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BACKGROUND: During the COVID-19 pandemic, thousands of pregnant women have been infected with severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). The implications of maternal SARS-CoV-2 infection on fetal and childhood well-being need
to be characterized. We aimed to characterize the fetal immune response to maternal SARS-CoV-2 infection.
METHODS: We performed single-cell RNA-sequencing and T cell receptor sequencing on cord blood mononuclear cells (CBMCs)
from newborns of mothers infected with SARS-CoV-2 in the third trimester (cases) or without SARS-CoV-2 infection (controls).
RESULTS:We identified widespread gene expression changes in CBMCs from cases, including upregulation of interferon-stimulated
genes and major histocompatibility complex genes in CD14+ monocytes, transcriptional changes suggestive of activation of
plasmacytoid dendritic cells, and activation and exhaustion of natural killer cells. Lastly, we observed fetal T cell clonal expansion in
cases compared to controls.
CONCLUSIONS: As none of the infants were infected with SARS-CoV-2, our results suggest that maternal SARS-CoV-2 infection
might modulate the fetal immune system in the absence of vertical transmission.

Pediatric Research (2022) 91:1090–1098; https://doi.org/10.1038/s41390-021-01793-z

IMPACT:

● The implications of maternal SARS-CoV-2 infection in the absence of vertical transmission on fetal and childhood well-being are
poorly understood.

● Maternal SARS-CoV-2 infection might modulate the fetal immune system in the absence of vertical transmission.
● This study raises important questions about the untoward effects of maternal SARS-CoV-2 on the fetus, even in the absence of

vertical transmission.

INTRODUCTION
Millions of people worldwide have or will become infected with
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
causing Coronavirus Disease 2019 (COVID-19), and the infection of
pregnant women with SARS-CoV-2 infection has been wide-
spread.1–6 Despite the prevalence of antepartum infection, we
have a limited understanding of the implications of SARS-CoV-2
infection on fetal and offspring health. To date, there are limited
case reports of vertical, mother-to-child transmission of SARS-CoV-
2,7–12 and vertical transmission remains rare in most pregnancies
complicated by maternal SARS-CoV-2 infection.1,6,13–17 None-
theless, in the absence of direct fetal infection and toxicity,
maternal SARS-CoV-2 infection may still affect fetal development.
Maternal immune activation during pregnancy after viral infection
without vertical transmission can have long-term consequences
for the newborn, including abnormal neurologic18,19 or immune
system development.20,21

Pregnancy is a complex immunologic state, and there is no data
on the effect of SARS-CoV-2-dysregulated immune state during
pregnancy on the fetus. Given the number of pregnant women
infected with SARS-CoV-2 worldwide, it is important to determine
the potential transgenerational implications of infection with
SARS-CoV-2 during pregnancy beyond vertical transmission.
Maternal SARS-CoV-2 test positivity has been significantly
associated with admission for neonatal care and with neonatal
morbidities such as respiratory distress syndrome and hyperbilir-
ubinemia.22 To date, research on the implications of SARS-CoV-2
infection during pregnancy on the offspring immune system has
been limited to antibody transplacental transfer6,23,24 and post-
natal evaluation of infants born to mothers infected with SARS-
CoV-2 during pregnancy without a nonexposed control group.25,26

The latter may be also confounded by ex utero determinants of
immune development during the first week of life.27,28 In the
present study, we characterize the composition and cell-type-
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specific transcriptional landscape of umbilical cord blood mono-
nuclear cells (CBMCs) from term gestation infants (>37 weeks)
born to mothers infected with SARS-CoV-2 in the third trimester
without vertical transmission. This immunogenomic investigation
provides evidence of both innate and adaptive fetal immune
transcriptional changes in pregnancies complicated by SARS-CoV-
2 infection. Our results suggest that even in the absence of vertical
transmission, SARS-CoV-2 maternal infection in the third trimester
might modulate the fetal immune system.

