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Studies have demonstrated that there are widespread significant differences in
spontaneous brain activity between eyes-open (EO) and eyes-closed (EC) resting states.
However, it remains largely unclear whether spontaneous brain activity is effectively
related to EO and EC resting states. The amplitude, local functional concordance, inter-
hemisphere functional synchronization, and network centrality of spontaneous brain
activity were measured by the fraction amplitude of low frequency fluctuation (fALFF),
regional homogeneity (ReHo), voxel-mirrored homotopic connectivity (VMHC) and
degree centrality (DC), respectively. Using the public Eyes-open/Eyes-closed dataset, we
employed the support vector machine (SVM) and bootstrap technique to establish linking
models for the fALFF, ReHo, VMHC and DC dimensions. The classification accuracies
of linking models are 0.72 (0.59, 0.82), 0.88 (0.79, 0.97), 0.82 (0.74, 0.91) and 0.70
(0.62, 0.79), respectively. Specifically, we observed that brain activity in the EO condition
is significantly greater in attentional system areas, including the fusiform gyrus, occipital
and parietal cortex, but significantly lower in sensorimotor system areas, including the
precentral/postcentral gyrus, paracentral lobule (PCL) and temporal cortex compared
to the EC condition from the four dimensions. The results consistently indicated that
spontaneous brain activity is effectively related to EO and EC resting states, and the two
resting states are of opposite brain activity in sensorimotor and occipital regions. It may
provide new insight into the neural substrate of the resting state and help computational
neuroscientists or neuropsychologists to choose an appropriate resting state condition to
investigate various mental disorders from the resting state functional magnetic resonance
imaging (fMRI) technique.
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INTRODUCTION

Studies have demonstrated that there are widespread significant
differences in spontaneous brain activity between eyes-open
(EO) and eyes-closed (EC) resting states using the functional
magnetic resonance imaging (fMRI) technique. From the
regional activity aspect of spontaneous brain activity, it was
found that regional activity in the EO resting state was
significantly higher in the bilateral middle occipital gyrus
(MOG), orbital frontal cortex, right cuneus, fronto-parietal
cortex and cerebellum regions, but significantly lower in the
sensorimotor, visual, auditory, right paracentral lobule (PCL),
retrosplenial cortex, insula, thalamus and cingulo-opercular
regions compared to that in the EC resting state, by using
the amplitude of low frequency fluctuation (ALFF; Yang et al.,
2007; Yan et al., 2009; Liu et al., 2013; Zou et al., 2015;
Qin et al., 2018), spectral density of the blood oxygenation
level dependent signal (McAvoy et al., 2008, 2012), amplitude
of spontaneous activity (Bianciardi et al., 2009; Zou et al.,
2015), fractional ALFF (fALFF; Jao et al., 2013; Liang et al.,
2014; Li Z. et al., 2016), and regional homogeneity (ReHo;
Liu et al., 2013; Song et al., 2015) measures. From the regions
synchronization aspect of spontaneous brain activity, it was
found that functional connectivity in the EO resting state
was significantly greater between the posterior cingulate cortex
(PCC) and other brain areas, but significantly smaller between
the whole thalamus and visual cortex, the PCC and the bilateral
perisylvian regions, as compared to the EC resting state (Yan
et al., 2009; Zou et al., 2009; Jao et al., 2013). From the network
topological measures aspect of spontaneous brain activity, it
was found that the nodal degree, average network connection
distance, cliquishness and local efficiency distance in EO resting
state were significantly increased, but global efficiency was
significantly decreased as compared with the EC resting state
(Jao et al., 2013; Xu et al., 2014). These significant differences
of spontaneous brain activity between EO and EC resting
states could support an ‘‘exteroceptive’’ and ‘‘interoceptive’’
mental states hypothesis (Marx et al., 2003), in which the
‘‘exteroceptive’’ mental state was characterized by attention and
ocular motor activity during EO and the ‘‘interoceptive’’ mental
state was characterized by imagination and multisensory activity
during EC.

However, it is still largely unclear whether spontaneous brain
activity is effectively related to EO and EC resting states. By
contrast with group level significant analysis, it is necessary to
establish the multivariable linking model that map spontaneous
brain activity to the EO and EC resting states in getting the issue
resolved. Using the support vector machine (SVM) classifier,
one recent sturdy established the linking model that mapped
the amplitude of spontaneous brain activity to EO and EC
resting states, and found that fALFF in the sensorimotor regions
could effectively related to these two resting states (Liang et al.,
2014). The other important dimensions of spontaneous brain
activity (Zuo and Xing, 2014; Aiello et al., 2015), including the
ReHo (Zang et al., 2004), voxel-mirrored homotopic connectivity
(VMHC; Zuo et al., 2010; Anderson et al., 2011), and degree
centrality (DC; Buckner et al., 2009; Zuo et al., 2012) reflecting

local or long distance functional connectivity, remain to be
investigated and may provide new insight into the neural
substrate of the resting state.

To further study the spontaneous brain activity related to the
EO and EC resting states, we established the linking models for
the fALFF, ReHo, VMHC and DC dimensions from machine
learning perspective. The flow chart of the analysis stream for
each dimension is shown in Figure 1. The fALFF, ReHo, VMHC
and DC indices were suggested to represent the amplitude,
local functional concordance and inter-hemisphere functional
synchronization, and network centrality of spontaneous brain
activity, respectively (Zang et al., 2004; Zou et al., 2008; Buckner
et al., 2009; Zuo et al., 2010, 2012; Anderson et al., 2011;
Zuo and Xing, 2014; Aiello et al., 2015). We extracted mean
spontaneous brain activity as original features across significant
cluster voxels which are defined by the paired t-test and
Gaussian random field (GRF) correction method between the
EO and EC resting states for each dimension of spontaneous
brain activity. Applying the SVM and bootstrap technique,
we established the linking models and obtained the sample
distributions of classification accuracy for these linking models.
The four linking models consistently indicated that spontaneous
brain activity is effectively related to EO and EC resting states,
and the two resting states are of opposite brain activity in
the sensorimotor and occipital regions. It may provide new
insight into the neural mechanisms of the resting state and
help computational neuroscientists or neuropsychologists to
choose an appropriate resting state condition to investigate
various mental disorders from the resting state fMRI technique
(Craddock et al., 2009; Iidaka, 2015; Kim et al., 2015; Rive
et al., 2016; Suk et al., 2016; Billings et al., 2017; Khazaee
et al., 2017; de Vos et al., 2018; Wang et al., 2018; Wei et al.,
2018).

