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Abstract

The sterile alpha motif (SAM) and HD domain-containing protein-1 (SAMHD1) inhibits the infection of resting CD4+ T cells
and myeloid cells by human and related simian immunodeficiency viruses (HIV and SIV). Vpx inactivates SAMHD1 by
promoting its proteasome-dependent degradation through an interaction with CRL4 (DCAF1) E3 ubiquitin ligase and the C-
terminal region of SAMHD1. However, the determinants in SAMHD1 that are required for Vpx-mediated degradation have
not been well characterized. SAMHD1 contains a classical nuclear localization signal (NLS), and NLS point mutants are
cytoplasmic and resistant to Vpx-mediated degradation. Here, we demonstrate that NLS-mutant SAMHD1 K11A can be
rescued by wild-type SAMHD1, restoring its nuclear localization; consequently, SAMHD1 K11A became sensitive to Vpx-
mediated degradation in the presence of wild-type SAMHD1. Surprisingly, deletion of N-terminal regions of SAMHD1,
including the classical NLS, generated mutant SAMHD1 proteins that were again sensitive to Vpx-mediated degradation.
Unlike SAMHD1 K11A, these deletion mutants could be detected in the nucleus. Interestingly, NLS-defective SAMHD1 could
still bind to karyopherin-b1 and other nuclear proteins. We also determined that the linker region between the SAM and HD
domain and the HD domain itself is important for Vpx-mediated degradation but not Vpx interaction. Thus, SAMHD1
contains an additional nuclear targeting mechanism in addition to the classical NLS. Our data indicate that multiple regions
in SAMHD1 are critical for Vpx-mediated nuclear degradation and that association with Vpx is not sufficient for Vpx-
mediated degradation of SAMHD1. Since the linker region and HD domain may be involved in SAMHD1 multimerization,
our results suggest that SAMHD1 multimerization may be required for Vpx-mediation degradation.

Citation: Guo H, Wei W, Wei Z, Liu X, Evans SL, et al. (2013) Identification of Critical Regions in Human SAMHD1 Required for Nuclear Localization and Vpx-
Mediated Degradation. PLoS ONE 8(7): e66201. doi:10.1371/journal.pone.0066201

Editor: Shibo Jiang, Shanghai Medical College, Fudan University, China

Received March 17, 2013; Accepted May 2, 2013; Published July 11, 2013

Copyright: � 2013 Guo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by funding from the Chinese Ministry of Science and Technology (No 2012CB911100), the Chinese Ministry of
Education (No IRT1016), and the Key Laboratory of Molecular Virology, Jilin Province (20102209), China. The authors also gratefully acknowledge scholarship
support from China Scholarship Council for Wei Wei. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: xfyu@jhsph.edu

. These authors contributed equally to this work.

Introduction

Vpx is a virion-associated viral accessory protein packaged

through specific interaction with Gag proteins of HIV-2 and

selected SIV lineages [1–6]. It is essential for efficient viral

replication in macrophages [7–10] and dendritic cells [11,12],

promoting the accumulation of viral DNA during reverse

transcription [13–16]. The Aicardi-Goutières syndrome-related

gene product sterile alpha motif (SAM) and HD domain-

containing protein-1 (SAMHD1) was recently identified as a

potent inhibitor of HIV-1 in myeloid cells and resting CD4+ T

cells [17–24]. SAMHD1 is a deoxynucleotide triphosphohydrolase

and blocks HIV-1 reverse transcription by depleting the intracel-

lular pool of deoxynucleoside triphosphates [18,21,25–28].

Vpx neutralizes the anti-viral activity of SAMHD1 by

promoting its proteasome-dependent degradation. Vpx binds

DCAF1 using conserved motifs in helix 1 and helix 3, which in

turn recruit other components of the CRL4(DCAF1) E3 ubiquitin

ligase [29–35] to facilitate SAMHD1 ubiquitination and subse-

quent degradation [22–24,29,31–34]. Previous researches have

indicated that Vpx loads SAMHD1 onto CRL4(DCAF1) E3

ubiquitin ligase, thereby facilitating its subsequent degradation

through recognition of C-terminal sequences of SAMHD1

[29,31,32,34]. Consistent with this concept, SAMHD1 mutants

with C-terminal truncation are resistant to Vpx-mediated degra-

dation [31,32,34]. In addition, the N-terminal region of SAMHD1

contains a classic nuclear localization sequence motif (NLS) which

is required for SAMHD1 nuclear targeting and Vpx mediated

SAMHD1 degradation [31,32,34]. However, the effects of other

regions in SAMHD1 on Vpx induced degradation have not been

characterized.

