD-monoclonal
antibody complexes, the binding affinity for protein−protein
complexes in general can be predicted efficiently (Figure 4).
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