MATERIALS AND METHODS

Eyes-Open/Eyes-Closed Dataset
The Eyes-open/Eyes-closed resting state fMRI dataset was
shared by Liu et al. (2013) and can be freely download at
http://fcon_1000.projects.nitrc.org/indi/retro/BeijingEOEC.html
(Beijing: EO EC Study). The dataset included 48 healthy college
students (aged 19–31 years, 24 female) from the Beijing Normal
University in China. Each participant had one 3D T1-weighted
image scan, three resting state fMRI scans, each of which
consisted of 240 volumes and lasted for 8 min with TR = 2 s,
and one 64-direction DTI scan. Participants were instructed
to rest with their EC in the first resting state session. The
second and third resting state sessions were counter-balanced
with EO and EC conditions. In the EO condition, a blank
screen with a black background was always presented. During
all resting state sessions, the participants were requested to
lie in the scanner quietly, not to fall asleep, and not to think
about anything in particular. Immediately after each resting
state session, the experiment operator spoke briefly with the
participants. All the participants reported that they had not fallen
asleep. The experiments were approved by the ethics committee
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FIGURE 1 | The flow chart of the analysis stream. For the given dimension (e.g., regional homogeneity, ReHo), the activity values were calculated in a voxel wise
manner. The first step was to find the significant brain activity and then define the significant regions of interest (ROIs) by the paired t-test and Gaussian random field
(GRF) correction method. The next step was to extract mean activity values across voxels in each ROI and scale them into a range of 0–1. Finally, we established the
linking model and obtained the sampling distribution of the classification accuracy.

of Institutional Review Board of Beijing Normal University
Imaging Center for Brain Research. Written informed consent
was obtained from each participant. In this study, we used the
second and third resting state sessions.

Data Preprocessing and Indices
Computation
The standardized data preprocessing and indices computation of
spontaneous brain activity were performed by clicking the ‘‘Run’’
button in the Data Processing Assistant for Resting-State fMRI
(DPARSF A; Yan and Zang, 2010, Figure 2), which is based on

the Statistical Parametric Mapping (SPM121), and the toolbox
for Data Processing and Analysis of Brain Imaging (DPABI; Yan
et al., 2016).

The data preprocessing of EO and EC resting states was
divided into two independent preprocessing runs. For each
preprocessing run, the first 10 volumes were removed for scanner
equilibration, leaving a total of 230 volumes to be used. The
remaining functional volumes for each subject were corrected
through the slice time step and realigned to estimate the six

1http://www.fil.ion.ucl.ac.uk/spm
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FIGURE 2 | The setting panel for data preprocessing and indices computation.

head motion parameters for head motion correction. Individual
T1-weighted images were co-registered to the mean EPI image
and then segmented into white matter (WM), gray matter, and
cerebrospinal fluid (CSF) by the ‘‘New Segment + DARTEL’’
step (Ashburner, 2007). The linear trend, Friston 24-parameter
and signals from WM and CSF were removed as nuisance
variables to reduce head motion, respiratory and cardiac effects.
Global signal regression was not performed because of concerns
about increasing negative correlations (Murphy et al., 2009;
Weissenbacher et al., 2009) and possible distortions (Gotts
et al., 2013; Chi et al., 2016; Liu et al., 2017). After nuisance

regression, the functional volumes were then normalized to
MNI152 space in 3 × 3 × 3 mm3 voxel resolution by using
the transformation information acquired from the previous
DARTEL step (Figure 2).

The spontaneous brain activity indices in the present study
were obtained as follows (Figure 2):

(1) ALFF (Zang et al., 2007) and fALLF (Zou et al., 2008).
The ALFF for a voxel was the averaged amplitude of the
square root power spectrum within a low frequency range
(0.01–0.1 Hz) from a fast Fourier transformation of the time
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course. The fALFF for a voxel was the ratio of mean power
spectrum of low-frequency range (0.01–0.1 Hz) to that of the
entire frequency range. The ALFF and fALFF were suggested
to reflect local spontaneous brain neuronal activity.

(2) ReHo (Zang et al., 2004), DC (Buckner et al., 2009; Zuo
et al., 2012) and VMHC (Zuo et al., 2010; Anderson et al.,
2011). The ReHo for a voxel was the Kendall’s coefficient
of concordance between the time series of the voxel and
those of its nearest neighbors (26-neighbor voxels), reflecting
local functional concordance among fMRI time series (a
certain local functional connectivity). The individual ReHo
maps were converted with the Fisher’s z-transformation for
normal distribution consideration. The DC for a voxel was
the number of significant connections (r > 0.25, P < 0.05)
in the voxel-based whole-brain functional connectivity map
(Buckner et al., 2009), reflecting the network topological
importance of that voxel. The VMHC for a voxel was the
Pearson’s correlation coefficient between the time series
of the voxel and that of its counterpart voxel at the
same location in the opposite hemisphere, reflecting inter-
hemisphere functional interaction. The individual VMHC
maps were converted with the Fisher’s z-transformation.

The indices maps were all obtained in a voxel wise manner for
the EO and EC resting states for each subject.

Building the Linking Models
The linking models for the fALFF, ReHo, VMHC and DC
dimensions were established respectively through the bootstrap
technique and Libsvm toolbox (Chang and Lin, 20112). The flow
chart of the analysis stream in the present work was shown in
Figure 1.

The first step was to find the significant brain activity and
then define the significant regions of interest (ROIs) at the
group level. For a given dimension of spontaneous brain activity
(e.g., ReHo), the paired sample t-test was employed to determine
the T-statistic map by comparing EO and EC resting states.
Head motion was controlled at the group level comparison by
taking mean frame-wise displacement derived from Jenkinson’s
formula as a covariate (Jenkinson et al., 2002; Satterthwaite et al.,
2013; Yan et al., 2013). The T-statistic map was corrected by
the GRF correction method with the 95% group mask and strict
thresholds of p < 0.001 (voxel level) and p < 0.05 (cluster level),
tow tailed (Chen et al., 2017). Finally, the significant ROIs mask
was obtained by the corrected T-statistic map for the next feature
extraction.

The second step was to extract spontaneous brain activity
features and then label each feature vector as −1 or 1. For each
voxel wised activity map in the EC resting state, we extracted
mean activity values in each ROI of the above significant ROIs
mask to from feature vector and then labeled the feature vector
with label −1. For the EO resting state, we extracted feature
vector as the EC condition do and labeled the feature vector with
label 1. All features were scaled into a range of 0–1. The label and
feature sets were prepared for establishing the linking models.