In the current study, we observed that deletion of N-terminal

regions of SAMHD1 (including NLS) made SAMHD1 mutant
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proteins again sensitive to Vpx-mediated degradation. Unlike

SAMHD1 K11A, these mutants could be detected in the nucleus

with nuclear proteins. Thus, SAMHD1 contains an additional

nuclear targeting mechanism in addition to the classical NLS. We

also identified novel regions in SAMHD1 that are critical for Vpx-

mediated degradation but not interaction.

Materials and Methods

Plasmid construction
SIVmac239 Vpx-HA in the pCG vector was a gift from Dr. J.

Skowronski. pSAMHD1-HA and pSAMHD1-Flag were con-

structed in our lab as previous described [31]. SAMHD1 muants

were constructed from pSAMHD1-HA by PCR based site-

directed mutagenesis. To generate an expression vector encoding

mCherry-SAMHD1 fusion protein, the SAMHD1-HA fragment

was digested with SalI and XbaI and cloned into pmCherry-C1 to

generate pmCherry-SAMHD1-HA. pmCherry-SAMHD1K11A-

HA was generated by PCR-based site-directed mutagenesis and its

sequence confirmed.

Cell culture and antibodies
HEK293T cells (AIDS Research Reagents Program) were

maintained in Dulbecco’s modified Eagle’s medium (DMEM) with

10% fetal bovine serum and penicillin/streptomycin. All cultured

cell lines were maintained at 37uC in a humid atmosphere

containing 5% CO2. The following antibodies were used: anti-HA

monoclonal antibody (MAb, Covance, MMS-101R), anti-Vprbp

(DCAF1, Shanghai Genomics, SG4220-28), anti-FLAG M2

antibody (Sigma, F1804), anti-Myc monoclonal antibody (Cov-

ance, MMS-150R), and anti-actin monoclonal antibody (Sigma,

A3853).

Transfection, co-immunoprecipitation, and
immunoblotting
DNA transfection was carried out using Lipofectamine 2000

(Invitrogen) according to the manufacturer’s instructions.

HEK293T cells were harvested at 48 h after transfection, washed

twice with cold PBS, and lysed in lysis buffer ( 150 mM Tris,

pH 7.5, with 150 mM NaCl, 1% Triton X-100, and complete

protease inhibitor cocktail tablets [Roche]) at 4uC for 30 min, then

centrifuged at 10,000 g for 30 min. Precleared cell lysates were

mixed with anti-HA antibody-conjugated agarose beads (Roche,

190–119) or anti-c-Myc- agaroseaffinity gel (Sigma, A7470), and

incubated at 4uC for 3 h or overnight. Samples were then washed

eight times with washing buffer (20 mM Tris, pH 7.5 with

100 mM NaCl, 0.1 mM EDTA, and 0.05% Tween 20). The

beads were eluted with elution buffer (0.1 M glycine-HCl,

pH 2.0). The eluted materials were then analyzed by SDS-PAGE

and immunoblotting with the appropriate antibodies as previously

described [31].

Identification of SAMHD1-binding proteins
Expression vectors for SAMHD1-HA and related mutant

proteins were transfected into HEK293T cells. SAMHD1-

containing complexes were purified from transfected cells by

immunoprecipitation using anti-HA affinity matrix (Roche) and

analyzed by SDS–PAGE. Protein samples were digested with

trypsin. The peptides were separated through a Dionex Ultimate

3000 RELC nano system (Thermo Scientific) with a 75 mm
615 cm Acclaim PepMap100 separating column (Thermo

Scientific) protected by a 2-cm guard column (Thermo Scientific).