RESULTS
To characterize the fetal immunologic landscape in pregnancies
complicated by maternal SARS-CoV-2 infection, we performed
droplet-based single-cell RNA-sequencing (scRNAseq) of CBMCs
from infants born to mothers with SARS-CoV-2 infection during
pregnancy (cases) and infants born to mothers without SARS-CoV-
2 infection (controls). CBMCs from three cases and three controls
were obtained from our biorepository.29 None of the three infants
in this study born to mothers with SARS-CoV-2 were positive for
SARS-CoV-2 postnatally, had detectable SARS-CoV-2 messenger
RNA (mRNA) in the placenta, or developed any neonatal
morbidity. All mothers with COVID-19 in the third trimester were
classified as having mild disease without respiratory support.30

Infants born to mothers negative for SARS-CoV-2 and asympto-
matic (universal screening at admission for labor) during the same
epoch served as controls. Maternal comorbidities including well-
controlled thyroid dysfunction, obesity, or gestational diabetes
were matched between cases and controls as feasible. The time of
maternal infection and birth in cases varied between 7 and
66 days. Table 1 displays demographic and clinical data from the
cases and controls.
CBMCs were processed on the 10X Genomics Single-Cell

Immune platform (see “Methods”). After quality control and
doublet removal, we included 14,748 cells with high-quality
single-cell transcriptomes from cases and 11,222 cells from
controls in our dataset. (See quality control metrics in Supple-
mental Fig. 1A, B.) The cell population composition was visualized
using uniform manifold approximation and projection (Fig. 1a),
and cell types were inferred by cluster-specific canonical marker
genes (Fig. 1b, c). We did not observe any differences in cell
cluster composition between cases and controls (Supplemental
Fig. 1c, d).
To explore transcriptional signatures in fetal immune cells

associated with maternal SARS-CoV-2 infection, we performed
differential gene expression (DGE) analysis within cell types
comparing cases and controls. Genes with a false discovery rate
(FDR) < 5% were considered statistically significant. We identified
hundreds of genes across nearly all cell types with altered
expression (Fig. 2a). We used gene ontology (GO) analysis to
broadly classify genes significantly disrupted by maternal SARS-
CoV-2 infection based on DGE (Supplemental Table 1).
CD14+ monocytes were grouped into five clusters and CD16+

monocytes were grouped into one cluster (Fig. 2b). CD14+

subpopulations demonstrated variable expression of inflamma-
tory genes, including ACSL1, ADGRE2, CD300E, and PADI4, which
aligns with prior single-cell analysis showing monocyte diversity.31

Consistent with data from adult COVID-19 patients,32,33 we found
that CD14+ monocytes from cases demonstrated increased
expression of interferon (IFN)-stimulated genes (ISGs) (Fig. 2c)
and concomitant IFNAR2 downregulation (Supplemental Fig. 2a),
which could reflect exposure to IFN prenatally.34 Of note, we
found that there was variable upregulation of ISGs among various
CD14+ monocyte clusters in cases compared to controls (Fig. 2c),
indicating that there is no homogeneous ISG regulation among
fetal monocyte clusters secondary to maternal SARS-CoV2
infection. This finding is consistent with previous reports that
upon stimulation with IFN-γ, fetal bone marrow monocytes have

variable upregulation of ISGs when compared to adult bone
marrow monocytes.35 GO analysis of DGE in CD14+ monocytes
demonstrated enrichment of genes associated with antigen
presentation and viral translational termination and reinitiation
(Fig. 2d). CB CD14+ monocytes from cases also showed
upregulation of major histocompatibility class (MHC) I and II
genes (Supplemental Fig. 2A) suggesting activation in response to
IFN signaling.36 However, some HLA genes were downregulated in
CD14+ monocytes (HLA-E and HLA-B) (Supplemental Fig. 2A)
consistent with decreased antigen presentation capacities in fetal
bone marrow CD14+ monocytes compared to adult bone marrow
counterparts upon in vitro stimulation with IFN-γ.35 Furthermore,
CD14+ monocytes from cases showed upregulation of TLR
receptor transcripts (TLR2, TLR4, and TLR5) paired with upregula-
tion of FOS and downregulation of transcriptional inhibitors of
nuclear factor kappa-light-chain-enhancer of activated B cells
(NFKB), including NFKBIA and NFKBIE, all of which are associated
with increased NFKB activation and cytokine production37

(Supplemental Fig. 2A). Of note, CD14+ monocytes from cases
had decreased expression of autophagy (ATG14, ATG2A, and ATG3)
and endoplasmic reticulum stress (XBP1 and HSPA5) genes, which
may contribute to a defect in macrophage differentiation38