2https://www.csie.ntu.edu.tw/∼cjlin/libsvm/

The third step was to obtain the linking model by the
bootstrap technique and SVM classifier. To obtain the sampling
distribution of the accuracy of the linking model, we employed
bootstrap technique (Dougherty, 2014) with 63.20% subjects
(about 27) used to train the SVM and 36.80% subjects (about 15)
used to test the obtained SVM classifier with 500,000 repetitions
for good generalizations. For each training and testing repetition,
we randomly picked 27 subjects. Their labels and feature vectors
were used to train SVM using the function ‘‘svmtrain’’ in the
Libsvm toolbox to build the classification model, where we
adopted the parameter C = 1 and the radial basis function kernel
with gamma 0.5 for two classification problem (Chen et al., 2017).
The feature vectors from the remaining 15 subjects were used
to generate the corresponding predicted labels with function
‘‘svmpredict’’ in the Libsvm toolbox. The accuracy of the EC
and EO classification were obtained by comparing the predicted
labels with the real labels from the remaining 15 subjects
(Dougherty, 2014). The linking model was the average of the
500,000 classification models, and the sampling distribution of
the accuracy of the linking model was finally obtained from the
sample accuracies of the 500,000 testing repetitions.

RESULTS

Data Quality Assessment
A total of 42 subjects was used in the present study. We excluded
three subjects whose brain is not covered by the resting state
functional images. We also excluded three subjects because they
are not right-handed subjects. For the remain subjects, their
T1 and T2∗ images are of good quality, the 95% group mask
represented well the total functional images, and none of the
mean frame-wise displacement of head motion is larger than
0.2 mm.

Different Spontaneous Brain Activity and
Performance of the Linking Models
The SVM classification and bootstrap technique show that the
sampling distributions of accuracy of the linking models are
mainly located on the right side of the random performance dash
line (the right side of the Figure 3). The classification accuracies
are 0.71 (0.59, 0.82), 0.88 (0.79, 0.97), 0.82 (0.74, 0.91) and 0.70
(0.62, 0.79) for the fALFF, ReHo, VMHC and DC dimensions,
respectively.

The significant spontaneous brain activity for each dimension
was examined through means of the paired sample t-test and
GRF multi-comparison correction by comparing EO and EC
resting states (voxel-wise p = 0.001, T = 3.51, cluster-wise
p = 0.05, tow tailed; see Table 1 and the left side of the Figure 3).
Compared to the EC resting state, the fALFF values in the
EO resting state are significantly increased in the right MOG
and precuneus, but significantly decreased in the left precentral
gyrus. The ReHo values in the EO resting state are significantly
increased in the left fusiform gyrus and middle temporal gyrus,
and right fusiform gyrus and MOG, but significantly decreased
in the left putamen, postcentral gyrus, precentral gyrus and
right superior temporal gyrus, insula, postcentral gyrus and
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FIGURE 3 | Significant ROIs and accuracies of linking models. CI, Confidence interval.

PCL, relative to the EC resting state. Compared to the EC
resting state, the VMHC values in the EO resting state are
significantly greater in the bilateral MOG, postcentral gyrus and
superior parietal gyrus, but significantly lower in the bilateral
superior temporal gyrus, insula and postcentral gyrus. The DC
values in the EO resting state are significantly larger in the
left MOG and precuneus, but significantly smaller in the left
precentral gyrus as compared with the EC resting state. In
summary, the significant spontaneous brain activity areas were
consistently located into sensorimotor and occipital attentional
regions. Spontaneous brain activity in sensorimotor and occipital
attentional regions was of relative uniform contributions for

predicting EO and EC resting states (see Supplementary
Figure S1).

DISCUSSION

The present study investigated the spontaneous brain activity
patterns of the EO and EC resting states using multidimensional
neuronal activity indices from machine learning perspective.
The classification accuracies of the linking models are 0.71
(0.59, 0.82), 0.88 (0.79, 0.97), 0.82 (0.74, 0.91) and 0.70 (0.62,
0.79) for the fALFF, ReHo, VMHC and DC dimensions,
respectively (Figure 3). Spontaneous brain activity in the
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TABLE 1 | The change of spontaneous brain activity for the eyes-open (EO) vs. eyes-closed (EC) conditions.

Region BA No. voxels Peak t-value MNI
X Y Z

fALFF
R. middle occipital gyrus − 4 4.30 33 −78 6
R. precuneus − 4 5.10 27 −66 33
L. precentral gyrus − 4 −4.27 −54 −15 36
ReHo
L. fusiform gyrus 19 33 5.03 −27 −60 −12
R. fusiform gyrus 37 19 4.62 39 −63 −15
R. superior temporal gyrus 22 39 −4.68 57 −12 0
L. middle temporal gyrus 19 195 6.55 −33 −81 15
R. insula 13 89 −5.41 36 −27 0
L. putamen 13 56 −4.80 −30 −15 6
R. postcentral gyrus 43 115 −5.95 66 −9 18
R. middle occipital gyrus 19 237 6.75 30 −87 18
L. postcentral gyrus 43 71 −5.15 −60 −3 18
R. postcentral gyrus 3 147 −5.75 45 −24 42
L. precentral gyrus 4 72 −5.18 −45 −15 54
R. paracentral lobule 6 12 −4.17 6 −15 45
L. precentral gyrus 4 62 −4.60 −24 −27 63
VMHC
Middle occipital gyrus 19 103 6.29 ±45 −69 12
Middle occipital gyrus 19 385 7.92 ±33 −84 9
Superior temporal gyrus 22 47 −5.17 ±60 −21 0
Insula 41 54 −4.83 ±45 −15 15
Postcentral gyrus 43 28 −4.68 ±63 −9 21
Postcentral gyrus 1 18 4.61 ±63 −24 36
Superior parietal gyrus 7 64 5.76 ±24 −60 54
DC
L. middle occipital gyrus 19 43 5.80 −39 −81 15
L. precuneus 7 20 4.76 −21 −75 27
L. precentral gyrus − 12 −3.81 −27 −27 60

EO resting state was significantly greater in the attentional
systems areas, including the occipital, precuneus, fusiform and
parietal cortex, but significantly lower in the sensorimotor areas,
including the precentral/postcentral gyrus, PCL, putamen, insula
and temporal cortex as compared with the EC resting state
(Table 1).

The classification accuracies of the linking models could
consistently indicate that spontaneous brain activity is effectively
related to EO and EC resting states. The 95% confidence intervals
of the fALFF, ReHo, VMHC and DC dimensions consistently
exclude the random performance value 50% (Figure 3). It
suggests that the correct prediction of the EO and EC resting
states can be significantly better than random guesses from the
each dimension of spontaneous brain activity. Further, the each
dimension of spontaneous brain activity could well represent
certain state-related aspect of spontaneous brain activity. The
result of the fALFF dimension was consistent with the prior
research (Liang et al., 2014). Liang et al. (2014) reported that
the fALFF values in the sensorimotor regions could effectively
related to the EO and EC resting states. We also obtained
the accuracy 0.92 (0.89, 0.95) for the linking model that was
established by combining features of the four dimensions (Dai
et al., 2012; see Supplementary Figure S2). In line with the latest
and best findings Zhou et al. (2018), reported that they obtained
the high accuracy 0.95 by pair comparison between two within
group conditions of resting state. In addition, spontaneous brain
activity in sensorimotor and occipital attentional regions was

of relative uniform contributions for predicting the two resting
states (see Supplementary Figure S2). Hence, these valid linking
models may consistently indicate that spontaneous brain activity
might be effectively related to the EO and EC resting states.