The mobile phase flow rate was 300 nL/min with 0.1% formic

acid in water (A) and 0.1% formic acid 95% acetonitrile (B). The

gradient profile was set as follows: 4–35% B for 70 min, 35–95% B

for 5 min, and 95% B for 10 min, then equilibration in 4% B for

Figure 1. Schematic representation of constructed full-length and truncation variants of SAMHD1. SAMHD1 regions that are
dispensable for Vpx-induced degradation are marked (–).
doi:10.1371/journal.pone.0066201.g001

SAMHD1 Regions for Vpx Mediated Degradation
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15 min. MS analysis was performed using an Orbitrap Velos Pro

mass spectrometer (Thermo Scientific). The spray voltage was set

at 2.2 kV. Orbitrap spectra (AGC 16106) were collected from

400–1800 m/z at a resolution of 60K, followed by data-dependent

HCD MS/MS (at a resolution of 7500, collision energy 45%,

activation time 0.1 ms) of the 10 most abundant ions using an

isolation width of 2.0 Da. Charge state screening was enabled to

reject unassigned and singly charged ions. A dynamic exclusion

time of 35 sec was used to discriminate against previously selected

ions. Protein identification and label-free quantitation was done

using MaxQuant ver. 1.3.0.5, searched against a human protein

database ver. 3.87 containing a total of 91,464 entries [36]. The

Figure 2. Effects of SAMHD1 region deletion variants on Vpx-induced degradation. (A) Immunoblot of SAMHD1 WT and deletion mutants
in the presence and absence of Vpx. HA-tagged SAMHD1 constructs were co-expressed with HA-tagged Vpx or empty vector in 293T cells. Cell
extracts were harvested 48 h later and analyzed by SDS-PAGE, followed by immunoblotting to detect SAMHD1-HA and HA-Vpx; b-actin was used as
the loading control. (B) The bar graph shows the percentages of relative band intensity for SAMHD1 in the presence of Vpx, vs. in the absence of Vpx.
doi:10.1371/journal.pone.0066201.g002

Figure 3. Interaction between SAMHD1 WT/mutant proteins and Vpx. (A) HEK293T cells were co-transfected with a Myc-Vpx expression
vector plus control vector (lane 1, VR) or WT SAMHD1-HA (lane 2), or one of the indicated SAMHD1-HA mutants (lanes 3–6). Cell lysates were prepared
48 h after transfection (A) and immunoprecipitated with anti-HA affinity matrix (Roche). The interaction of SIVmac239 Vpx with WT or mutated
SAMHD1-HA molecules was detected by immunoblotting with anti-HA antibody to detect Vpx-HFA and anti-Flag antibody to detect SAMHD1-FLAG.
(B) Total cell lysates were detected by immunoblotting for indicated proteins.
doi:10.1371/journal.pone.0066201.g003

SAMHD1 Regions for Vpx Mediated Degradation
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default parameters with a 1% false-discovery rate (FDR) for

MaxQuant were used, except for the following: enzyme, trypsin;

filter-labeled amino acid, unselected; match between runs, 2 min.

Label-free quantification (LFQ) and iBAQ features were selected.

The output proteinGroup.txt was used for the quantification.

Live cell imaging
Plasmid (pEYFP-Nuc [a gift of Dr. T. Inoue], 0.25 mg) and

pmCherry-SAMHD1 -HA (2 mg) were transfected into HEK293T

cells using PEI Max (Polysciences) according to the manufacturer’s

protocol. For live cell imaging, HEK293T cells were transfected in

6-well coverslip glass-bottomed cell culture dishes (InVitro

Scientific) when the cells were ,80% confluent, and then

visualized after 24 h using a Zeiss LSM510-Meta confocal imaging

system equipped with four argon lasers (458-, 477-, 488-, and 514-

nm lines), two HeNe lasers (542 and 633 nm), and one diode laser

(405 nm). All images were acquired from a 63X objective, and

image analysis and manipulation were performed using Zen 2009

software.