(Supplemental Fig. 2A). Expression of S100A Alarmins in CB
monocytes has been associated with chorioamnionitis and fetal
inflammatory response syndrome (FIRS).39 S100A8, S100A9, and
S100A12 were found to be decreased in CD14+ monocytes in our
cases compared to controls, which might suggest that the
response elicited from SARS-CoV-2 maternal infection in mono-
cytes differs from the changes elicited in FIRS secondary to
chorioamnionitis (Supplemental Fig. 2A).
Similar to CD14+ monocytes, we identified induction of ISGs in

nonclassical CB monocytes (CD16+) (Fig. 2c). In contrast to CD14+

monocytes, we found that there was decreased expression of cell
adhesion genes (including PLAUR and THBS1), attenuation of
immune activation signaling pathways genes (FOS, FOSB, MAP3K8,
STAT6, and FCER1G), and decreased expression of inflammatory
molecules like resistin (RETN) (Supplemental Fig. 2B). Together,
these results suggest induction of ISGs in monocytes from cases
compared to controls and differences in transcriptional changes in
classical and nonclassical monocytes that might indicate prefer-
ential activation of classical monocytes in cases compared to
controls.
We captured the transcriptomes of both plasmacytoid and

conventional dendritic cells (pDC and cDC, respectively) in CB. In
adults infected with SARS-CoV-2, both types of DCs are
functionally impaired, and there is an increased ratio of cDCs to
pDCs in severe patients.40 In our study, CB cDC from cases showed
increased expression of ISGs like IFITM3 and APOBEC3A (Fig. 2e).
Fetal cDC from cases showed a transcriptional profile suggestive
of innate immune activation including increased expression of
PIK3CB, which is downstream of TLR5 and TLR7,41 as well as
increased transcription of CCL5, which can be upregulated after
TLR3 stimulation (Fig. 2e).42 Evidence of impaired cDC maturation
was suggested by upregulation of ID1, which antagonizes
dendritic cell differentiation and antitumor immunity in mice,43

as well as increased MAFB transcription, which suppresses cDC
maturation.44 cDCs from cases also demonstrated decreased
expression of FOSB and many MHC II genes.45 pDCs in cases also
showed markers of immune activation, including upregulation of
RELB, which promotes DC activation through RelB-p50 dimer,46

upregulation of MHC class I and class II genes, and unfolded
protein response activation, as shown by increased transcription
of XBP147 (Supplemental Fig. 2C). Together, these transcriptional
findings could be consistent with activation of pDC over cDC in
the CB of cases, potentially through activation of TLRs.
In adults, SARS-CoV-2 infection is associated with fewer blood

natural killer (NK) cells, but a higher activation state in circulating
NK cells.48 We identified two clusters of CB NK cells. One
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population of NK cells (cluster 1) expressed higher levels of GZMB,
while the second population of NK cells (cluster 2) expressed IL7R
and XCL1, suggesting that cluster 1 corresponded to CD56dim and
cluster 2 corresponded to CD56bright NK cells, as NCAM1 (CD56) is

technically not well captured in scRNAseq.49 Similar to adult NK
cells, CB NK cells from SARS-CoV-2-positive pregnancies showed
signs of exposure to IFN, including induction of ISGs like IFI6, IFIT2,
and IRF9 (Fig. 2f).48,50,51 We identified increased transcription of

Table 1. Clinical characteristics of cases and controls.

Subjects Onset of
symptoms
(GA)

SARS-
CoV-2
PCR (GA)

Delivery
(GA)

Days
between
the onset
of
symptoms
and birth

Maternal
symptoms
at test

Delivery
mode

Any
labor?

Maternal
comorbidities

Sex
assigned
at birth

Placental
viral load
by RT-
PCR

24 h
nasopharyngeal
viral load by RT-
PCR

Control 1 NA 39.9 40 NA VD Yes Male 1 NA

Control 2 NA 38.9 39w 4d NA CS Yes BMI > 30,
thyroid
disease

Female 1 NA

Control 3 NA 38.4 38w 6d NA CS Yes BMI > 30 Female ND NA

Case 1 30w 3d 30w 7d 39w 7d 66 Fever/chills,
nasal
congestion,
loss of taste/
smell, sore
throat,
night sweats

VD Yes Thyroid
disease

Male 1 Negative

Case 2 34w 4d 35w 4d 40w 1d 40 Cough,
fever/chills,
myalgias,
headache,
chest
discomfort

CS Yes Diabetes/
GDM, BMI >
30, thyroid
disease

Male 1 Negative

Case 3 39w 0d 39w 4d 40w 7 Cough,
fever/chills

VD Yes BMI > 30 Female 1 Negative

GA gestational age, VD vaginal delivery, CS cesarean section, ND not done, NA not applicable.
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Fig. 1 Cell composition of cord blood mononuclear cells by scRNAseq. a UMAP of all cases and control CBMCs, with cell populations labeled
by color. N= 3 samples per group. b Dot plot of marker gene expression across cell clusters. Y-axis displays marker genes and X-axis displays
cell clusters. Relative size of dots represents the percentage of gene expression within a cell cluster, and the relative color of dots represents
average expression. c Marker gene plots for Ms4a1 (B cells), Klrf1 (NK cells), Lyz (monocytes), and CD3D (T cells). Colored dots indicate gene
expression.
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CCL4, expression of cytotoxic genes including GNLY, GZMA, GZMB,
and GZMH, and increased transcription of IFNG, paired with
decreased expression of NK inhibitory molecules (Fig. 2f).48,50,51

There were transcriptional changes associated with exhaustion,
such as decreased expression of KLRG1 and SIGLEC7.52 DGE in NK
cells between cases and controls were enriched for genes related

to the IFN-α response, regulation of NK cell cytokine production,
and viral transcription (Fig. 2g).
In adults with acute COVID-19, there is a heterogeneous

adaptive immune response in peripheral blood, including B cell
receptor and T cell receptor (TCR) arrangements specific to SARS-
CoV-2.50 Given these findings, we evaluated whether maternal

Fig. 2 Genes expression differences between cord blood mononuclear cells from infants born to mothers with SARS-CoV2 infection
(cases) or mothers without SARS-CoV-2 infection (controls). a Strip plot displaying differential gene expression between cases and controls.
Colored dots represent significant genes (FDR < 0.05). X-axis displays select CBMC cell types. N= 3 samples per group. b Dot plot of marker
gene expression across monocyte cell clusters (CD14+ and CD16+). Y-axis displays marker genes and X-axis displays cell clusters. Relative size
of dots represents the percentage of gene expression within a cell cluster, and the relative color of dots represents average expression. c Dot
plot of highly variable genes in CD14+ and CD16+ monocytes between cases and controls. All significant genes FDR < 0.05. Red indicates an
increase in expression in cases and blue indicates an increase in expression in controls. N= 3 samples per group. d Select Gene Ontology (GO;
Biological Pathway) results for differentially expressed genes between cases and controls in CD14+ monocytes. GO categories have FDR < 0.05.
X-axis indicates fold enrichment relative to the reference gene set of all expressed genes in the dataset. e Volcano plot of DGE between cases
and controls in conventional dendritic cells (cDCs). Colored dots indicate statistical significance (FDR < 0.05). Positive log 2 FC (pink dots)
indicates higher expression in cases, and negative log 2 FC (blue dots) indicates higher expression in controls. N= 3 samples per group.
f Volcano plot of DGE between cases and controls in natural killer (NK) cells. Colored dots indicate statistical significance (FDR < 0.05).
Positive log 2 FC (pink dots) indicates higher expression in cases, and negative log 2 FC (blue dots) indicates higher expression in controls. N=
3 samples per group. g Select Gene Ontology (GO; Biological Pathway) results for differentially expressed genes between cases and controls
in NK cells. GO categories have FDR < 0.05. X-axis indicates fold enrichment relative to the reference gene set of all expressed genes in
the dataset.

J.D. Matute et al.

1093

Pediatric Research (2022) 91:1090 – 1098



infection with SARS-CoV-2 had any effect on CB lymphocyte gene
expression. In B cells from infants exposed to SARS-CoV-2 in utero,
we identified three clusters of CB B cells corresponding to non-
plasma/plasmablast (Clusters 1 and 2) and plasma/plasmablast
cells (Cluster 3) based on MZB1 expression50 (Supplemental
Fig. 2D). With the possible exception of germinal center (GC) B
cells, all human B cell populations found in lymphoid tissues can
also be demonstrated in peripheral blood53 with enrichment of
mature, naive B cells and regulatory B cells in CB.54–56 Therefore,
transcripts of genes related to B cell receptor activation are

detected in circulating B cells57–59 and their products might
participate in tonic B cell signaling under homeostatic conditions
in peripheral blood.60 Human CB B cell transcriptional program
differs from adult peripheral B cell and confers accelerated but
transient responsiveness to stimulation.56 Surprisingly, in B cells
from infants born to mothers infected with SARS-CoV-2, we
identified decreased transcription of genes downstream of B cell
receptors in all clusters compared to controls. Specifically, we
found a decreased transcription of NR4A1, CD69, and CD83 in all B
cells (Fig. 3a). NR4A1 encodes Nur77, an orphan nuclear receptor
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that is induced upon B cell activation in peripheral blood in
humans.61 CD83 is expressed in peripheral B cells and correlates
with the engagement of BCR, TLRs, or CD40.62,63 Concordant with
transcriptional evidence of defective B cell activation in CB
lymphocytes from cases, we also found decreased expression of
CD69,64 activator protein-1, and nuclear factor of activated T cells
genes,65 as well as anti-apoptotic genes, including BCL2 and
BCL2A166 (Fig. 3a). These transcriptional changes suggestive of
potential B cell dysfunction, combined with our prior findings of
decreased transplacental transmission of IgG against SARS-CoV-2
compared to IgG against other antigens,6,23 might translate into
potential impairments in antibody-mediated immunity to SARS-
CoV-2 in neonates born to mothers with COVID-19. The humoral
defect might be secondary to impaired passive immunity against
SARS-CoV2 combined with potential impaired B cell activation in
cases compared to controls, but this phenomenon requires further
functional characterization.
We also identified three clusters of T cells (Fig. 3b). Cluster 1

corresponded to cytotoxic (CD8+) T cells, while Clusters 2 and 3
corresponded to helper T cells.57 Naive helper T cells predominate
in CB67–69 and retain a partial expression of a fetal-associated
regulatory T cell signature.67,70–72 Increased expression of CCR7 in
T cell Cluster 2 suggests that this cluster includes either naive
T cells or central memory T cells,73 and increased CTSW and KLRB1
in Cluster 3 suggest that this cluster includes effector and memory
T cells.74,75 In adults with COVID-19, CD8+ T cells show decreased
cytotoxic potential and exhaustion driven by interleukin-6 (IL-6).76

Similar to adults, CB CD8+ T cells from cases demonstrated
transcriptional signatures suggestive of impaired function includ-
ing decreased expression of GZMA, FOS, and JUN77–79 (Supple-
mental Fig. 3A). Furthermore, there was increased expression of
KLRB1 and CCR7 (Supplemental Fig. 3A). CCR7 is expressed in
naive and central memory T cells and lost in effector, effector
memory, and terminally differentiated T cells.73,80 KLRB1 encodes
CD161.75 CD161 is associated with IL-17-secreting T cells81–85 and
is found in CB-naive T cells that become IL-17-secreting T cells.82,85

CD161 is also expressed in innate-like T cells including mucosal-
associated invariant T cells,86 gamma-delta-positive T cells,82

invariant NK T cells,87 and promyelocytic leukemia zinc-finger
protein-positive CD4+ T cells.88 In innate-like T cells, CD161 may
track with infections or inflammatory complications of preg-
nancy.88 GO analysis of DGEs in CD8+ T cells demonstrated
enrichment for genes associated with T cell tolerance, prolifera-
tion, and the response to IFN-γ (Supplemental Fig. 3B). In T cell
Cluster 2, we found increased expression of IL-6–IL-17 axis genes
including RORA, ARID5A, RBPJ, and IL6ST in cases compared to
controls (Supplemental Fig. 3C). The IL-6–IL-17 axis has been
implicated in mediating the neurodevelopmental effects of
maternal immune activation in mice89–92 and coordinating tissue
inflammatory responses.93

T cell antigen receptor (TCR) repertoire in T cells reflects
selection by self and foreign antigens. To investigate the
repertoire of TCRs in CB from SARS-CoV-2-exposed pregnancies
and controls, we performed single-cell TCR sequencing. A total
of 1943 T cells were analyzed, and T cells with TCR information
were well equally distributed between subject and T cell
populations (Supplemental Fig. 3D, E). In CB from pregnancies
complicated by maternal SARS-CoV-2 infection, there was
significantly greater number of T cells with >5 clones compared
to controls (40.4% in cases vs 30.9% in controls,
Kolmogorov–Smirnov test p value 2.2e− 16) (Fig. 3d). The T
cell clonal expansion in CB from cases is consistent with results
of T cell repertoire analysis from adults infected with SARS-CoV-
2.50 However, an analysis of T cell clonal diversity across four
metrics (Shannon, inverse Simpson, Chao1, and abundance-
based coverage estimator) revealed variability between samples
in clonal diversity and no clear differences between cases and
controls (Supplemental Fig. 3F).

DISCUSSION
While the application of scRNAseq analysis to CBMC in the context
of maternal illness is novel, our study is exploratory and has
several limitations. Importantly, the small number of samples
limits the generalizability of our conclusions. However, few studies
have evaluated CB immune populations by single-cell
transcriptomics,94,95 and our results illustrate an important and
potentially underrecognized effect of the COVID-19 pandemic that
should be further studied. Interpretation of our findings in light of
prior known literature of CB leukocytes is challenging given the
lack of detailed characterization of CBMC populations using
scRNAseq as has been done in peripheral blood mononuclear cells
from adults.94,95 Future studies using simultaneous epitope and
transcriptome measurement in single cells will make these
correlations possible.96 All cases included in this study were
classified as mild maternal SARS-CoV-2 infection; more severe
maternal infection could result in more dramatic or different fetal
immune genomic signatures, as it has been demonstrated that
infection during pregnancy increases the possibility of intensive
care unit admission.5,97–99 Furthermore, the time from infection to
delivery and CB collection likely affects the immune phenotype
observed in CB. As the time of maternal infection and birth in our
cohort varied between 7 and 66 days, more pronounced findings
may be found in samples with more homogeneous timing
between infection and collection. Lastly, all mothers affected with
SARS-CoV-2 in our cohort had comorbidities including well-
controlled thyroid dysfunction, obesity, or gestational diabetes.
Although we included mothers with similar comorbidities in the
control population (except for gestational diabetes) and all these
comorbidities were medically managed, it is possible that our
results are influenced by the comorbidities of the mothers. However,
thyroid disease, obesity, or gestational diabetes in the mother have
not been reported to trigger the transcriptional response patterns
we observed in cases compared to controls.100–103 Lastly, we did not
functionally test the CB leukocytes to evaluate the implications of
the transcriptional observations we report.
Despite these limitations, the present study identifies transcrip-

tional changes suggestive of a fetal immune response after
maternal infection with SARS-CoV-2 in the absence of vertical
transmission and suggests potential transplacental immune
implications of maternal SARS-CoV-2 infection in the absence of
mother-to-child transmission. The source of signals promoting
transcriptional changes in neonatal monocytes and other immune
cells in the absence of vertical transmission is unknown. Ex vivo
studies have shown that transplacental transfer of IL-1β, IL-6, and
tumor necrosis factor-α is limited.104 Type I IFNs are increased in
the peripheral circulation of patients with mild COVID-19,32 but
the ability of IFN to cross the human placenta is unclear.105 Our
results raise the possibility that pro-inflammatory signaling in the
mother in response to SARS-CoV-2 might promote IFN signaling at
the feto-maternal interface, and placental barrier dysfunction
could result in loss of selective placental permeability to
circulating maternal factors. Consistent with this possibility, a
recent report has identified placental inflammatory responses in
SARS-CoV-2-infected mothers compared to controls in the
absence of viral mRNA in the placenta.106 It is widely accepted
that different viral infections, such as severe acute respiratory
syndrome by influenza H1N1 virus or human immunodeficiency
virus (HIV) in pregnant women, can compromise the offspring’s
fetal immune system even when the infection is limited to the
mother or placental bed.19,21,107–109 Furthermore, even without
fetal infection, maternal HIV and H1N1 infections can be
associated with neurological and behavioral diseases in
offspring.19,21,107–109 To our knowledge, this is the first time that
scRNAseq has been used to explore the effect of maternal
infection on the fetal immune system. Therefore, it is possible that
the effects observed in our cohort are not SARS-COV-2-specific.
However, S100A genes in monocytes were downregulated in our
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cohort in response to SARS-CoV2, while they are upregulated in
monocytes of infants exposed to chorioamnionitis,39 which might
suggest, at minimum, differences in the response of fetal
monocytes to maternal infection with SARS-CoV2 compared to
chorioamnionitis.
Further experimental and functional data need to be collected

to clarify how maternal infection with SARS-CoV-2 influences the
fetal immune system, whether similar changes occur during other
maternal infections without vertical transmission and the potential
effect in the newborn as reported for HIV and influenza.19,21,107,108

Given the extensive literature linking maternal immune dysregula-
tion and abnormal fetal development in viral infections, this study
raises important questions about untoward effects of maternal
SARS-CoV-2 on the fetus, even in the absence of vertical
transmission, and highlights the need for further studies to better
characterize the fetal immune response in pregnancies affected by
SARS-CoV-2 infection.

METHODS
Sample collection, cryopreservation, and placental viral load
The subjects were six infants born at term to mothers with or without
SARS-CoV-2 infection in the third trimester. Parents of the infants provided
informed consent before sample collection and study participation. The
study was approved by the Institutional Review Board of the Mass General
Brigham (IRB 2020P001478 and IRB2020P000804). Cord mononuclear cells
were collected using Ficoll and cryopreserved as described.29 We used
dimethyl sulfoxide as our cryopreservant agent as it adequately conserves
gene expression profiles in cryopreserved cells compared to fresh cells in
droplet-based single-cell RNA-sequencing.110 We excluded preterm
infants, as a strong pro-inflammatory signature in CB has been reported
in infants born preterm.111 None of the infants was exposed to prenatal
steroids, was diagnosed with intrauterine growth restriction, or had any
neonatal morbidities. Placental viral load was measured as previously
reported.112

Single-cell RNA-sequencing
CBMC aliquots were thawed in a 37 °C water bath and resuspended in
RPMI-1640 with 10% fetal bovine serum (FBS) (Thermo Fisher). Samples
were centrifuged at 350 × g for 7 min at 4 °C. Cells were resuspended in
100 μl of 1× phosphate-buffered saline with 2.5% FBS and 2mM EDTA.
Dead cells and red blood cells were depleted using the EasySep Dead

Cell Depletion Kit and EasySep RBC Depletion Reagent (STEMCELL),
according to the manufacturer’s instructions. Cells were resuspended in
RPMI/10% FBS and counted. Cells were loaded onto the 10X Chromium
controller at a targeted recovery density of 10,000 cells per sample.
Samples were processed and sequencing libraries were created using the
10X the Chromium Next GEM single-cell V(D)J Reagent Kit v1.1 with human
TCR V(D)J enrichment following the manufacturer’s instructions.

Single-cell RNA-sequencing data analysis
Sequencing data were aligned to the genome and processed using the
10X Genomics Cell Ranger software, version 4.0.0. All cells were combined
into a single dataset. Doublets were removed using Scrublet version 0.2.1,
and the remaining cells were reclustered. Mitochondrial genes were
filtered from the dataset. Cells with fewer than 250 or more than 2500
unique genes were excluded. Cells were then clustered using the Seurat R
package (version 3.2.3). Specifically, the SCT functionality of Seurat was
used to identify cell types that did not depend upon unique aspects of
individual samples. Clustering resolution was set to 0.8, and the first 15
principal components were used. The data were log normalized and scaled
to 10,000 transcripts per cell. The expression of known marker genes was
used to assign each cluster to one of the main cell types. The Seurat
FindMarkers function was used to identify genetic markers of cellular
subtypes.

Identification of differentially expressed genes between cases
and controls
To identify differentially expressed genes by cell type, we performed a
differential gene expression analysis using Monocle2. The analysis was
conducted on each cell type and also certain unions of cell types with

common traits. The data were modeled and normalized using a negative
binomial distribution and counts data were normalized for gene length
and read depth. Genes whose FDR was <5% were considered statistically
significant. GO analysis was performed using gprofiler2 version 0.2.0, and
terms were selected from the Biological Process category of GO terms.

TCR sequencing
TCR sequencing data were analyzed using the R package scRepertoire
(version 3.12).

DATA AVAILABILITY
Sequencing data have been deposited in the Gene Expression Omnibus under
accession no. GSE165193.
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