The significant differences of spontaneous brain activity could
consistently indicate that the EO and EC resting states are
of opposite spontaneous brain activity in sensorimotor and
occipital regions (Figure 3 and Table 1). Our results were mostly
included into the results from the prior studies because we
used the very strict statistical thresholds (voxel-wise p = 0.001,
T = 3.51, cluster-wise p = 0.05, tow tailed; Chen et al., 2017).

From the fALFF dimension reflecting the intensity of local
brain neuronal activity (Zang et al., 2007; Zou et al., 2008),
we found that the fALFF values in the EO resting state are
significantly increased in the right MOG and precuneus, but
significantly decreased in the left precentral gyrus compared
to the EC resting state. The results were consistent with prior
researches (McAvoy et al., 2008; Bianciardi et al., 2009; Jao et al.,
2013; Liu et al., 2013; Liang et al., 2014), which indicated that
the amplitude of spontaneous brain activity were modulated by
the EO and EC resting states. Jao et al. (2013) reported that
the EO resting state was associated with decreased fALFF values
mainly in the primary and secondary sensory cortical areas, the
insula and the thalamus. Liu et al. (2013) observed significantly
higher ALFF in areas including the bilateral MOG and orbital
frontal cortex in the EO relative to the EC, and lower ALFF in
regions including the motor network (e.g., the bilateral primary
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sensorimotor cortex, supplementary motor area and PCL), the
auditory cortex and insula and thalamus etc. Liang et al. (2014)
found that the fALFF values in EO were significantly increased
in the fronto-parietal cortex, occipital cortex and cerebellum,
but significantly decreased in the sensorimotor module and
cingulo-opercular region compared those within EC. Together,
the increased fALFF in the occipital regions (attentional system
regions) may indicate that subjects increased attentional load or
arousal, and the decreased fALFF in the sensorimotor regions
might suggest that there was a suppression of sensory modalities
during the EO resting state (Hüfner et al., 2009). This may
support the ‘‘exteroceptive’’ and ‘‘interoceptive’’ mental states
hypothesis (Marx et al., 2003) corresponding to the EO and EC
resting states.

From the ReHo dimension reflecting local functional
connectivity (Zang et al., 2004; Jiang and Zuo, 2016), we found
that the ReHo values in the EO resting state are significantly
increased in the left fusiform gyrus and middle temporal gyrus,
and right fusiform gyrus andMOG, but significantly decreased in
the left putamen, precentral/postcentral gyrus and right superior
temporal gyrus, insula and PCL, relative to the EC resting state.
In line with the findings of the fALFF dimension, increased
ReHo values are mainly located in the attentional system regions,
and decreased ReHo values are mainly located in sensorimotor
regions. This might be due to the increased local neuronal
activity in the attentional system regions and decreased local
neuronal activity in the sensorimotor regions during the EO
resting state. Hence, the local functional connectivity in terms of
the ReHo similarly changed along with the changes of the fALFF
corresponding to the EO and EC resting states. In addition,
Liu et al. (2013) reported significantly increased ReHo values
in the EO resting state in some regions in the visual cortex,
including the bilateral MOG and right cuneus, and reduction of
ReHo values within most parts of the motor network, auditory
cortex, insula and right amygdala. Song et al. (2015) reported
similar results that the ReHo values in the EO resting state was
significantly decreased in the bilateral thalamus, supplementary
motor area, sensorimotor cortex, superior temporal gyrus and
insula, but significantly increased in the bilateral primary visual
cortex, MOG and superior parietal gyrus compared to the EC
resting state. Together, these results might indicate that the
increased ReHo in the occipital regions (attentional system
regions) were the representation of subjects’ increased attentional
load or arousal, and the decreased ReHo in the sensorimotor
regions were the representation of a suppression of sensory
modalities during the EO resting state.

From the VMHC dimension reflecting inter-hemisphere
functional connectivity (Zuo et al., 2010; Anderson et al., 2011),
we found that the VMHC values in the EO resting state are
significantly greater in the bilateral MOG, postcentral gyrus and
superior parietal gyrus, but significantly lower in the bilateral
superior temporal gyrus, insula and postcentral gyrus compared
to the EC resting state. In line with the previous two dimensions
(the fALFF and ReHo), increased VMHC values are mainly
located in the attentional system regions, and decreased VMHC
values are mainly located in sensorimotor regions. This might
be due to brain functional areas located into two symmetric

hemispheres that worked together to complete the increased
attention and decreased sensory information processing during
the EO resting state. Hence, the increased attentional load or
arousal in the EO resting state may lead to increased functional
connectivity in the occipital regions between the mirror pair
voxels in the two hemispheres, and a suppression of sensory
modalities in the EO resting state may lead to decreased
functional connectivity in the sensorimotor regions between the
mirror pair voxels in the two hemispheres.

From the DC dimension reflecting the network topological
organization (Buckner et al., 2009; Zuo et al., 2012), we found
that the DC values in the EO resting state are significantly
larger in the left MOG and precuneus, but significantly smaller
in the left precentral gyrus as compared with the EC resting
state. In line with the previous three dimensions (the fALFF,
ReHo and VMHC), increased DC values are mainly located
in the attentional system regions, and decreased DC values
are mainly located in the sensorimotor regions. The functional
connectivity between the attentional system regions and the
other brain areas were enhanced to allocate attention resource
toward the environment during the EO resting state. By contrast,
the functional connectivity between the sensorimotor regions
and the other brain areas were weakened to suppress the
interoceptive sensorimotor information processing during the
EO resting state. These results were in line with the previous
studies (Xu et al., 2014), which indicated that the nodal degrees in
the EO resting state were higher in the ‘‘exteroceptive’’ network,
including the attentional system (e.g., superior parietal gyrus
and inferior parietal lobule), but lower in the ‘‘interoceptive’’
network, including the somatosensory system (e.g., postcentral
gyrus), relative to the EC resting state.

