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Abstract

Nucleic acid testing (NAT) for malaria parasites is an increasingly recommended diagnostic endpoint in clinical trials of
vaccine and drug candidates and is also important in surveillance of malaria control and elimination efforts. A variety of
reported NAT assays have been described, yet no formal external quality assurance (EQA) program provides validation for
the assays in use. Here, we report results of an EQA exercise for malaria NAT assays. Among five centers conducting
controlled human malaria infection trials, all centers achieved 100% specificity and demonstrated limits of detection
consistent with each laboratory’s pre-stated expectations. Quantitative bias of reported results compared to expected
results was generally ,0.5 log10 parasites/mL except for one laboratory where the EQA effort identified likely reasons for a
general quantitative shift. The within-laboratory variation for all assays was low at ,10% coefficient of variation across a
range of parasite densities. Based on this study, we propose to create a Molecular Malaria Quality Assessment program that
fulfills the need for EQA of malaria NAT assays worldwide.
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Introduction

During the past two decades, numerous nucleic acid testing

(NAT) approaches for the diagnosis of human malaria infection

have been developed [1–21]. NAT can detect and quantify

parasites more sensitively and precisely than by microscopy or

rapid diagnostic tests (RDTs). NAT approaches are valuable for

controlled human malaria infection (CHMI) studies of investiga-

tional drug and vaccine candidates, for drug efficacy studies and

for epidemiological surveillance [22]. In CHMI studies for

example, healthy human volunteers are infected via the bites of

Plasmodium falciparum-infected mosquitoes [23–25] or by needle-

based delivery of purified sporozoites [26,27]. CHMI is used in

initial efficacy studies of investigational drugs and vaccines because

of its reproducibility and convenience as compared with efficacy

studies in malaria-endemic populations that require larger studies

and rely on natural exposure [26,28–40]. NAT assays allow for

quantitative measurement of peripheral parasitemia up to 2–6

days earlier than microscopy [26,27,30,41], further improving the

safety of this already very safe model. Depending on the trial

design and the laboratory capabilities, samples can be tested either

in real time using fresh samples or retrospectively using archived

samples. NAT is less operator-dependent and more amenable to

high throughput testing than microscopy but is more expensive.

The increased cost of NA testing in clinical trials affords improved

discrimination between infected and uninfected subjects (e.g.,

fewer false positives and false negatives) and production of

quantitative datasets that can be used for modeling parasite

growth. In addition, because earlier detection and therefore earlier

treatment of asymptomatic parasitemia decreases both volunteer

risk and discomfort, use of NAT assays can facilitate the

elimination of the costly but traditional ‘hotel’ phase of many

studies where volunteers are housed near study staff for close

monitoring. The many advantages and disadvantages of micros-

copy, RDTs and NAT vary depending on whether the result is

used for monitoring of clinical trials, for clinical care in endemic or

non-endemic settings or for epidemiological surveillance, as

recently reviewed [22].

When testing is performed on the day of collection, NAT results

are used in some centers alongside clinical assessments and
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microscopic findings to inform treatment decisions. This is useful

since the symptoms of malaria are non-specific and overlap with

common viral illnesses. NAT results can be particularly useful

when these traditional measures like microscopy are inconclusive.

Despite use of highly-trained slide readers, detection of 1–2

parasites on a thin blood smear is neither 100% sensitive nor

specific for the low parasite density capable of causing symptom-

atic malaria. Some CHMI centers have even replaced primary

microscopy-based endpoints with primary NAT endpoints. When

NAT was performed in real time and used to make treatment

decisions, this approach reduced reported clinical symptoms in

CHMI subjects relative to microscopy-based treatment decision

making (G. Bastiaens, unpublished data). Thus, the NAT result

can help eliminate diagnostic uncertainly that may otherwise occur

in subjects who are either ostensibly slide positive or symptomatic

but not both. Overall, real time availability of NAT apparently

helps avoid false positive and false negative diagnoses, thereby

increasing both the safety of the volunteers and the accuracy of the

data. Aside from lower limits of detection (LoD) that afford earlier

diagnoses, quantitative NAT data provide day-by-day measures of

the rise and fall of parasitemia and allow for model-based

assessments of liver-to-blood inocula levels and parasite multipli-

cation rates, which can be used to calculate efficacy estimates for

partially-effective liver vaccines and for blood-stage vaccines

[42,43].

Quality systems are critical to clinical trial and surveillance

networks because the validity of diagnostic and monitoring tests

and the ability to compare trial results amongst network

laboratories is entirely dependent on the procedures used before,

during and after each assay at each site [22]. Consistently

dependable results are provided when the overall program

includes quality control (QC), quality assurance (QA) and

proficiency testing (PT) [44]. Malaria QA systems have been

developed to address the wide performance variations observed in

first generation RDTs [45]. These efforts resulted in consistently

improved RDT performance with each successive round of

evaluations and led to elimination of poor RDT products.

External QA (EQA) programs and control reagents for RDTs

are also emerging [46–48]. Terminology related to quality

management and assay performance is defined in the Glossary

section.

Because of the availability of cryopreserved metabolically-active,

non-replicating sporozoites [49] and the renewed vigor of vaccine

and drug pipelines, CHMI studies are now being conducted at an

increasing number of institutions worldwide [50]. However, while

consensus procedures for CHMI studies and microscopy are

available [51], no such effort has been made to standardize

malaria NAT assays or provide widespread ongoing EQA

oversight. Some laboratories have exchanged small panels of

malaria-infected whole blood with collaborators as part of NAT

assay validation (S. Murphy, C. Hermsen, N. Edwards, A.

