
FEMS Yeast Research, 20, 2020, foaa007

https://doi.org/10.1093/femsyr/foaa007
Advance Access Publication Date: 3 February 2020
Minireview

MINIREVIEW

Extracting novel hypotheses and findings from
RNA-seq data
Tyler Doughty† and Eduard Kerkhoven*

Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296,
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ABSTRACT

Over the past decade, improvements in technology and methods have enabled rapid and relatively inexpensive generation
of high-quality RNA-seq datasets. These datasets have been used to characterize gene expression for several yeast species
and have provided systems-level insights for basic biology, biotechnology and medicine. Herein, we discuss new techniques
that have emerged and existing techniques that enable analysts to extract information from multifactorial yeast RNA-seq
datasets. Ultimately, this minireview seeks to inspire readers to query datasets, whether previously published or freshly
obtained, with creative and diverse methods to discover and support novel hypotheses.

Keywords: yeast; transcriptome; RNA-seq data analysis; lncRNA; phylostratigraphy; GO term analysis

INTRODUCTION

Next-generation sequencing of the whole transcriptome, or
RNA-seq, has been used to further biological understanding
of organisms for over a decade (Bainbridge et al. 2006). In
the interim, RNA-seq has become an increasingly popular
method for understanding transcriptome-wide changes in vari-
ous model systems. The popularization of this type of data anal-
ysis has spurred the development of open access programs for
quality control, mapping and differential expression (DE) anal-
ysis (reviewed in Chowdhury, Bhattacharyya and Kalita 2018).
Improvements in the efficiency of these tools coupled with
the small gene set size of most yeast species enables small
to medium scale RNA-seq datasets to be processed and ana-
lyzed using a laptop. Furthermore, published data is increas-
ingly uploaded to publicly available archives (Fig. 1A), and can
be downloaded by users in raw format (https://www.ncbi.nlm

.nih.gov/sra). These factors are lowering the barrier to analy-
sis and are enabling more scientists, with more diverse scien-
tific backgrounds, to create and test hypotheses with RNA-seq
data. While the main theme of this work is how to get more
out of ‘your’ dataset, we note that analyses from each section
are also opportunities to extract additional information from
archived data. Furthermore, we note that despite readily avail-
able tools for ensuring dataset quality (Conesa et al. 2016), few
archived data were found to be the subject of reanalysis (Fig. 1B),
which is an opportunity for analysts to gain new insights
prior to or in the place of them generating their own RNA-seq
datasets.

The sections of this review discuss RNA-seq analyses using
(i) gene function (GO Terms), (ii) quantifiable gene metrics (like
the evolutionary age of genes) and (iii) non-protein coding RNAs
(long non-coding RNAs). Each of these analyses combine DE
analysis results (described in chapter 1 of Marchi et al. 2017)
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Figure 1. RNA-seq data is increasingly commonly in yeast biology. (A) The sequence read archive ‘Run Selector’ tool was used to identify RNA-seq samples uploaded

for the yeast species listed. (B) RNAseq dataset identifiers acquired from the Sequence Read Archive (SRA) were queried using google scholar and pubmed to assess
the number of times a dataset was analyzed in unique peer-reviewed publications. Only published datasets released before January 2017 were included (n = 204). (C)
A flow diagram showing a frequent paradigm of RNA-seq dataset creation/usage (left). The topics covered in this review are highlighted in yellow.

with additional information (e.g. gene functional information) to
help explain transcriptome-wide trends (Fig. 1C). Each section
discusses how over the past few years, changes in analysis tools,
analysis concepts and areas of interest open up new opportuni-
ties for expanding scientific knowledge.

SECTION 1: THE EMERGENCE OF NEW
FUNCTIONAL INFORMATION INFLUENCES GO
ENRICHMENT RESULTS

RNA-seq is a valuable tool for measuring expression changes for
transcripts in response to an experimental condition, like gene
deletion or a change in environment. To test these changes for
significance between replicates, analysts often employ DE anal-
ysis, which can result in hundreds of significant gene expression
changes, which makes deciphering changes in cellular function
challenging. One common method that is used as a starting
point to understand systematic changes present in transcrip-
tome data is Gene Set Enrichment Analysis (GSEA) (Subrama-
nian et al. 2005). GSEA is used to query DE data for sets of genes
that exhibit statistically significant expression changes in exper-
imental samples. One use of GSEA is to assess the enrichment
of Gene Ontology terms (or GO terms), which are descriptors
for the biological processes, molecular functions and cellular
components for each gene (Christie, Hong and Cherry 2009). For
each GO term (e.g. Histidine Biosynthesis genes), GSEA assesses
whether the expression changes are significant compared to all
gene expression changes. Analyses using GSEA to assess GO
term enrichment appeared in 46% of the Saccharomyces cerevisiae
RNA-seq publications surveyed in this work (Fig. 2A). The preva-
lence of GO term enrichment analyses of RNA-seq data suggests
that they reach many readers and may influence our overall
understanding of yeast biology. However, GO term lists are not

static and are subject to regular updates, with recent releases
containing increased numbers of experimentally derived anno-
tations (Fig. 2B). These alterations in GO annotations cause indi-
vidual gene sets to change in size (Fig. 2C and D). We hypothesize
that the prevalence of GO term enrichment coupled with the flux
in gene set annotations could cause many analyses, especially
those published several years ago, to yield different results upon
reanalysis.

To test how much GO term enrichment results change over
time, we utilized the strategy shown in Fig. 3A. Briefly, GSEA was
run to assess the upregulated GO terms from a published dataset
that investigated stress due to elevated temperature, high osmo-
larity or ethanol exposure for S. cerevisiae (Lahtvee et al. 2017).
These analyses utilized the same version of the R-package piano
(Väremo, Nielsen and Nookaew 2013), the same published DE
data, but different GO annotation lists retrieved either from
the Ensembl archive for October 2016 or from Ensembl at the
time of the analysis (July 2019) (Fig. 3A) (http://www.ensembl.or
g and http://oct2016.archive.ensembl.org/). This analysis found
that of the GO terms present in both 2016 and 2019, several
were significantly upregulated in only one of the GSEA analyses
(Fig. 3B–D).

To compare these results more thoroughly, the overlapping
and discordant GO terms for ethanol stress are shown in Fig. 3E.
GSEA results from the ethanol analyses suggest that some sim-
ilar GO terms were enriched (e.g. mitochondrial terms shown
in green) despite changes in GO annotations. However, some
of the enriched GO terms from the 2019 analysis strengthen
potential hypotheses compared to 2016 (e.g. cellular budding is
perturbed [light blue]) or suggest new hypotheses altogether (e.g.
chromatin organization genes are upregulated [highlighted in
red]) (Fig. 3E). These changes in GSEA results after less than 3
years suggest that reanalysis of GO term enrichment is a viable
method for generating new hypotheses from existing RNA-seq
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Figure 2. Saccharomyces cerevisiae GO terms analyses are common and GO term annotations are regularly updated. (A) 50 publications with RNA-seq data from 2016
were manually surveyed for the presence of analyses of GO term enrichment. B–D GO terms ascribed to S. cerevisiae genes were obtained from Ensembl in 2019 and
Ensembl October 2016 (archive), these were compared to assess GO term source (B), gene set size changes (C) and to identify the number of genes lacking any GO term

annotation (D).

Figure 3. Gene set enrichment analysis results change over time. (A) DE data (RNA-seq) from Lahtvee 2016 was analyzed for enriched gene sets among either 2016 GO
terms (gold) or 2019 GO terms (blue). Analysis utilized the piano R-package and included gene sets with 2 to 400 genes. (B–D) Significantly enriched GO term overlap is
shown between the two analyses for gene sets that were upregulated (E). Upregulated GO terms for ethanol stress were grouped using text color based on similarity.
GO terms shown in black were not placed into groups.
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Figure 4. RNA-seq analyses based on gene metrics, like Phylo-DE, enable analysis of all measured mRNAs. (A) Genes lacking GO term annotations for commonly
studied yeast species. (B) GO annotations are shown from Ensembl biomart using current GO terms (2019). (C) Examples of RNA-seq data analysis using attributes like

GO Terms (gray) compared to analyses using metrics like gene age (beige). (D) The phylostrigraphy methodology is shown, gene age is inferred by the identification of
an orthologous gene in organisms with decreasing last common ancestor evolutionary distance. (E) Hypothetical Phylo-DE analysis showing no relationship between
gene age and DE. (F) Hypothetical Phylo-DE analysis showing enrichment for young gene DE.

data. These reanalyses may have particular value if run before
designing a new experiment based on published results, or when
attempting to test a hypothesis using a broad analysis of sev-
eral datasets. GO term enrichment is one example of how new
scientific data can change the results of transcriptome analy-
ses. The findings of this section indicate that GO term analyses
published today represent the ‘best current information’ on gene
functional enrichment. While these analyses may identify a sur-
prising new direction for your research, it is important to analyze
the underlying individual gene data and scrutinize the bound-
aries of each gene set. Furthermore, it is important to keep in
mind when reading publications with these data types that the
results presented are limited by the annotations that are avail-
able at the time of publication.

SECTION 2: NOVEL ANALYSES USING GENE
METRICS INSTEAD OF GENE FUNCTIONS

Analyses of functional changes, like GO enrichment, in an RNA-
seq dataset are useful for generating hypotheses. However, these
techniques are unable to include some genes due to our incom-
plete understanding of yeast gene functions. For example, genes
of unknown function represent 9–23%, or 482–1476 protein-
coding genes among the yeast species listed in Fig. 4A. Further-
more, an additional subset of ‘known genes’ have only one gen-
eral annotation such as ‘cytoplasm’ or ‘mitochondria’ (Fig. 4B).
Dismissing these genes as uninteresting would be convenient,
but the number of unknown genes has decreased steadily over
time (Fig. 2B), suggesting that many of these genes may have
functions that we have yet to characterize. In this section, we
discuss analyses that compare the DE of all genes using quan-
tifiable traits (called metrics herein) that are available or can be
generated for all genes (Fig. 4C). These observations can at first
seem rudimentary, but strong associations in large datasets can

act as anchor points, from which other analyses can radiate. Fur-
thermore, as new metrics are created and shown to be valuable,
data analysts benefit by adding new ideas to their knowledge
base.

Relationships between gene expression and gene metrics,
such as chromosomal location (Chen et al. 2013), presence of
promoter sequence elements (Bregman et al. 2011; Espinar et al.
2018), transcription factor binding proximity (Pang et al. 2017;
Lage et al. 2019; Zara et al. 2019) and codon usage (Neymotin,
Ettorre and Gresham 2016), have been previously described for
S. cerevisiae. Consider that these metrics needed to be discov-
ered and that new metrics continue to be recorded, opening
up new possibilities for data analysis projects. Rather than
testing every metric imaginable for associations with your DE
dataset, it might be worthwhile to assess whether an inter-
esting metric has shown itself already. For example, do non-
RNA-seq experimental observations or anomalies in your RNA-
seq analysis suggest a metric to analyze? An example of val-
idating a metric that was observed from experimental data
was reported recently (Espinar et al. 2018). In this report,
experimental evidence suggested that variations in promoter
architecture (TATA-presence) and Open Reading Frame (ORF)
sequences (codon usage) influence transcript levels. These find-
ings brought quantifiable metrics to the authors’ attention,
which inspired reanalysis of archived RNA-seq DE data in rela-
tion to ORF sequence and promoter architecture (Espinar et al.
2018).