Summarizing, the results from the four dimensions
consistently indicated that spontaneous brain activity in the
EO resting state would be higher in the occipital regions,
particularly in the attentional system regions, but lower in the
sensorimotor regions compared to the EC resting state. Opposite
brain activity in sensorimotor and occipital regions may add
more new understanding into the neural basis of the EO and EC
resting states, and may further confirm an ‘‘exteroceptive’’ and
‘‘interoceptive’’ mental states hypothesis (Marx et al., 2003).

LIMITATIONS

The present study mainly contains the three limitations. First,
we employed the most widely used machine learning approach
(SVM classifier) to establish the linking models for spontaneous
brain activity. Many other machine learning approaches (such as,
the logistical regression, Fisher discriminative analysis, artificial
neural network and convolutional neural network, etc.; Dai et al.,
2012; Wei et al., 2016; Dimitriadis and Salis, 2017) should be
also considered in the latter studies to confirm the effectiveness
of the different linking models. Second, we investigated the
spontaneous brain activity patterns related to the EO and EC
resting states for the healthy subjects. In fact, the resting state
fMRI technique was most widely used in investigating various
mental disorders by requesting all subjects in the EO or EC
resting state. It is still unknown whether resting state condition
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with EO or EC is a confounding factor for the comparison
between the diseases and healthy controls (Alba et al., 2016;
Janssen et al., 2016; Li W. et al., 2016; Kan et al., 2017; Nair
et al., 2017). Future studies using resting state paradigm should
clearly indicate whether they are using data with EO or EC.
Thirdly, it may try more public datasets and test whether
the findings are sensitivity to different datasets if we can
elegantly solve the possible heterogeneous problems of different
datasets.

CONCLUSION

In the present study, we further clarify the spontaneous
brain activity mechanisms of the EO and EC resting states
using multidimensional evidences from machine learning
perspective based on the public Eyes-open/Eyes-closed dataset.
The results consistently indicated that spontaneous brain
activity is effectively related to EO and EC resting states, and
these two resting states are of opposite spontaneous brain
activity in sensorimotor and occipital regions. It may provide
new insight into the neural basis of the resting state and
help computational neuroscientists or neuropsychologists to
choose an appropriate resting state condition to investigate
various mental disorders from the resting state fMRI
technique.

AUTHOR CONTRIBUTIONS

CL and GL: providing the ideas. JW: establishing the linking
models and obtaining the spontaneous brain activity patterns.

TC, JQ and DW: drawing the pictures. All authors wrote and
reviewed the manuscript.

FUNDING

The study was supported by the National Natural Science
Foundation of China (61472330, 61374078, 31571137, 61872301
and 61502398) and the Fundamental Research Funds for the
Central Universities (XDJK2013D026).

ACKNOWLEDGMENTS

The authors would like to thank Dr. Liu and colleagues for their
shared Eyes-Open/Eyes-Closed fMRI dataset. The authors would
also like to thank Dr. Liang and colleagues for their inspiration
work.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnhum.
2018.00422/full#supplementary-material

FIGURE S1 | Significant ROIs and contributions for predicting EO and EC resting
states. Spontaneous brain activity in sensorimotor and occipital attentional
regions was of relative uniform contributions for predicting the two resting
states.

FIGURE S2 | Accuracy and contribution of cascading features of the four
dimensions.

REFERENCES

Aiello, M., Salvatore, E., Cachia, A., Pappatã, S., Cavaliere, C., Prinster, A.,
et al. (2015). Relationship between simultaneously acquired resting-state
regional cerebral glucose metabolism and functional MRI: a PET/MR hybrid
scanner study. Neuroimage 113, 111–121. doi: 10.1016/j.neuroimage.2015.
03.017

Alba, G., Pereda, E., Manas, S., Mendez, L. D., Rosario Duque, M., Gonzalez, A.,
et al. (2016). The variability of EEG functional connectivity of young
ADHD subjects in different resting states. Clin. Neurophysiol. 127, 1321–1330.
doi: 10.1016/j.clinph.2015.09.134

Anderson, J. S., Druzgal, T. J., Froehlich, A., Dubray, M. B., Lange, N.,
Alexander, A. L., et al. (2011). Decreased interhemispheric functional
connectivity in autism. Cereb. Cortex 21, 1134–1146. doi: 10.1093/cercor/
bhq190

Ashburner, J. (2007). A fast diffeomorphic image registration
algorithm. Neuroimage 38, 95–113. doi: 10.1016/j.neuroimage.2007.
07.007

Bianciardi, M., Fukunaga, M., Van, G. P., Horovitz, S. G., de Zwart, J. A., and
Duyn, J. H. (2009). Modulation of spontaneous fMRI activity in human visual
cortex by behavioral state.Neuroimage 45, 160–168. doi: 10.1016/j.neuroimage.
2008.10.034

Billings, J. M., Eder, M., Flood, W. C., Dhami, D. S., Natarajan, S., and
Whitlow, C. T. (2017). Machine learning applications to resting-state
functional MR imaging analysis. Neuroimaging Clin. N. Am. 27, 609–620.
doi: 10.1016/j.nic.2017.06.010

Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., et al.
(2009). Cortical hubs revealed by intrinsic functional connectivity: mapping,
assessment of stability, and relation to Alzheimer’s disease. J. Neurosci. 29,
1860–1873. doi: 10.1523/jneurosci.5062-08.2009

Chang, C.-C., and Lin, C.-J. (2011). LIBSVM: a library for support
vector machines. ACM Trans. Intell. Syst. Technol. 2, 1–27.
doi: 10.1145/1961189.1961199

Chen, X., Lu, B., and Yan, C. G. (2017). Reproducibility of R-fMRI
metrics on the impact of different strategies for multiple comparison
correction and sample sizes. Hum. Brain Mapp. 39, 300–318. doi: 10.1101/
128645

Chi, W. W., Deyoung, P. N., and Liu, T. T. (2016). Differences in the resting-state
fMRI global signal amplitude between the eyes open and eyes closed states are
related to changes in EEG vigilance. Neuroimage 124, 24–31. doi: 10.1016/j.
neuroimage.2015.08.053

Craddock, R. C., Holtzheimer, P. E. III., Hu, X. P., and Mayberg, H. S. (2009).
Disease state prediction from resting state functional connectivity. Magn.
Reson. Med. 62, 1619–1628. doi: 10.1002/mrm.22159

Dai, Z., Yan, C., Wang, Z., Wang, J., Xia, M., Li, K., et al. (2012). Discriminative
analysis of early Alzheimer’s disease using multi-modal imaging and multi-
level characterization with multi-classifier (M3). Neuroimage 59, 2187–2195.
doi: 10.1016/j.neuroimage.2011.10.003

de Vos, F., Koini, M., Schouten, T. M., Seiler, S., van der Grond, J., Lechner, A.,
et al. (2018). A comprehensive analysis of resting state fMRI measures to
classify individual patients with Alzheimer’s disease. Neuroimage 167, 62–72.
doi: 10.1016/j.neuroimage.2017.11.025

Dimitriadis, S. I., and Salis, C. I. (2017). Mining time-resolved functional
brain graphs to an EEG-based chronnectomic brain aged index
(CBAI). Front. Hum. Neurosci. 11:423. doi: 10.3389/fnhum.2017.
00423

Dougherty, G. (2014). Pattern Recognition and Classification: An Introduction.
New York, NY: John Wiley & Sons, Ltd.

Gotts, S. J., Saad, Z. S., Jo, H. J., Wallace, G. L., Cox, R. W., and Martin, A. (2013).
The perils of global signal regression for group comparisons: a case study of

Frontiers in Human Neuroscience | www.frontiersin.org 9 October 2018 | Volume 12 | Article 422

https://www.frontiersin.org/articles/10.3389/fnhum.2018.00422/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnhum.2018.00422/full#supplementary-material
https://doi.org/10.1016/j.neuroimage.2015.03.017
https://doi.org/10.1016/j.neuroimage.2015.03.017
https://doi.org/10.1016/j.clinph.2015.09.134
https://doi.org/10.1093/cercor/bhq190
https://doi.org/10.1093/cercor/bhq190
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.1016/j.neuroimage.2008.10.034
https://doi.org/10.1016/j.neuroimage.2008.10.034
https://doi.org/10.1016/j.nic.2017.06.010
https://doi.org/10.1523/jneurosci.5062-08.2009
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1101/128645
https://doi.org/10.1101/128645
https://doi.org/10.1016/j.neuroimage.2015.08.053
https://doi.org/10.1016/j.neuroimage.2015.08.053
https://doi.org/10.1002/mrm.22159
https://doi.org/10.1016/j.neuroimage.2011.10.003
https://doi.org/10.1016/j.neuroimage.2017.11.025
https://doi.org/10.3389/fnhum.2017.00423
https://doi.org/10.3389/fnhum.2017.00423
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Wei et al. EO/EC Resting-State Opposite Brain Activity

Autism spectrum disorders. Front. Hum. Neurosci. 7:356. doi: 10.3389/fnhum.
2013.00356

Hüfner, K., Stephan, T., Flanagin, V. L., Deutschländer, A., Stein, A., Kalla, R.,
et al. (2009). Differential effects of eyes open or closed in darkness on brain
activation patterns in blind subjects. Neurosci. Lett. 466, 30–34. doi: 10.1016/j.
neulet.2009.09.010

Iidaka, T. (2015). Resting state functional magnetic resonance imaging and neural
network classified autism and control. Cortex 63, 55–67. doi: 10.1016/j.cortex.
2014.08.011

Janssen, T. W. P., Bink, M., Gelade, K., van Mourik, R., Maras, A., and
Oosterlaan, J. (2016). A randomized controlled trial into the effects
of neurofeedback, methylphenidate and physical activity on EEG power
spectra in children with ADHD. J. Child Psychol. Psychiatry 57, 633–644.
doi: 10.1111/jcpp.12517

Jao, T., Vértes, P. E., Alexander-Bloch, A. F., Tang, I. N., Yu, Y. C., Chen, J. H.,
et al. (2013). Volitional eyes opening perturbs brain dynamics and functional
connectivity regardless of light input. Neuroimage 69, 21–34. doi: 10.1016/j.
neuroimage.2012.12.007

Jenkinson, M., Bannister, P., Brady, M., and Smith, S. (2002). Improved
optimization for the robust and accurate linear registration and motion
correction of brain images. Neuroimage 17, 825–841. doi: 10.1006/nimg.
2002.1132

Jiang, L., and Zuo, X.-N. (2016). Regional homogeneity: a multimodal, multiscale
neuroimaging marker of the human connectome. Neuroscientist 22, 486–505.
doi: 10.1177/1073858415595004

Kan, D. P. X., Croarkin, P. E., Phang, C. K., and Lee, P. F. (2017). EEG differences
between eyes-closed and eyes-open conditions at the resting stage for
euthymic participants. Neurophysiology 49, 432–440. doi: 10.1007/s11062-018-
9706-6

Khazaee, A., Ebrahimzadeh, A., and Babajaniferemi, A. (2017). Classification
of patients with MCI and AD from healthy controls using directed graph
measures of resting-state fMRI. Behav. Brain Res. 322, 339–350. doi: 10.1016/j.
bbr.2016.06.043

Kim, J., Calhoun, V. D., Shim, E., and Lee, J.-H. (2015). Deep neural network
with weight sparsity control and pre-training extracts hierarchical features and
enhances classification performance: evidence from whole-brain resting-state
functional connectivity patterns of schizophrenia. Neuroimage 124, 127–146.
doi: 10.1016/j.neuroimage.2015.05.018

Li, W., Cui, H., Zhu, Z., Kong, L., Guo, Q., Zhu, Y., et al. (2016). Aberrant
functional connectivity between the amygdala and the temporal pole
in drug-free generalized anxiety disorder. Front. Hum. Neurosci. 10:549.
doi: 10.3389/fnhum.2016.00549

Li, Z., Zang, Y.-F., Ding, J., and Wang, Z. (2016). Assessing the mean
strength and variations of the time-to-time fluctuations of resting-state brain
activity. Med. Biol. Eng. Comput. 55, 631–640. doi: 10.1007/s11517-016-
1544-3

Liang, B., Zhang, D., Wen, X., Xu, P., Peng, X., Huang, X., et al. (2014). Brain
spontaneous fluctuations in sensorimotor regions were directly related to eyes
open and eyes closed: evidences from a machine learning approach. Front.
Hum. Neurosci. 8:645. doi: 10.3389/fnhum.2014.00645

Liu, D., Dong, Z., Zuo, X., Wang, J., and Zang, Y. (2013). Eyes-open/eyes-
closed dataset sharing for reproducibility evaluation of resting state fMRI
data analysis methods.Neuroinformatics 11, 469–476. doi: 10.1007/s12021-013-
9187-0

Liu, T. T., Nalci, A., and Falahpour, M. (2017). The global signal in fMRI: nuisance
or information? Paediatr. Perinat. Epidemiol. 150, 213–229. doi: 10.1016/j.
neuroimage.2017.02.036

Marx, E., Stephan, T., Nolte, A., Deutschländer, A., Seelos, K. C., Dieterich, M.,
et al. (2003). Eye closure in darkness animates sensory systems.Neuroimage 19,
924–934. doi: 10.1016/s1053-8119(03)00150-2

McAvoy, M., Larson-Prior, L., Ludwikow, M., Zhang, D., Snyder, A. Z.,
Gusnard, D. L., et al. (2012). Dissociated mean and functional connectivity
BOLD signals in visual cortex during eyes closed and fixation. J. Neurophysiol.
108, 2363–2372. doi: 10.1152/jn.00900.2011

McAvoy, M., Larson-Prior, L., Nolan, T. S., Vaishnavi, S. N., Raichle, M. E.,
and d’Avossa, G. (2008). Resting states affect spontaneous bold oscillations in
sensory and paralimbic cortex. J. Neurophysiol. 100, 922–931. doi: 10.1152/jn.
90426.2008

Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., and Bandettini, P. A.
(2009). The impact of global signal regression on resting state correlations: are
anti-correlated networks introduced? Neuroimage 44, 893–905. doi: 10.1016/j.
neuroimage.2008.09.036

Nair, S., Jao Keehn, R. J., Berkebile, M. M., Maximo, J. O., Witkowska, N., and
Müller, R. A. (2017). Local resting state functional connectivity in autism: site
and cohort variability and the effect of eye status. Brain Imaging Behav. 12,
168–179. doi: 10.1007/s11682-017-9678-y

Qin, P., Duncan, N. W., Chen, D. Y.-T., Chen, C.-J., Huang, L.-K., Huang, Z.,
et al. (2018). Vascular-metabolic and GABAergic inhibitory correlates of neural
variabilitymodulation.Neuroscience 379, 142–151. doi: 10.1016/j.neuroscience.
2018.02.041

Rive, M. M., Redlich, R., Schmaal, L., Marquand, A. F., Dannlowski, U.,
Grotegerd, D., et al. (2016). Distinguishing medication-free subjects with
unipolar disorder from subjects with bipolar disorder: state matters. Bipolar
Disord. 18, 612–623. doi: 10.1111/bdi.12446

Satterthwaite, T. D., Elliott, M. A., Gerraty, R. T., Ruparel, K., Loughead, J.,
Calkins, M. E., et al. (2013). An improved framework for confound regression
and filtering for control of motion artifact in the preprocessing of resting-
state functional connectivity data. Neuroimage 64, 240–256. doi: 10.1016/j.
neuroimage.2012.08.052

Song, X., Zhou, S., Zhang, Y., Liu, Y., Zhu, H., and Gao, J. H. (2015). Frequency-
dependent modulation of regional synchrony in the human brain by eyes open
and eyes closed resting-states. PLoS One 10:e0141507. doi: 10.1371/journal.
pone.0141507

Suk, H. I., Wee, C. Y., Lee, S. W., and Shen, D. (2016). State-space model with deep
learning for functional dynamics estimation in resting-state fMRI. Neuroimage
129, 292–307. doi: 10.1016/j.neuroimage.2016.01.005

Wang, S., Zhang, Y., Lv, L., Wu, R., Fan, X., Zhao, J., et al. (2018). Abnormal
regional homogeneity as a potential imaging biomarker for adolescent-onset
schizophrenia: a resting-state fMRI study and support vector machine analysis.
Schizophr. Res. 192, 179–184. doi: 10.1016/j.schres.2017.05.038

Wei, J., Chen, T., Li, C. D., Liu, G. Y., Qiu, J., Wen, W., et al. (2018). Influence
of resting-state functional brain network’s time duration on recognizing major
depressive disorder. Chinese Sci. Bull. 63, 2093–2102. doi: 10.1360/n972017-
01166

Wei, J., Chen, T., Liu, G., and Yang, J. (2016). Higher-order multivariable
polynomial regression to estimate human affective states. Sci. Rep. 6:23384.
doi: 10.1038/srep23384

Weissenbacher, A., Kasess, C., Gerstl, F., Lanzenberger, R., Moser, E., and
Windischberger, C. (2009). Correlations and anticorrelations in resting-state
functional connectivity MRI: a quantitative comparison of preprocessing
strategies. Neuroimage 47, 1408–1416. doi: 10.1016/j.neuroimage.2009.05.005

Xu, P., Huang, R., Wang, J., Van Dam, N. T., Xie, T., Dong, Z., et al.
(2014). Different topological organization of human brain functional networks
with eyes open versus eyes closed. Neuroimage 90, 246–255. doi: 10.1016/j.
neuroimage.2013.12.060

Yan, C. G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Di Martino, A.,
et al. (2013). A comprehensive assessment of regional variation in the impact of
head micromovements on functional connectomics. Neuroimage 76, 183–201.
doi: 10.1016/j.neuroimage.2013.03.004

Yan, C., Liu, D., He, Y., Zou, Q., Zhu, C., Zuo, X., et al. (2009). Spontaneous
brain activity in the default mode network is sensitive to different resting-state
conditions with limited cognitive load. PLoS One 4:e5743. doi: 10.1371/journal.
pone.0005743

Yan, C. G., Wang, X. D., Zuo, X. N., and Zang, Y. F. (2016). DPABI: data
processing and analysis for (Resting-State) brain imaging.Neuroinformatics 14,
339–351. doi: 10.1007/s12021-016-9299-4

Yan, C.-G., and Zang, Y.-F. (2010). DPARSF: a MATLAB toolbox for
‘‘pipeline’’ data analysis of resting-state fMRI. Front. Syst. Neurosci. 4:13.
doi: 10.3389/fnsys.2010.00013

Yang, H., Long, X. Y., Yan, Y., Yan, H., Zhu, C. Z., Zhou, X. P., et al. (2007).
Amplitude of low frequency fluctuation within visual areas revealed by resting-
state functional MRI. Neuroimage 36, 144–152. doi: 10.1016/j.neuroimage.
2007.01.054

Zang, Y., He, Y., Zhu, C., Cao, Q., Sui, M., Liang, M., et al. (2007). Altered baseline
brain activity in children with ADHD revealed by resting-state functional MRI.
Brain Dev. 29, 83–91. doi: 10.1016/j.braindev.2006.07.002