Results

Identification of novel regions in SAMHD1 that are
essential for Vpx-mediated degradation but not for Vpx
interaction
To further characterize the determinants of SAMHD1 that are

involved in Vpx-mediated degradation, we constructed a series of

SAMHD1 deletion expression vectors (Fig. 1) covering the N-

terminal region (D2–41, D2–109), SAM domain (D45–110), linker
region between SAM and the HD domain (D113–136), HD

domian (D162–335), and C-terminal region (1–547). In order to

determine whether SAMHD1 variants could be degraded in the

presence of Vpx, HA-tagged SAMHD1 mutants were co-

expressed with HA-tagged Vpx or empty vector in HEK293T

cells. Cell extracts were harvested 48 h after transfection for

immunoblot analysis (Fig. 2A), and protein band intensities were

quantified using Image J software (Fig. 2B) as previously described

[31]. Co-expression of Vpx and SAMHD 1 in transfected

HEK293T cells resulted in the depletion of intracellular

SAMHD1 (Fig. 2A, lane 2) when compared to the SAMDH1

level in the absence of Vpx (lane 1). However, SAMHD1 mutants

containing deletions in the linker region (D113–136), HD domain

(D162–335), or C-terminal region (1–547) were resistant to Vpx-

mediated degradation (Fig. 2A, lanes 7–12). In contrast, deletion of

the SAM domain (D45–110) or other N-terminal regions (D2–41
or D2–109) resulted in SAMHD1 mutants that were not resistant

(Fig. 2A, lanes 3–6,13,14). Surprisingly, the linker domain deletion

(D113–136) and HD domain deletion (D162–335) generated

mutant SAMHD1 proteins that were resistant to Vpx-mediated

degradation.

It is possible that the linker region and HD domain are involved

in Vpx binding. To determine whether mutant with deletions

within these regions could still interact with SIVmac239 Vpx, we

analyzed their interaction with Vpx by co- immunoprecipitation

experiments. myc-tagged Vpx and HA-tagged SAMHD1 wild-

type or mutants were co-expressed in HEK293T cells, and cell

lysates were subjected to co-immunoprecipitation using an anti-

HA antibody conjugated to agarose beads at 48 h after

transfection, as previously described [37]. The anti-HA affinity

matrix (Roche) immunoprecipitated wild-type HA-tagged

SAMHD1 as well as the deletion mutants from cell lysates of

transfected HEK293T cells (Fig. 3A). As expected, although myc-

Vpx was expressed efficiently in HEK293T cells (Fig. 3B), it was

not immunoprecipitated by the anti-HA affinity matrix in the

absence of SAMHD1 (Fig. 3A, lane 1), confirming the specificity of

the assay system. In repeated experiments, we saw co-precipitation

Figure 4. Cellular localization of mCherry-tagged SAMHD1 and SAMHD1 mutant proteins using live cell imaging. (A)–(F) Plasmid
pEYFP-Nuc (Clontech) and pmCherry-SAMHD1 WT or indicated variants were co-transfected into HEK293T cells using PEI Max (Polysciences). For live
cell imaging, HEK293T cells were transfected in 6-well coverslip glass-bottomed cell culture dishes (InVitro Scientific) when the cells were ,80%
confluent, and then visualized after 24 h using a Zeiss LSM510-Meta confocal imaging system equipped with four argon lasers (458-, 477-, 488-, and
514-nm lines), two HeNe lasers (542 and 633 nm), and one diode laser (405 nm). All images were acquired from a 100X objective, and image analysis
and manipulation were performed using Zen 2009 software.
doi:10.1371/journal.pone.0066201.g004

SAMHD1 Regions for Vpx Mediated Degradation
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of myc-Vpx with SAMHD1 N-terminal region deletions (D2–41 or
D2–109), a linker domain deletion (D113–136), and an HD

domain deletion (D162–335) in addition to wild-type SAMHD1

(Fig. 3A). SAMHD1(D162–335) may even have a slight increased

ability to interact with Vpx. Thus, the linker region and HD

domain deletions compromised Vpx-mediated SAMHD1 degra-

dation but not the interaction between Vpx and SAMHD1.

Deletion of a well-characterized nuclear targeting signal
resulted in SAMHD1 mutant proteins in the nucleus that
were sensitive to Vpx-mediated degradation
Recently, we and others identified a classical nuclear localiza-

tion signal (NLS) 11KRPR14 in human SAMHD1 that is required

for nuclear localization and Vpx-induced degradation of

SAMHD1 [31,32,34]. Surprisingly, deletion of this NLS sequence

plus surrounding amino acids (2–41 and 2–109) resulted in mutant

SAMHD1 proteins that became sensitive to Vpx-mediated

degradation (Fig. 2). If nuclear localization of SAMHD1 is

important for Vpx-mediated degradation, SAMHD1 mutants

(D2–41 or D2–109) may have recovered some nuclear targeting

ability. To examine the cellular localization of SAMHD1 proteins

and their relationship to Vpx-mediated degradation, we cloned the

wild-type or mutant SAMHD1 coding region into pmCherry-C1

vectors (Clontech Laboratories) to express fusion proteins for live

cell imaging. HEK293T cells were transfected with pEYFP-Nuc

for nuclear visualization (Clontech Laboratories) and pmCherry-

SAMHD1-HA in 6-well coverslip dishes using PEI Max (Poly-

sciences). Cells were visualized 24 h after transfection using a Zeiss

LSM510-Meta confocal imaging system as previously described

[38]. All images were acquired from a 63X objective, and image

analysis and manipulation were performed using Zen 2009

software. As expected, wild-type SAMHD1 was detected mainly

in the nucleus (Fig. 4A). Interestingly, we found that even without

the NLS, SAMHD1 mutant (D2–109) could be observed in the

nucleus of the transfected cells (Fig. 4C). In contrast,

SAMHD1K11A was totally localized to the cytoplasm (Fig. 4B).

Deletion of the HD (D162–335) and SAM (D45–110) domains did

not affect nuclear accumulation of these mutant SAMHD1

proteins (Fig. 4D and E). Consistent with the idea that

SAMHDD2–109 is in the nucleus, we have observed (Fig. 5A)

an interaction of wild-type SAMHD1 and SAMHDD2–109, but
not SAMHD1K11A, with known nuclear-resident proteins

(http://www.uniprot.org/) such as WDR82 [39], TMPO [40],

and SNRPD2 [41]. Interestingly, our mass-spec results (Fig. 5A)

Figure 5. Loss of binding of cytoplasmic SAMHD1 K11A to SAMHD1-associated nuclear proteins. (A) HEK293T cells were transfected
with SAMHD1 WT, K11A, D2–109, or empty vector control, respectively. Co- immunoprecipitation was carried out 48 h later by using anti-HA affinity
matrix (Roche). Protein samples were analyzed by mass-spec as described in the Methods. (B) Interaction between SAMHD1 WT/mutant proteins and
KPNB1. HEK293T cells were transfected with a control vector (lane 1, VR) or WT SAMHD1-HA (lane 2), or one of the indicated SAMHD1-HA mutants
(lanes 3–4). Cell lysates were prepared 48 h after transfection and immunoprecipitated with anti-HA affinity matrix (Roche). The interaction of KPNB1
with WT or mutated SAMHD1-HA molecules was detected by immunoblotting with anti-HA antibody to detect SAMHD1-HA. A specific anti-KPNB1
was used to detect endogenous KPNB1.
doi:10.1371/journal.pone.0066201.g005

SAMHD1 Regions for Vpx Mediated Degradation
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also showed that wild-type SAMHD1, SAMHDK11A and

SAMHDD2–109 could bind to karyopherin-b1 (KPNB1). Co-IP

and immunoblot analysis confirmed this interaction (Fig. 5B).

Further comparison revealed that SAMHD1 mutants (D2–41
and D2–109) with partially recovered nuclear targeting were

indeed more sensitive to Vpx-induced degradation than was the

SAMHD1K11A mutant (Fig. 6A). Under conditions in which

.60% of the SAMHD1 mutants (D2–41 and D2–109) could be

degraded in the presence of Vpx, .90% of SAMHD1K11A

remained undegraded (Fig. 6B). The Vpx-mediated degradation of

SAMHD1 mutants (D2–41 and D2–109) could be inhibited by

proteasome inhibitor MG132 (Fig. 6C, 6D). These results further

demonstrated the important role of SAMHD1 nuclear localization

in Vpx-mediated degradation.