Stewart, unpublished data). In addition, the World Health

Organization (WHO) previously generated freeze-dried P. falci-

parum-infected blood samples at a single high parasitemia level for

use as an international DNA standard [52]. Some laboratories are

using the WHO material (for example see reference [53]), but the

WHO material is not provided through a formal EQA program.

Because the material was freeze-dried from whole blood without

buffers or steps to protect RNA, it also cannot be used to support

RNA-based assays, and the freeze-dried material does not

precisely mimic material obtained from clinical trial participants.

Therefore, a formalized, funded program is needed to ensure assay

validation and provide malaria NAT EQA in line with that

commonly used for assays detecting HIV and other infectious

pathogens [54–56]. As a trial EQA platform, we sent blinded

specimens to five malaria centers conducting CHMI studies. Here,

we report the results of this exercise and propose a framework for

ongoing EQA and eventually for assay harmonization.

Materials and Methods

Malaria culture and production of samples
P. falciparum strain 3D7 was cultured, synchronized and diluted

as previously reported [41]. For multiply-infected cells, each

parasite was counted in microscopic parasite density measure-

ments. A ring-stage synchronous high parasitemia culture was

diluted into type A+ whole human blood obtained from the Puget

Sound Blood Center (www.psbc.org). After preparing the ‘master’

tube at each density, samples were aliquoted into bar code-labeled

tubes [each bearing a unique specimen identifier generated in the

Laboratory Data Management System (Frontier Science)] and

prepared for frozen storage according to the individual standard

operating procedures for each final testing laboratory. Aliquot

sizes were as follows: RUMC and University of Maryland 0.5 mL;

NIH 0.2 mL into 2 mL NucliSENS lysis buffer (bioMérieux);

University of Washington (UW) 0.05 mL into 2 mL NucliSENS

lysis buffer; Oxford filtered to remove leukocytes as described [57]

and aliquoted as 0.5 mL volumes. Once aliquoted, all samples

were frozen at 280uC before courier shipments to partner

laboratories on dry ice.

Sample testing
Laboratories received and stored samples at #270uC before

testing. Each lab except for the NIH received 10 de-identified

parasite-containing samples at each of five different concentrations

plus 10 parasite-negative samples; the NIH received 20 samples at

each level. Labs were blinded to the parasite concentration in each

sample. Each laboratory tested their designated samples according

to the laboratory-specific standard operating procedure (SOP) and

reported data to the UW coordinating center. Testing laboratories

(including the technologists at the UW coordinating laboratory)

were blinded to the nominal parasite density of each sample.

Assays used included P. falciparum quantitative reverse transcrip-

tion polymerase chain reaction (qRT-PCR; UW, [58]); quantita-

tive PCR (qPCR; RUMC, [21,59]; Oxford [26]; University of

Maryland [35,37]) and standard PCR (NIH [34]). If known,

laboratories indicated their in-house determined limits of detection

(LoD) and nucleic acid target characteristics (Table 1). All

laboratories reported quantitative data, except the NIH which

reported qualitative results and cycle thresholds (CT) from

standard PCR. Each laboratory was asked to run the assay and

provide data strictly in accordance with the SOP used in their

clinical trials.

Filtration studies (Oxford only)
Ring-stage cultured 3D7 strain P. falciparum parasites were

added to leukocyte-depleted [26] whole blood. Each sample was

subsequently divided and half of the material at each density was

subjected to Whatman VFE filtration while half remained

unfiltered. The material was then subjected to DNA extraction

and qPCR by the standard Oxford protocol [26].

Calibrator matrix studies (Oxford only)
DNA was extracted from blood from malaria-negative volun-

teers using the standard Oxford protocol [26] to generate ‘negative

blood matrix’ samples. qPCR was performed on 150 copies of the

Oxford plasmid DNA calibrator in the presence of a blood matrix
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sample or a water control (20% v/v) and differences in the CT and

quantity were evaluated.

Data analysis
Data were transformed to log10 parasites/mL of whole blood

and analyzed using Excel 2010 (Microsoft) and Prism 6

(GraphPad). Intra-laboratory performance was evaluated using

sensitivity/specificity analyses, precision analyses and Bland-Alt-

man (difference) plots. The lowest parasite density samples

(6 parasites/mL) were not included in statistical analyses. Data

were plotted on a log10 parasites/mL scale; data from the NIH was

regressed to the nominal values of the provided samples and

plotted for illustration purposes. For precision studies, the percent

coefficient of variation was calculated as %CV = standard

deviation/mean.

Results

Sample production
A high parasitemia starting culture was prepared to 2.46108

(8.38 log10) parasites/mL based on repeated counts of Giemsa-

stained thin blood smears by multiple readers combined with

determination of RBC density (RBC/mL) by hemocytometer

counting. This material was devoid of trophozoite- and schizont-

stage parasites and contained singly (70%) and multiply-infected

(30%) ring-stage parasites as judged by microscopy. Dilutions were

made into whole blood to nominal parasite densities as follows:

High (300,000 parasites/mL or 5.48 log10 parasites/mL); Mid

(6,000 parasites/mL or 3.78 log10 parasites/mL); Low (600 par-

asites/mL or 2.78 log10 parasites/mL); Very Low (60 parasites/

mL or 1.78 log10 parasites/mL), Trace (6 parasites/mL or

0.78 log10 parasites/mL) and Negative (no parasites); these

Figure 1. