
plants

Article

In Vivo Antifungal Activity of South African
Medicinal Plant Extracts against Fusarium Pathogens
and Their Phytotoxicity Evaluation

Hlabana A. Seepe 1,2,*, Kafua E. Lodama 1, René Sutherland 1, Winston Nxumalo 2

and Stephen O. Amoo 1,3,4,*
1 Agricultural Research Council—Vegetables, Industrial and Medicinal Plants Research, Roodeplaat,

Private Bag X293, Pretoria 0001, South Africa; LodamaKM@arc.agric.za (K.E.L.);
SutherlandR@arc.agric.za (R.S.)

2 Department of Chemistry, University of Limpopo, Private Bag X1106, Sovenga, Polokwane
0727, South Africa; winston.nxumalo@ul.ac.za

3 Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences,
North-West University, Private Bag X2046, Mmabatho 2735, South Africa

4 Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, P.O. Box 524,
Auckland Park 2006, South Africa

* Correspondence: seepeh@arc.agric.za (H.A.S.); amoos@arc.agric.za (S.O.A.);
Tel.: +27-12-808-8000 (H.A.S. & S.O.A.)

Received: 9 October 2020; Accepted: 23 November 2020; Published: 27 November 2020
����������
�������

Abstract: Smallholder farmers play a major role in crop production towards household food security,
particularly in resource-poor communities. Maize is a common crop produced in smallholder farming
and it is cultivated from seeds that has been stored and re-used for years. Spoilage of stored grains is
a major challenge, which leads to yield loss and poor seed quality. The objectives of this study were
to evaluate in vivo antifungal activity of selected plant extracts against Fusarium pathogens on maize
seeds, and to evaluate their phytotoxicity on seed germination and seedling growth. Fresh leaves
collected from eight medicinal plants were dried and selectively extracted with water, ethyl acetate
or acetone. The dried extracts were evaluated for antifungal activity against Fusarium pathogens
(F. proliferatum, F. oxysporum, F. subglutinans, F. verticilloides, F. semitectum, F. chlamydosporum, F. solani,
F. equisite and F. graminearum) inoculated on maize seeds. Melia azedarach acetone extract showed
strong antifungal activity (97% inhibition) against F. proliferatum while combined acetone extracts
from Combretum erythrophyllum and Quercus acutissima exhibited 96%, 67% and 56% inhibition against
F. verticilloides, F. proliferatum and F. solani, respectively. With the exception of Quercus acutissima ethyl
acetate, none of the extracts significantly inhibited seed germination when compared to untreated
seeds. This study showed that plant extracts could control Fusarium diseases without any adverse
effects on maize seed germination or plant growth.
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1. Introduction

Maize (Zea mays L.) is the most important grain crop and dietary staple food in the world [1,2].
It has the potential to alleviate poverty and plays a key role in food security and economic wellbeing
particularly in sub-Saharan Africa. In most developing countries, maize is consumed primarily as a
porridge and sometimes as freshly boiled or roasted grains. It is also consumed in processed form,
such as snacks and cereals. Naturally, it is a source of carbohydrate, fat, fiber, vitamins, macro- and
micronutrient elements [3]. In addition to its utilization as feed for livestock and poultry, maize is an
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excellent source of raw material for many industrial products, such as starch, oil, organic liquids and
alcoholic beverages [4,5]. Maize is cultivated in over 48 African countries, with more than 208 million
people in sub-Saharan Africa depending on it as a source of food and income [6]. In South Africa,
both commercial and smallholder-farming systems are responsible for the production of maize,
although this production is dominated by commercial farming. In addition to the availability of
cultivated land, commercial farmers rely on irrigation systems, fertilization, pesticides, improved maize
cultivars or hybrids and modern machineries to optimize production. In contrast, maize production in
smallholder farming is labour-intensive and almost fully rain-fed. Smallholder farmers depend on
indigenous knowledge and traditional rudimentary methods to control crop diseases both in the field
and during storage.

The smallholder farming system is faced with challenges, including climate change, crop diseases,
spoilage of grains during storage and poor seed germination [7]. These challenges, among others,
may result in drastic yield loss and an increase in food insecurity and food prices. Nevertheless,
smallholder farming remains an important source of food and income generation, particularly in poor
rural communities [8–11]. Successful maize production in smallholder farming is dependent on locally
sourced seeds. After harvest, the seeds are stored, exchanged or sold to other community members for
consumption or for cultivation during the next planting season. This household-based seed system
approach is self-sustainable [12,13]. However, it is threatened by microbial infections that often occur
during cultivation, transportation and post-harvest storage [14]. Microbial infections can reduce yield,
nutritional value of the seeds and negatively affect seed germination [15].

Fusarium species including F. verticillioides, F. subglutinans and F. proliferatum are among spoilage
pathogens associated with yield loss in maize production [16,17]. Another major concern is health
complications associated with consumption of grains contaminated with mycotoxins produced by
these species [18–20]. Mycotoxins may cause fungal keratitis, kidney disorders, oesophageal and liver
cancer [20–24]. The use of conventional synthetic fungicides as a strategy to control fungi during storage
may not be ideal in smallholder farming. These chemicals are largely inaccessible and unaffordable to
smallholder farmers. Smallholder farming is practiced in resource-poor communities, where stored
grains may be consumed during the storage period. Therefore, seeds or grains treated with synthetic
fungicides may cause complications or food poisoning. There is a need to develop relatively cheap and
sustainable strategies that can be used to control or reduce grain spoilage, particularly during storage
in poor rural communities.

The use of botanicals as an alternative source of bio-pesticides in crop protection has gained
momentum because plants are biodegradable and readily available [25–27]. Medicinal plant species
synthesize different secondary metabolites that perform important biological functions and defend
plants against microbes and insects [28–30]. Plants have been traditionally used for many years to treat
different ailments in both human and domesticated animals, and they are considered to be relatively
safe and environmental-friendly [27,31,32]. Despite the importance of maize in smallholder farming
systems and the need for alternative forms of crop protection to traditional pesticides, little research has
been carried out on bio-pesticides. Therefore, the aim of this study was to evaluate in vivo antifungal
activity of extracts obtained from the leaves of eight selected medicinal plants against different maize
seed Fusarium pathogens. Extract selection was based on previous in vitro study against the same
pathogens [33,34]. Promising extracts were evaluated for their phytotoxicty during seed germination
and seedling growth.

2. Results

2.1. Antifungal Activity against Maize Seeds Inoculated with Fusarium Pathogens

An individual application of Combretum erythrophyllum ethyl acetate, Quercus acutissima ethyl
acetate and Melia azedarach acetone extracts showed antifungal activity of more than 50% inhibition
against F. proliferatum (Figure 1). However, their corresponding different solvent extractions were less
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active (≤50% inhibition) against the same pathogen. The combined application of C. erythrophyllum
and Q. acutissima acetone extract showed a somewhat synergistic antifungal activity (66.9% inhibition),
against F. proliferatum. There was no significant difference in terms of antifungal activity observed
between the positive control (97.1% inhibition) and M. azedarach acetone extract (97.1% inhibition)
against F. proliferatum (Figure 1).
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Figure 1. Percentage inhibition by plant extracts against Fusarium proliferatum (1 × 106 spores/mL)
inoculated on maize seeds. Plant compounds were either extracted in WA: Water, or EA: Ethyl acetate,
or AC: Acetone. The extracts were produced from Withania somnifera, Combretum molle, Combretum
erythrophyllum, Quercus acutissima, Solanum mauritianum, Melia azedarach and used at a concentration of
2.5 mg dried extract/mL of 10% acetone. Amphotericin B antibiotic (2.5 mg/mL) was used as a positive
control. There were 3 replicates per treatment, each comprising 7.5 g of disinfected maize seeds, and the
experiment was repeated twice. Data from the two repeat experiments were averaged and analysed
statistically. Bars bearing different letters indicate significant differences (p = 0.05), as determined by
Duncan’s Multiple Range Test.

Application of individual extracts from C. erythrophyllum and Q. acutissima demonstrated poor
(<50% inhibition) antifungal activity against both F. subglutinans and F. verticilloides (Figures 2 and 3).
The combination of C. erythrophyllum and Q. acutissima ethyl acetate extract appeared to show a
synergistic activity with 67% inhibition against F. subglutinans (Figure 2). Similarly, a combination
of C. erythrophyllum and Q. acutissima acetone extracts showed strong, synergistic antifungal activity
(96% inhibition) against F. verticilloides. Notably, this activity was significantly higher than that of
amphotericin B used as a positive control (Figure 3).
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Figure 2. Percentage inhibition by plant extracts against Fusarium subglutinans (1 × 106 spores/mL)
inoculated on maize seeds. Plant compounds were either extracted in EA: Ethyl acetate, or AC: Acetone.
The extracts were produced from Combretum erythrophyllum, Quercus acutissima, Melia azedarach and used
at a concentration of 2.5 mg dried extract/mL of 10% acetone. Amphotericin B antibiotic (2.5 mg/mL)
was used as a positive control. There were 3 replicates per treatment, each comprising 7.5 g of
disinfected maize seeds, and the experiment was repeated twice. Data from the two repeat experiments
were averaged and analysed statistically. Bars bearing different letters indicate significant differences
(p = 0.05), as determined by Duncan’s Multiple Range Test.
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Figure 3. Percentage inhibition by plant extracts against Fusarium verticilloides (1 × 106 spores/mL)
inoculated on maize seeds. Plant compounds were either extracted in EA: Ethyl acetate, or AC: Acetone.
The extracts were produced from Combretum erythrophyllum, Quercus acutissima, Melia azedarach and used
at a concentration of 2.5 mg dried extract/mL of 10% acetone. Amphotericin B antibiotic (2.5 mg/mL)
was used as a positive control. There were 3 replicates per treatment, each comprising 7.5 g of
disinfected maize seeds, and the experiment was repeated twice. Data from the two repeat experiments
were averaged and analysed statistically. Bars bearing different letters indicate significant differences
(p = 0.05), as determined by Duncan’s Multiple Range Test.
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Both individual application of acetone and ethyl acetate extracts from C. erythrophyllum showed
poor antifungal activity against F. solani (Figure 4). The combination of acetone or ethyl acetate extracts
of C. erythrophyllum and Q. acutissima resulted in a significantly improved antifungal activity when
compared to their individual activity against F. solani. Similarly, a combination of C. erythrophyllum and
M. azedarach acetone extracts resulted in a significantly improved antifungal activity (Figure 4).
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Figure 4. Percentage inhibition by plant extracts against Fusarium solani (1 × 106 spores/mL) inoculated
on maize seeds. Plant compounds were either extracted in EA: Ethyl acetate, or AC: Acetone.
The extracts were produced from Combretum erythrophyllum, Quercus acutissima, Melia azedarach and
used at a concentration of 2.5 mg dried extract/mL of 10% acetone. Amphotericin B antibiotic (2.5 mg/mL)
was used as a positive control. There were 3 replicates per treatment, each comprising 7.5 g of disinfected
maize seeds, and the experiment was repeated twice. Data from the two repeat experiments were
averaged and analysed statistically. Bars bearing different letters indicate significant differences (p = 0.05),
as determined by Duncan’s Multiple Range Test.

The combination of Solanum mauritianum and Melia azedarach ethyl acetate extracts appeared to be
antagonistic as the antifungal activity observed against F. oxysporum was much less when compared
to the individual application of S. mauritianum and M. azedarach (Figure 5). The same plant extract
combination exhibited a synergistic antifungal activity against F. proliferatum (Figure 1). The antifungal
activity exhibited by M. azedarach was equivalent to what was recorded for the positive control (Figure 5).
The combination of Lantana camara and Combretum molle ethyl acetate extract did not improve the
antifungal activity against F. semitectum when compared to individual application of C. molle ethyl
acetate, which showed a very strong antifungal activity (Figure 6).
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Figure 5. Percentage inhibition by plant extracts against Fusarium oxysporum (1 × 106 spores/mL)
inoculated on maize seeds. Plant compounds were extracted in EA: Ethyl acetate. The extracts were
produced from Solanum mauritianum, Melia azedarach and used at a concentration of 2.5 mg dried
extract/mL of 10% acetone. Amphotericin B antibiotic (2.5 mg/mL) was used as a positive control.
There were 3 replicates per treatment, each comprising 7.5 g of disinfected maize seeds, and the
experiment was repeated twice. Data from the two repeat experiments were averaged and analysed
statistically. Bars bearing different letters indicate significant differences (p = 0.05), as determined by
Duncan’s Multiple Range Test.
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Figure 6. Percentage inhibition by plant extracts against Fusarium semitectum (1 × 106 spores/mL)
inoculated on maize seeds. Plant compounds were extracted in EA: Ethyl acetate. The extracts were
produced from Lantana camara, Combretum molle and used at a concentration of 2.5 mg dried extract/mL
of 10% acetone. Amphotericin B antibiotic (2.5 mg/mL) was used as a positive control. There were
3 replicates per treatment, each comprising 7.5 g of disinfected maize seeds, and the experiment
was repeated twice. Data from the two repeat experiments were averaged and analysed statistically.
Bars bearing different letters indicate significant differences (p = 0.05), as determined by Duncan’s
Multiple Range Test.



Plants 2020, 9, 1668 7 of 18

On the other hand, a combination of Nicotiana glauca and Quercus acutissima acetone extracts
showed synergistic, very strong antifungal activity against F. chlamydosporum. This activity was
significantly higher compared to that of the positive control (Figure 7). Similarly, the combination of
C. erythrophyllum and Q. acutissima acetone extracts exhibited an improved antifungal activity against
F. equisite when compared to the antifungal activity of individual extract (Figure 8). The antifungal
activity of combined acetone extracts from C. erythrophyllum and Q. acutissima against F. graminearum
was 3.5 times weaker compared to the individual application of C. erythrophyllum acetone extract
against the same pathogen (Figure 9).
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Figure 7. Percentage inhibition by plant extracts against Fusarium chlamydosporum (1 × 106 spores/mL)
inoculated on maize seeds. Plant compounds were extracted in AC: Acetone. The extracts were
produced from Nicotiana glauca, Quercus acutissima, and used at a concentration of 2.5 mg dried
extract/mL of 10% acetone. Amphotericin B antibiotic (2.5 mg/mL) was used as a positive control.
There were 3 replicates per treatment, each comprising 7.5 g of disinfected maize seeds, and the
experiment was repeated twice. Data from the two repeat experiments were averaged and analysed
statistically. Bars bearing different letters indicate significant differences (p = 0.05), as determined by
Duncan’s Multiple Range Test.

2.2. Phytotoxicity on Maize Seed Germination

Maize seeds treated with Quercus acutissima ethyl acetate extract had the lowest percentage
germination (86%) as compared to other treatments. There is no significant difference in seed
germination of untreated seeds in comparison to all other extract treatments (Figure 10).