Cytoplasmic mutant SAMHD1 K11A could be
translocated into the nucleus in the presence of wild-
type SAMHD1 and became sensitive to Vpx-mediated
degradation
If nuclear targeting of SAMHD1 is critical for Vpx-mediated

degradation, targeting SAMHD1K11A to the nucleus should

restore its sensitivity to Vpx-mediated degradation. The crystal

structure and biochemical analysis of SAMHD1 revealed that

SAMHD1 has the potential to form oligomers [19,27,28,42].

However, whether the cytoplasmic SAMHD1K11A variant can

interact with wild-type SAMHD1 and be translocated to the

nucleus has not been tested. To examine this issue, we co-

expressed a pmCherry-SAMHD1K11A mutant and wild-type

SAMHD1-HA in HEK293T cells for live cell imaging. As

expected, pmCherry-SAMHD1 (wild-type) was detected in the

nucleus (Fig. 7A) and pmCherry-SAMHD1K11A in the cytoplasm

(Fig. 7B). However, in HEK293Tcells co-expressing pmCherry-

SAMHD1K11A and wild-type SAMHD1-HA, red fluorescence

(pmCherry-SAMHD1K11A) could be detected in the nucleus

(Fig. 7C). Since wild-type SAMHD1-HA proteins do not generate

fluorescence, these results indicate that pmCherry-

SAMHD1K11A proteins were translocated into nucleus in the

presence of non-fluorescent wild-type SAMHD1-HA. Interaction

of SAMHD1K11A mutants with wild-type SAMHD1 was

detected by co-immunoprecipitation experiments (Fig. 7D). We

have also observed that mCherry-tagged SAMHD1K11A was

sensitive to Vpx-mediated degradation in the presence of wild-type

SAMHD1 (Fig. 7E).

Discussion

The C-terminal region of human SAMHD1 has been identified

as a Vpx-binding domain and therefore as important for Vpx-

mediated degradation [20,29,31,34,43]. In the current study, we

have identified additional important regions in SAMHD1 that are

required for Vpx-mediated degradation. Our results with N-

terminal deletions of different lengths suggested that the N-

terminal sequences, including the SAM domain, are not essential

for Vpx recognition or Vpx-mediated degradation of SAMHD1.

However, the SAMHD1 linker region and HD domain deletion

Figure 6. Partial nuclear accumulation of SAMHD1 N-terminal deletion mutants, which specially bind to nuclear proteins and
increase the sensitivy to Vpx induced degradation. (A) HA-tagged SAMHD1 WT or mutants were co-expressed with HA-tagged Vpx or empty
vector in HEK293T. Cell extracts were harvest 48 h later and analyzed by SDS-PAGE, followed by immunoblotting to detect SAMHD1-HA and HA-Vpx,
with b-actin as loading control. (B) The bar graph shows the percentages of the relative band intensities for SAMHD1 in the presence of Vpx vs. in the
absence of Vpx. (C) HA-tagged SAMHD1 WT or mutants were co-expressed with HA-tagged Vpx or empty vector in HEK293T in the absence or
presence of MG132. Cell extracts were harvest 48 h later and analyzed by SDS-PAGE, followed by immunoblotting to detect SAMHD1-HA and HA-
Vpx, with b-actin as loading control. (D) The bar graph shows the percentages of the relative band intensities for SAMHD1 in the presence of Vpx vs.
in the absence of Vpx plus or minus MG132.
doi:10.1371/journal.pone.0066201.g006

SAMHD1 Regions for Vpx Mediated Degradation
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mutants were resistant to Vpx-triggered degradation. Interestingly,

the SAMHD1 linker region and HD domain deletion mutant

proteins could still interact with Vpx. Thus, binding to Vpx is

necessary but not sufficient for Vpx-mediated degradation by

SAMHD1.

The phenomenon we have observed – that substrate receptor-

CRL binding is not sufficient for target protein degradation – is

not without precedent. HIV-1 Vif recruits Cul5-based CRL and

targets APOBEC3G for polyubiquitination and subsequent

degradation. However, APOBEC3G mutants that are Vif-

binding-competent but resistant to Vif-mediated degradation have

been described [44,45]. It is possible that the linker region and HD

domain of SAMHD1 are required for proper folding and

ubiquitination. The linker region and HD domain may be

involved in SAMHD1 multimerization. Thus, our study raised

the question of whether SAMHD1 multimerization is required for

Vpx-mediation degradation.

The data presented here, and those published recently by

others, indicate that SAMHD1 nuclear accumulation is a

dominant factor for Vpx-induced degradation. The classical

NLS(KRPR) is critical for nuclear localization of full-length

SAMHD1. Surprisingly, SAMHD1 N-terminal deletion variants

(D2–41, D2–109) showed increased nuclear location when

compared to the SAMHD1 K11A mutant and became more

sensitive to Vpx-mediated degradation. Previous studies have

clearly shown that passive diffusion of proteins into the nucleus is

reasonably effective only for proteins of ,40 kDa [46–49]. The

estimated,80-kDa size of mCherry-SAMHD1D2–41 (843aa) and

mCherry-SAMHD1D2–109 (775aa) are well above upper limit of

the cut-off imposed by the diameter of the nuclear pores for

passive nuclear diffusion. Furthermore, mCherry itself with an

additional 24aa became mostly cytoplasmic (Fig. 4F). These data

suggest that SAMHD1 has an additional nuclear targeting

mechanism in addition to the classical NLS. Interestingly, NLS

minus SAMHD1 could still bind to karyopherin-b1. Future study

will be required to determine whether karyopherin-b1 is involved

in SAMHD1 nuclear targeting.

If SAMHD1 has an additional nuclear targeting mechanism,

why is full-length SAMHD1K11A cytoplasmic but SAMHD1

(D2–41 and D2–109) mutants targeted to the nucleus? At least

three models could be proposed to explain these observations: (1)

SAMHD1 has another nuclear targeting mechanism in addition to

Figure 7. WT SAMHD1 relocates cytoplasm-localized mutants of SAMHD1K11A to the nucleus and facilitates their Vpx-induced
degradation. (A)–(C) Wild-type SAMHD1-HA partially translocated pmCherry-SAMHD1 K11A to the nucleus. pmCherry-SAMHD1-HA WT and/or K11A
with pEYFP-Nuc were co-transfected into HEK293T cells using PEI Max. Live cells were imaged at 24 h post-transfection. (D) Interaction between wild-
type SAMHD1 and K11A. pSAMHD1 WT-Flag was co-transfected with pmCherry-SAMHD1-HA WT or K11A. Transfected cells were harvested after 48 h
and incubated in lysis buffer for 30 min. Cell lysates were added to an anti-HA affinity matrix (Roche). Eluted protein samples were detected by
immunoblotting with anti-HA and anti-Flag antibody to detect mCherry-SAMHD1 and SAMHD1-Flag, respectively. (E) Immunoblotting demonstrates
that pmCherry-SAMHD1 K11A became sensitive to Vpx-mediated degradation when co-expressed with SAMHD1 WT. HEK293T cells were co-
transfected with HA-Vpx and pmCherrySAMHD1 K11A and/or pSAMHD1-Flag wild-type. Cell extracts were harvested 48 h later and analyzed by SDS-
PAGE, followed by immunoblotting to detect SAMHD1-HA and HA-Vpx. b-actin was used as the loading control.
doi:10.1371/journal.pone.0066201.g007

SAMHD1 Regions for Vpx Mediated Degradation
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NLS (KRPR). The additional nuclear targeting mechanism is only

revealed when the N-terminal region is deleted. (2) The N-

terminal region of SAMHD1 contains a dominant cytoplasmic

retention signal that can only be suppressed by the NLS (KRPR).

N-terminal deletions (D2–41 and D2–109) destroyed the cytoplas-

mic retention signal. Thus, SAMHD1K11A is cytoplasmic, yet

SAMHD1 (D2–41 and D2–109) mutants could still be detected in

the nucleus. (3) The N-terminal region of SAMHD1 contains a

nuclear export signal that is normally suppressed by the NLS

(KRPR). N-terminal deletions (D2–41 and D2–109) destroyed the

nuclear export signal to allow the nuclear localization of

SAMHD1(D2–41 and D2–109) mutants. Thus, SAMHD1 may

contain two nuclear localization signals and one cytoplasmic

retention or nuclear export signal. These various nuclear targeting

and nuclear export/cytoplasmic retention signals may play

important regulatory roles in the cellular function of SAMHD1.
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