Other analyses of metrics can be tested without prior
observation of an anomaly in a dataset by querying existing
databases. For example, differentially expressed genes can be
compared to transcription factor binding/expression observa-
tions by querying the YEASTRACT database (http://www.yeas
tract.com/index.php) (Teixeira et al. 2017). Recent works have
used YEASTRACT to associate transcriptomic changes with spe-
cific transcription factors to support a transcriptomics driven

http://www.yeastract.com/index.php
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Figure 5. Long non-coding RNAs (lncRNAs) are detected by RNA-seq. Poly-A RNAs are commonly isolated for RNA-seq followed by mRNA analysis (left). Long non-
coding RNAs are also polyadenylated and are, therefore, measured by many RNA-seq analyses (right). This provides researchers the opportunity to discover and assess
the expression of lncRNAs from existing RNA-seq data.

storyline (Pang et al. 2017; Lage et al. 2019; Zara et al. 2019).
Database searches like this enable rapid comparison of differen-
tially expressed genes to an existing metric and allow the user
to convert a list of differentially expressed genes into a potential
hypothesis. Notably, relatively few metrics have been converted
into web-based tools, which is an obstacle to hypothesis gener-
ation and an opportunity for the analyst to discover something
novel.

Another example of analysis of a metric comes from our
own work focused on testing a perceived anomaly in the stress
responses of various yeast species. This analysis found a rela-
tionship between evolutionary gene age and DE in response
to stress adaptation (Doughty et al. 2019). In this work, genes
that are conserved between yeast species were found to be
statistically rare among stress responsive genes. This result
was viewed as an anomaly and led to the hypothesis that
evolutionary conservation of a gene might correlate with its
likelihood to be differentially expressed in response to stress.
Fig. 4D shows the method used to infer the evolutionary age
of genes using orthology inference software like OrthoFinder
(Emms and Kelly 2015) or OrthoMCL (Li, Stoeckert and Roos 2003)
in stepwise orthology searches. This process was repeated to
stratify each gene into a single group based on the predicted
evolutionary gene age (termed phylostratigraphy) (Domazet-
Lošo, Brajković and Tautz 2007), thus establishing a metric,
which was compared to newly created and archived DE data.
This analysis showed that gene age correlated with stress DE,
which was the main conclusion of the work (Doughty et al.
2019).

In each of the cases described, quantifiable gene metrics were
used to extract information that compliments traditional dif-
ferential gene expression from RNA-seq. Analysis of metrics in
relation to RNA-seq enables analysts to test hypotheses or add
robustness to observations from their field of interest. Further-
more, once a metric is established, it can be tested for a relation-
ship with new or archived data with relative ease. Similar to our
findings in section 1 about GO enrichment, analysis of metrics
is limited by the metrics that have been previously described.
This is both a limitation to the number of available plug and play
analyses and an opportunity to observe new metrics and create
new tools to benefit future works.

SECTION 3: USING RNA-seq DATA TO
IDENTIFY AND ANALYZE lncRNAs

Sections 1 and 2 of this review focused on extracting information
from RNA-seq to discover additional information about anno-
tated protein coding mRNAs. Analyses of mRNAs have been used
extensively to identify correlations and enrichments that help
to unravel biological phenomena. Notably, the focus on protein-
coding genes in many analyses often excludes non-coding RNAs.
Non-coding RNAs include small RNAs (e.g. small nuclear RNAs),
tRNAs, rRNAs and long non-coding RNAs (lncRNAs) (Parker et al.
2018). In this section, we investigate opportunities to detect
and analyze lncRNAs in yeast RNA-seq datasets. We focus on
lncRNAs since many are poly-adenylated and capped (Tuck and
Tollervey 2013) and are, therefore, commonly isolated and mea-
sured in RNA-sequencing runs (Wery et al. 2016). Over time, sci-
entists have found functions for some of these lncRNA species,
which could present opportunities for extracting additional
information from your RNA-seq data.