2.3. Antifungal Activity of Plant Extracts against Pathogen Inoculated on Maize Seedlings

Untreated maize seedlings inoculated with F. verticilloides exhibited maximum disease symptom
as compared to other treatments (Figure 11). Inoculated seedlings treated with commercial fungicide
and plant extract had significantly reduced disease discoloration symptom.



Plants 2020, 9, 1668 8 of 18

Plants 2020, 9, x FOR PEER REVIEW 8 of 18 

 

 
Figure 8. Percentage inhibition by plant extracts against Fusarium equisite (1 × 106 spores/mL) 
inoculated on maize seeds. Plant compounds were extracted in AC: Acetone. The extracts were 
produced from Combretum erythrophyllum, Quercus acutissima and used at a concentration of 2.5 mg 
dried extract/mL of 10% acetone. Amphotericin B antibiotic (2.5 mg/mL) was used as a positive 
control. There were 3 replicates per treatment, each comprising 7.5 g of disinfected maize seeds, and 
the experiment was repeated twice. Data from the two repeat experiments were averaged and 
analysed statistically. Bars bearing different letters indicate significant differences (p = 0.05), as 
determined by Duncan’s Multiple Range Test. 

 
Figure 9. Percentage inhibition by plant extracts against Fusarium graminearum (1 × 106 spores/mL) 
inoculated on maize seeds. Plant compounds were extracted in AC: Acetone. The extracts were 
produced from Combretum erythrophyllum, Quercus acutissima and used at a concentration of 2.5 mg 

a

c c

b

0

20

40

60

80

100

Pe
rc

en
ta

ge
 in

hi
bi

tio
n

a

b

d c
0

20

40

60

80

100

Pe
rc

en
ta

ge
 in

hi
bi

tio
n

Figure 8. Percentage inhibition by plant extracts against Fusarium equisite (1× 106 spores/mL) inoculated
on maize seeds. Plant compounds were extracted in AC: Acetone. The extracts were produced from
Combretum erythrophyllum, Quercus acutissima and used at a concentration of 2.5 mg dried extract/mL
of 10% acetone. Amphotericin B antibiotic (2.5 mg/mL) was used as a positive control. There were
3 replicates per treatment, each comprising 7.5 g of disinfected maize seeds, and the experiment
was repeated twice. Data from the two repeat experiments were averaged and analysed statistically.
Bars bearing different letters indicate significant differences (p = 0.05), as determined by Duncan’s
Multiple Range Test.
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Figure 9. Percentage inhibition by plant extracts against Fusarium graminearum (1 × 106 spores/mL)
inoculated on maize seeds. Plant compounds were extracted in AC: Acetone. The extracts were
produced from Combretum erythrophyllum, Quercus acutissima and used at a concentration of 2.5 mg
dried extract/mL of 10% acetone. Amphotericin B antibiotic (2.5 mg/mL) was used as a positive control.
There were 3 replicates per treatment, each comprising 7.5 g of disinfected maize seeds, and the
experiment was repeated twice. Data from the two repeat experiment were averaged and analysed
statistically. Bars bearing different letters indicate significant differences (p = 0.05), as determined by
Duncan’s Multiple Range Test.
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Figure 10. Percentage germination of maize seeds treated with extracts of different plants.
Plant compounds were either extracted in WA: Water, or EA: Ethyl acetate, or AC: Acetone. The extracts
were produced from Withania somnifera, Combretum molle, Combretum erythrophyllum, Quercus acutissima,
Solanum mauritianum, Melia azedarach, Nicotiana glauca and used at a concentration of 2.5 mg dried
extract/mL of 10% acetone. Water was used as a negative control. There were 5 replicates per treatment,
each comprising 20 disinfected maize seeds, and the experiment was repeated twice. Data from the
two repeat experiments were averaged and analysed statistically. Bars bearing different letters indicate
significant differences (p = 0.05), as determined by Duncan’s Multiple Range Test.Plants 2020, 9, x FOR PEER REVIEW 10 of 18 
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Figure 11. Percentage disease discoloration caused by F. verticilloides (1 × 106 spores/mL) inoculated
on maize seedlings grown in a greenhouse. Plant compounds were extracted in AC: Acetone.
The extracts were produced from Combretum erythrophyllum, Quercus acutissima and used as combined
at a concentration of 2.5 mg dried extract/mL of 10% aqueous acetone. Commercial fungicide
(Efekto-Virikop®, Efekto, Johannesburg, South Africa) at a concentration of 2.5 mg/mL was used as
a positive control and water was used as a negative control. There were 10 replicates per treatment,
each comprising one maize seedling per pot, and the experiment was conducted once. Bars bearing
different letters indicate significant differences (p = 0.05), as determined by Duncan’s Multiple Range Test.
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2.4. Phytotoxicity on Maize Seedling Growth

Application of C. erythrophyllum and Q. acutissima acetone extract had no significant effect on the
growth of maize seedlings (Table 1). Relative to the control, the extract increased chlorophyll content
and dry root mass while stem diameter and number of leaves were reduced.

Table 1. Phytotoxicity of combined Combretum erythrophyllum and Quercus acutissima acetone extract on
maize seedling growth in a greenhouse. Water was used as the negative control. Mean values within
rows were not significantly different (p ≤ 0.05) according to t-test. R.I: relative impact.

Growth Parameters Negative Control C. erythrophyllum and Q. acutissima Acetone Extract R.I (%)

Plant height (mm) 320.3 ± 34.80 ns 319.8 ± 19.82 ns
−0.14

Chlorophyll content (SPAD) 36.5 ± 2.30 ns 38.0 ± 1.49 ns 4.14
Number of leaves 6.6 ± 0.63 ns 6.2 ± 0.32 ns

−5.85
Dry shoot mass (g) 9.3 ± 1.12 ns 9.2 ± 1.03 ns

−0.19
Stem diameter (mm) 9.85 ± 1.14 ns 8.82 ± 0.58 ns

−10.41
Dry root mass (g) 4.32 ± 1.54 ns 4.55 ± 0.47 ns 5.48

ns: not significant.

3. Discussion

In this study, we investigated the in vivo antifungal activity of individual and combined plant
extracts against Fusarium pathogens. Moreover, we conducted the phytotoxicity evaluation of the
extracts on maize seed germination and plant growth. We found that, in spite of the polarity of the
extraction solvents and the tested pathogens, individual extracts obtained from plant species, such as
W. somnifera, C. erythrophyllum, Q. acutissima, M. azedarach and C. molle showed remarkable in vivo
antifungal activity with values ranging from 68% to 98% inhibition.

These plant species are widely distributed in many African countries and are readily available.
As an example, M. azedarach and C. erythrophyllum are often planted as shade or ornamental trees in
many human settlements [35]. Therefore, utilization of such plants as bio-pesticides can be achieved at
relatively no cost. Management of Fusarium species is an important agricultural practice to ensure
minimum yield loss during post-harvest storage. Many Fusarium species are common causes of maize
ear rot diseases and can lead into serious yield reduction in maize farming [16,36–38]. They have been
frequently isolated in maize production areas both at the field and during post-harvest storage [39–42].
If not controlled, fungal pathogens including Fusarium species can cause about 50%–80% damage
on maize grains during storage [39]. In addition, several Fusarium species produce mycotoxins that
contaminate grains and render them unsuitable for human consumption [18,19,43].

The previous study had shown that combining extracts from different plant species improved
antifungal potency in vitro through synergistic and additive interactions, as compared to their
individual application [34]. In the current study, a combined application of C. erythrophyllum
and Q. acutissima acetone extract also showed improved antifungal activity against F. verticilloides,
which was 15 and 7 times stronger when compared to the individual application of Q. acutissima
and C. erythrophyllum, respectively. This combined extract also showed improved activity against
F. solani and F. proliferatum. Nonetheless, a combined ethyl acetate extract from the same plant
species (Q. acutissima and C. erythrophyllum) demonstrated reduced activity against F. proliferatum
and F. verticilloides whereas an improved activity was demonstrated against F. solani. The combined
acetone extract of N. glauca and Q. acutissima exhibited an improved antifungal activity against
F. chlamydosporum. An improvement in the antifungal activity of combined extracts may be due to an
increased concentration of antifungal compounds at the inhibition sites on the pathogen. It may also
be due to the formation of different chemical constituents with different modes of action. However,
not all combined extracts demonstrated an improved activity.

The medicinal plant extracts investigated in the current study did not have a pronounced negative
effect on maize seed germination. In smallholder farming, surplus maize seeds and other grains are
used for planting and can be recycled for years or generations [5,14]. Therefore, it is essential that
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plant-based products are not only effective in controlling post-harvest storage pathogens, but they
must also not affect seed germination negatively. In a different study, effective botanical insecticide
products such as NeemPro® and NeemAzal® (Trifolio-M GmbH Company, Lahnau, Germany) were
reported to have shown no negative effect on maize seed germination [44,45]. Furthermore, the current
study revealed that a combination of C. erythrophyllum and Q. acutissima acetone extract showed no
toxicity on maize seedling growth. This combination had no significant effect on all seedling growth
variables (plant height, number of leaves, chlorophyll content, dry shoot mass, stem diameter and dry
root mass) when compared to the negative control. To some extent, this combined extract exhibited
in vivo antifungal activity against F. verticilloides inoculated on maize seedlings, evident by lower
disease percentage area on seedlings inoculated and treated with this combined extract.

Notably, solvent polarity plays an important role in the antifungal activity of medicinal plant
extracts. For example, the leaf ethyl acetate extract of Q. acutissima was effective (≥50% inhibition) in
inhibiting the growth of F. proliferatum and F. solani. In contrast, acetone extract from Q. acutissima was
not active against both F. proliferatum and F. solani. Similarly, the leaf acetone extract of M. azedarach was
very effective in inhibiting the growth of F. proliferatum, while its ethyl acetate extract was ineffective
against the same pathogen. The difference in the antifungal activity of acetone and ethyl acetate
extracts from the same plant species was also observed with C. erythrophyllum against F. proliferatum,
F. subglutinans, F. verticilloides and F. solani. Acetone is slightly more polar than ethyl acetate [46].
Slight variation in solvent parameter may determine the amount and type of antifungal compounds or
metabolites extracted. Medicinal plants contain a wide variety of secondary metabolites including
tannins, terpenoids, flavonoids, phenols, saponins and other chemical constituents [47–49]. The polarity
of the constituent metabolites differs significantly and has influence on their solubility during extraction
and thereafter the antifungal activity of the extracts.

Thus, similar to the individual extracts, the activity of the combined extracts also depends on the
polarity of extraction solvents and is pathogen-specific. A combination from C. erythrophyllum and
Q. acutissima acetone extract showed improved antifungal activity against F. verticilloides, F. solani and
F. proliferatum. Nonetheless, a combined ethyl acetate extract from the same plant species (Q. acutissima
and C. erythrophyllum) demonstrated reduced activity against F. proliferatum and F. verticilloides, whereas
an improved activity was demonstrated against F. solani. Apart from polarities of extraction solvents,
the difference in cellular structure and defence mechanisms of the pathogens may also influence
antifungal efficacy of medicinal plant extracts. It was observed that acetone extract of M. azedarach
was very effective in inhibiting the growth of F. proliferatum, but ineffective against F. subglutinans,
F. verticilloides and F. solani. A similar trend was also observed with individual application of ethyl
acetate extracts from S. mauritianum and M. azedarach against both F. oxysporum and F. proliferatum.
Quercus acutissima showed large variation in its antifungal activity against different Fusarium species
(F. proliferatum, F. verticilloides, F. chlamydosporum, F. solani, F. equisite and F. graminearum). Generally,
the antifungal activity of the extract appears to depend on both the polarity of extracting solvents and
the pathogens.

In vivo antifungal evaluation of individual plant extracts such as N. glauca, L. camara and
S. mauritianum did not produce good activity as compared to the results reported in the in vitro
study [33]. In other words, these plant extracts showed in vitro antifungal activity with minimum
inhibitory concentration (MIC) value of less than 0.1 mg/mL but were ineffective when evaluated in the
in vivo study, even at 2.5 mg/mL concentration. This indicates the need to follow up any promising
in vitro results with in vivo studies for validation.

The antifungal activity of plants demonstrated in the current study could be due to the presence
of different chemical constituents in their leaves. As an example, mollic acid glucoside isolated from
acetone leaf extract of C. molle was found to be a major terpenoid contributing to the antifungal activity
of this plant [50]. Although water and ethyl acetate extracts were used in our study, this terpenoid and
other chemicals, such as α-arabinoside and punicalagin, known to be present in C. molle, might have
contributed to the activity demonstrated by this plant [51]. Combretum erythrophyllum, which also
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showed very good activity, is known to contain antimicrobial compounds such as apigenin, rhamnazin,
genkwanin and 5-hydroxy-7,4′- dimethoxyflavane [52]. Hydroxyl-3-methoxcinnamaldehyde, vanillin,
scopoletin and pinoresinol isolated from different parts of M. azedarach showed good activity against
different pathogens including some Fusarium species [53,54]. The activity of W. somnifera water
extract against F. proliferatum could be due to withaferin A and withanolide D present in the
leaves of this shrub [55,56]. However, efforts are underway to isolate and characterize some actual
compounds responsible for the antifungal activity demonstrated by plant extracts in the present study.
The extracts with activity greater than 50% inhibition showed potential to control stored maize seed
Fusarium pathogens. This study demonstrated the ability of botanicals for disease control without any
phytotoxicty. Nevertheless, further research is required to establish the phytochemical composition of
the extracts, their toxicity against human and livestock, as well as their stability during seed storage,
if this method is to be adopted by smallholder farmers.

4. Materials and Methods

4.1. Collection and Disinfection of Maize Seeds

White maize seeds were obtained from smallholder farmers at Moletjie, ga-Maleka, in Limpopo
Province of South Africa. The seeds were collected two weeks after harvest and were visually examined
for spoilage, and mechanical and weevil damage. Disinfection of the seeds was achieved by soaking
them in bleach (3.5% sodium hypochlorite) for 10 min, followed by rinsing several times with
sterilized water and then spraying with 70% ethanol. Thereafter, they were air-dried aseptically in a
bio-safety cabinet.

4.2. Collection of Plant Materials

Eight medicinal plant species (Withania somnifera, Combretum molle, Combretum erythrophyllum,
Quercus acutissima, Solanum mauritianum, Melia azedarach, Lantana camara and Nicotiana glauca) were
selected based on their in vitro antifungal activities against different Fusarium species [33,34]. The leaves
of these plants were collected in October and November 2016 from naturally growing plants at the
Agricultural Research Council, Roodeplaat, Pretoria and from Capricorn district in Limpopo Province,
South Africa. Their identification was confirmed through consultation with Dr. Bronwyn Egan
(Larry Leach Herbarium Curator, University of Limpopo) and their voucher specimens were prepared
and deposited as previously described by Seepe et al. [33,34].

4.3. Preparation of Plant Extracts

Fresh green leaves (about 5.0 kg) were collected into brown paper bags and shade dried
immediately at room temperature (25 ± 2 ◦C). Dried material was grinded into fine powder using a
pulveriser (Fritsch Pulverisette 14, Labotec, South Africa) and stored in brown paper bags at room
temperature until extraction. Extraction was initiated by adding 100 g of dried powder into an
Erlenmeyer flask, followed by addition of 1000 mL solvent. The extraction was done in an ultrasonic
bath (Branson, 5510E-MT, Lasec, South Africa) for an hour. The material was extracted separately
with each of the three different solvents (water, ethyl acetate and acetone) as previously described
by Seepe et al. [34]. The plant material/solvent mixture was filtered through Whatman No.1 filter
paper. The residue was re-extracted with equivalent volume of solvent. Ethyl acetate and acetone
extracts were separately concentrated using rotary evaporators (Stuart, RE300DB, Lasec, South Africa)
and air-dried further in a fume hood. Water extracts were freeze-dried (Sentry 2.0 VirTis SP scientific,
United Scientific, Johannesburg, South Africa). All the dried extracts were kept in airtight containers in
the dark at room temperature.
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4.4. Preparation of Fusarium Pathogens

Mycology Laboratory at the Agricultural Research Council - Plant Health and Protection,
Roodeplaat in Pretoria provided F. proliferatum (PPRI 18,679), F. semitectum (PPRI 6739), F. oxysporum
(PPRI 10,175), F. subglutinans (PPRI 6740), F. chlamydosporum (PPRI 5116), F. equiseti (PPRI 19,029),
F. verticillioides (PPRI 9278), F. solani (PPRI 19,147) and F. graminearum (PPRI 10,728) used in this study.
Fungal strains were sub-cultured on potato dextrose agar (Merck, South Africa) and incubated at 27 ◦C
in the dark for four to seven days. Thereafter, pathogen suspensions were prepared in potato dextrose
broth (Merck, South Africa), which were incubated at 27 ◦C in the dark for three to four days. Fungal
spores were collected by straining cultured broth through sterilized cheesecloth. The number of spores
was determined using a microscope and haemocytometer, and appropriate dilutions were made to
adjust final spore concentration to 1.0 × 106 spores/mL [57,58].

4.5. Antifungal Activity of Plant Extracts

4.5.1. In Vivo Activity against Maize Seed Inoculated with Pathogens

Approximately 7.5 g of disinfected maize seeds was added to a sterilized jar, and inoculated with
Fusarium pathogen (1000 µL) adjusted to 1.0 × 106 spores/mL. The seeds were shaken for few seconds
and air-dried aseptically in a bio-safety cabinet for an hour. Thereafter, 1000 µL of medicinal plant
extract at 2.5 mg/mL (combined or individual) was added, shaken well and dried for an additional
hour. The selection of combined plant extracts was based on their additive and synergistic antifungal
activity against tested Fusarium pathogens, as was reported in the previous study [34]. In that study,
a minimum inhibitory concentration (MIC) value of 0.001 mg/mL was reported; however, some plant
extracts have demonstrated antifungal activity of more than 2.5 mg/mL. Hence, the concentration of
2.5 mg/mL was used in in vivo study as the optimal concentration in which the extracts can easily
dissolve in acetone without precipitating.

The experiment was repeated twice and each treatment was replicated thrice for every fungal
pathogen. Amphotericin B® antibiotic (Phytotek Lab, Pretoria, South Africa) at a concentration of
2.5 mg/mL was used as a positive control. Ten percent aqueous acetone (used to dissolve the dried
plant extracts) was included as a negative control. A mixture of seeds and plant extract was included
for each treatment and was used for colour or turbidity correction. The jars were sealed and incubated
at 27 ◦C for four days. After incubation period, 20 mL of sterile water was added to each jar and shaken
for one minute. The treatments were filtered through cheesecloths and their absorbance measured at
700 nm using Specord 210 spectrophotometer (Analytik Jena, Jena, Germany). Antifungal activity of
the extracts was recorded as percentage inhibition of fungal growth, calculated from the absorbance
readings of the control and treatment using the following equation:

Antifungal activity (%) =

(
C− (T− B)

C

)
× 100

where C is the absorbance reading of the negative control (seeds treated with 10% aqueous acetone
and inoculated with fungal pathogen); T is the absorbance reading of the treatment (seeds treated with
plant extract or amphotericin B, and inoculated with fungal pathogen); and B is the absorbance reading
of the blank (seeds treated with plant extract or amphotericin B only).

4.5.2. In Vivo Activity against Pathogen Inoculated on Maize Seedlings

A combination of Combretum erythrophyllum and Quercus acutissima acetone extract was evaluated
against F. verticilloides inoculated on maize seedlings. The extract was selected based on its remarkable
antifungal activity exhibited against F. verticilloides. Moreover, it showed very strong synergistic
antifungal activity against more Fusarium pathogens as compared to other combinations as was
reported in the previous study [34]. Maize seeds were treated with a combination of C. erythrophyllum
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and Q. acutissima acetone extract (2.5 mg/mL) and air-dried in a bio-safety cabinet. Each seed was planted
in a 25 cm pot filled with moistened sterilized red soil. The experiment or trial was laid out randomly
with ten replications and it consists of untreated seed, plant extract treated seed and commercial
fungicide (Efekto-Virikop®, Efekto, Johannesburg, South Africa) treated seed. After planting, 200 mL
of F. verticilloides at 1.0 × 106 fungal spore/mL was added to pots with treated seeds and untreated
seeds. The second set of untreated seed received 200 mL water and served as negative control.

The experiment was conducted at the Agricultural Research Council, Roodeplaat Campus, Pretoria,
South Africa (latitude 17◦49′ S, longitude 31◦04′ E), during November/December 2019 and was kept
under greenhouse conditions (27.5 ± 2.5 ◦C and 90.0 ± 5% relative humidity). Four days after planting,
200 mL of combined C. erythrophyllum and Q. acutissima acetone extract was applied to each of the
treatment pots and subsequently every seventh day, while water was added to negative control pots.
Commercial fungicide (Efekto-Virikop®) at 2.5 mg/mL was also applied to positive control pots at the
same interval as plant extract. All the pots were irrigated every second day.

Plant growth parameters (number of leaves, chlorophyll content, stem diameter and plant height)
were recorded 20 days after planting and thereafter, were recorded every week. The number of leaves
were counted and plant height was measured with tape from soil level to the terminal of the developing
leaf. Chlorophyll content was measured from three mature leaves per plant using chlorophyll meter
(Minolta, Spad-502, Konica Minolta, Tokyo, Japan) and stem diameter was measured with electronic
digital vernier caliper (Calibre MILIM, Digital, Linberts).

After 90 days of planting, the plants were harvested and placed in brown paper bags.
A pathogenicity test was also conducted during harvesting period. The crop was cut above soil surface
and visually examined for discolouration. Discolouration/disease severity was rated and recorded
based on the following scale: 0 = no discolouration, 1 = trace to 25% diseased area, 2 = 25% to 50%
diseased area, 3 = 50% to 80% diseased area and 4 = 100% diseased area [59,60]. The root system was
carefully removed and soil particles washed off. The harvested materials were oven-dried at 45 ◦C.
At the end of the experiment, data recorded from 20 days after planting to harvesting period were
averaged and analysed statistically.

4.6. Phytotoxicity Evaluation of Plant Extracts

4.6.1. Maize Seed Germination

Medicinal plant extracts that showed antifungal activity (≥50% inhibition) were evaluated for
potential phytotoxicity on maize seed germination. The seeds were soaked overnight in a plant
extract at a pre-determined concentration (2.5 mg/mL) and air-dried in a bio-safety cabinet for an hour.
Water was used as a control treatment. Twenty seeds were placed per petri dish lined with a moistened
double layer filter paper. Each treatment was replicated five times. The experiment was set up in an
incubator at constant 25 ◦C and alternating cycle of 12 h light and 12 h darkness. The filter papers were
kept wet throughout the experimental period. The number of germinated seeds was recorded 14 days
after sowing. The experiment was repeated twice with five replicates per treatment. Percentage seed
germination was calculated using the following equation:

Percentage seed germination =

(
Number of germinated seeds

Total number of seeds

)
× 100

4.6.2. Maize Seedling Growth

Maize seeds were treated with a combined C. erythrophyllum and Q. acutissima acetone extract and
air-dried in a bio-safety cabinet. Each treated seed was planted in 25 cm pots filled with moistened
sterilized red soil. Untreated seeds were included as negative control. The experiment was conducted
at the same greenhouse conditions as detailed in Section 4.5.2 above and it was replicated ten times.
Four days after planting, 200 mL of a combined C. erythrophyllum and Q. acutissima acetone extract
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(2.5 mg/mL) was applied to each of the treatment pots and subsequently every seventh day, while water
was added to control pots. All the pots were irrigated every second day. Plant growth parameters
were recorded, averaged and treated as described in Section 4.5.2.

4.7. Statistical Analysis

The data was analysed using STATISTICA-8 software. The difference between the treatments for
each parameter was evaluated using one-way analysis of variance (ANOVA). Data were expressed as
mean ± standard error. Where a statistical significance (p = 0.05) was established, means separation
was done using Duncan’s Multiple Range Test (DMRT). The difference in growth parameter between
negative control and plant extract in the seedling phytotoxicity experiment was analysed using
Student’s t-test (p ≤ 0.05).

5. Conclusions

The potential application of medicinal plant extracts as alternative bio-pesticides to protect maize
seeds against Fusarium pathogens was established. Different solvent extracts from the same medicinal
plant species demonstrated different activities against tested organisms. Although some plant extracts
can be used individually, the combinations of some extracts exhibited stronger activity than their
individual extracts against Fusarium pathogens. Almost all the tested extracts did not have any negative
effect on maize seed germination. A combination of C. erythrophyllum and Q. acutissima acetone extract
had no negative effect on maize seedling growth. The chemical composition of the extracts and any
potential toxic effect on human or livestock, as well as the stability of the extracts during grain storage
treatment and the frequency of applications, are aspects that require further research.
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