Frontiers in Human Neuroscience | www.frontiersin.org 10 October 2018 | Volume 12 | Article 422

https://doi.org/10.3389/fnhum.2013.00356
https://doi.org/10.3389/fnhum.2013.00356
https://doi.org/10.1016/j.neulet.2009.09.010
https://doi.org/10.1016/j.neulet.2009.09.010
https://doi.org/10.1016/j.cortex.2014.08.011
https://doi.org/10.1016/j.cortex.2014.08.011
https://doi.org/10.1111/jcpp.12517
https://doi.org/10.1016/j.neuroimage.2012.12.007
https://doi.org/10.1016/j.neuroimage.2012.12.007
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1177/1073858415595004
https://doi.org/10.1007/s11062-018-9706-6
https://doi.org/10.1007/s11062-018-9706-6
https://doi.org/10.1016/j.bbr.2016.06.043
https://doi.org/10.1016/j.bbr.2016.06.043
https://doi.org/10.1016/j.neuroimage.2015.05.018
https://doi.org/10.3389/fnhum.2016.00549
https://doi.org/10.1007/s11517-016-1544-3
https://doi.org/10.1007/s11517-016-1544-3
https://doi.org/10.3389/fnhum.2014.00645
https://doi.org/10.1007/s12021-013-9187-0
https://doi.org/10.1007/s12021-013-9187-0
https://doi.org/10.1016/j.neuroimage.2017.02.036
https://doi.org/10.1016/j.neuroimage.2017.02.036
https://doi.org/10.1016/s1053-8119(03)00150-2
https://doi.org/10.1152/jn.00900.2011
https://doi.org/10.1152/jn.90426.2008
https://doi.org/10.1152/jn.90426.2008
https://doi.org/10.1016/j.neuroimage.2008.09.036
https://doi.org/10.1016/j.neuroimage.2008.09.036
https://doi.org/10.1007/s11682-017-9678-y
https://doi.org/10.1016/j.neuroscience.2018.02.041
https://doi.org/10.1016/j.neuroscience.2018.02.041
https://doi.org/10.1111/bdi.12446
https://doi.org/10.1016/j.neuroimage.2012.08.052
https://doi.org/10.1016/j.neuroimage.2012.08.052
https://doi.org/10.1371/journal.pone.0141507
https://doi.org/10.1371/journal.pone.0141507
https://doi.org/10.1016/j.neuroimage.2016.01.005
https://doi.org/10.1016/j.schres.2017.05.038
https://doi.org/10.1360/n972017-01166
https://doi.org/10.1360/n972017-01166
https://doi.org/10.1038/srep23384
https://doi.org/10.1016/j.neuroimage.2009.05.005
https://doi.org/10.1016/j.neuroimage.2013.12.060
https://doi.org/10.1016/j.neuroimage.2013.12.060
https://doi.org/10.1016/j.neuroimage.2013.03.004
https://doi.org/10.1371/journal.pone.0005743
https://doi.org/10.1371/journal.pone.0005743
https://doi.org/10.1007/s12021-016-9299-4
https://doi.org/10.3389/fnsys.2010.00013
https://doi.org/10.1016/j.neuroimage.2007.01.054
https://doi.org/10.1016/j.neuroimage.2007.01.054
https://doi.org/10.1016/j.braindev.2006.07.002
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Wei et al. EO/EC Resting-State Opposite Brain Activity

Zang, Y., Jiang, T., Lu, Y., He, Y., and Tian, L. (2004). Regional homogeneity
approach to fMRI data analysis. Neuroimage 22, 394–400. doi: 10.1016/j.
neuroimage.2003.12.030

Zhou, Z., Wang, J.-B., Zang, Y.-F., and Pan, G. (2018). PAIR comparison
between two within-group conditions of resting-state fMRI improves
classification accuracy. Front. Neurosci. 11:740. doi: 10.3389/fnins.2017.
00740

Zuo, X. N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F. X., Sporns, O.,
et al. (2012). Network centrality in the human functional connectome. Cereb.
Cortex 22, 1862–1875. doi: 10.1093/cercor/bhr269

Zuo, X. N., Kelly, C., Di, M. A., Mennes, M., Margulies, D. S., Bangaru, S.,
et al. (2010). Growing together and growing apart: regional and sex
differences in the lifespan developmental trajectories of functional
homotopy. J. Neurosci. 30, 15034–15043. doi: 10.1523/jneurosci.2612-
10.2010

Zou, Q., Long, X., Zuo, X., Yan, C., Zhu, C., Yang, Y., et al. (2009). Functional
connectivity between the thalamus and visual cortex under eyes closed and eyes
open conditions: a resting-state fMRI study.Hum. Brain Mapp. 30, 3066–3078.
doi: 10.1002/hbm.20728

Zuo, X. N., and Xing, X. X. (2014). Test-retest reliabilities of resting-state
FMRI measurements in human brain functional connectomics: a systems
neuroscience perspective. Neurosci. Biobehav. Rev. 45, 100–118. doi: 10.1016/j.
neubiorev.2014.05.009

Zou, Q., Yuan, B., Gu, H., Liu, D., Wang, D. J. J., Gao, J., et al. (2015). Detecting
static and dynamic differences between eyes-closed and eyes-open resting states
using ASL and BOLD fMRI. PLoS One 10:e0121757. doi: 10.1371/journal.pone.
0121757

Zou, Q. H., Zhu, C. Z., Yang, Y., Zuo, X. N., Long, X. Y., Cao, Q. J., et al. (2008).
An improved approach to detection of amplitude of low-frequency fluctuation
(ALFF) for resting-state fMRI: fractional ALFF. J. Neurosci. Methods 172,
137–141. doi: 10.1016/j.jneumeth.2008.04.012

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

The reviewer LJ declared a shared affiliation, though no other collaboration, with
one of the authors TC to the handling Editor.

Copyright © 2018 Wei, Chen, Li, Liu, Qiu and Wei. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Human Neuroscience | www.frontiersin.org 11 October 2018 | Volume 12 | Article 422

https://doi.org/10.1016/j.neuroimage.2003.12.030
https://doi.org/10.1016/j.neuroimage.2003.12.030
https://doi.org/10.3389/fnins.2017.00740
https://doi.org/10.3389/fnins.2017.00740
https://doi.org/10.1093/cercor/bhr269
https://doi.org/10.1523/jneurosci.2612-10.2010
https://doi.org/10.1523/jneurosci.2612-10.2010
https://doi.org/10.1002/hbm.20728
https://doi.org/10.1016/j.neubiorev.2014.05.009
https://doi.org/10.1016/j.neubiorev.2014.05.009
https://doi.org/10.1371/journal.pone.0121757
https://doi.org/10.1371/journal.pone.0121757
https://doi.org/10.1016/j.jneumeth.2008.04.012
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

	Eyes-Open and Eyes-Closed Resting States With Opposite Brain Activity in Sensorimotor and Occipital Regions: Multidimensional Evidences From Machine Learning Perspective
	INTRODUCTION
	MATERIALS AND METHODS
	Eyes-Open/Eyes-Closed Dataset
	Data Preprocessing and Indices Computation
	Building the Linking Models

	RESULTS
	Data Quality Assessment
	Different Spontaneous Brain Activity and Performance of the Linking Models

	DISCUSSION
	LIMITATIONS
	CONCLUSION
	AUTHOR CONTRIBUTIONS
	FUNDING
	ACKNOWLEDGMENTS
	SUPPLEMENTARY MATERIAL
	REFERENCES