David et al. 2006 published a tiling array for transcriptional
activity in S. cerevisiae and found that 16% of transcribed bases
belonged to unannotated transcripts (referred to as lncRNAs in
the section). In total, 126 unannotated transcripts were found
among intergenic regions (distinct from 5’ or 3’ UTRs) and 402
were found antisense to known ORFs (David et al. 2006) (Fig. 5).
Later work found S. cerevisiae expressed 847 stable unannotated
long non-coding RNA species using 5’ RACE (Xu et al. 2009). Fur-
ther works used RNA-seq to identify lncRNAs and found 23%
(biofilm samples) and 9.5% (single cell RNA-seq) of detected
S. cerevisiae RNA species were lncRNAs (Wilkinson et al. 2018;
Nadal-Ribelles et al. 2019). To clarify, these numbers pertain to
detected species number and that lncRNAs represent a small
percentage of the total reads from a yeast RNA-seq dataset (Yas-
sour et al. 2010). Many lncRNAs are expressed at low copy num-
ber, which might be expected as some have been shown to
participate in transcriptional downregulation (Martens, Laprade
and Winston 2004) or upregulation (Nadal-Ribelles et al. 2014)
of a single ORF by altering transcription factor binding. More
abundant lncRNAs might participate in protein-RNA complexes,
like telomerase (Cusanelli and Chartrand 2015) or might con-
tribute to RNA interference in RNAi+ yeasts like Schizosaccha-
romyces pombe (Shah et al. 2014).
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In addition to the identified lncRNAs in S. cerevisiae, hundreds
of lncRNAs have been identified in S. pombe (Till, Mach and Mach-
Aigner 2018), Fusarium graminearium (Kim et al. 2018), Neurospora
crassa (Cemel et al. 2017) and Pichia pastorus (Sun et al. 2019).
However, at the time of this publication several yeast species
have yet to be analyzed for the presence and extent of lncRNA
expression, including Yarrowia lipolytica and Kluyveromyces marx-
ianus. De novo lncRNA annotation is possible with RNA-seq data
(Atkinson, Marguerat and Bähler 2012; Wery et al. 2016) and
existing open access tools (e.g. HISAT2-Stringtie) (Kim, Lang-
mead and Salzberg 2015; Pertea et al. 2015), and could provide an
initial map of putative lncRNAs for unannotated species. These
newly annotated lncRNAs could be of broad interest if they are
conserved among several yeast species, as was shown for sev-
eral lncRNAs (David et al. 2006). Additionally, expression of lncR-
NAs datasets could be condition specific and conserved across
multiple yeast species (Yassour et al. 2010).

The recent work in this field shows that RNA-seq data anal-
ysis is not only a powerful tool for understanding transcrip-
tomic trends occurring among mRNAs (section 1 and 2). While
yeast lncRNA research is still in its early stages, the mecha-
nisms of action of specific lncRNAs have come to light through
recent work (Till, Mach and Mach-Aigner 2018). In the future,
continued single transcript and transcriptome-wide analyses
of these species may unlock further insights. Notably, due to
their exclusion from most analyses and their presence in poly-A
enriched RNA-seq experiments, lncRNAs may allow novel find-
ings to be extracted from archived datasets. Furthermore, an
analysis plan based on archived data might speed up the gener-
ation of hypotheses about transcriptome-wide trends in lncRNA
expression. We suspect that the rate limiting step to unraveling
the impact of more lncRNAs on cellular function may be the gen-
eration of creative hypotheses born from, supported by, and/or
tested with RNA-seq analysis.

OUTLOOK

In this work, we discuss analyses that can enable information of
scientific value to be extracted from RNA-seq datasets. As scien-
tific inquiry continues to improve the overall understanding of
yeast biology, new data analysis concepts become apparent. This
phenomenon suggests that it is unlikely that a single paper, pub-
lished at a single point in time, can exhaust the scientific value
of a dataset. We note that free access to archived data, tuto-
rials and programs creates the opportunity for more students,
data analysts and even professors to ask creative questions. This
democratization of data and programs enables more scientists
to grapple with the most important challenge in data analysis:
generating more accurate hypotheses and ideas that get to the
core of the phenomena in question.
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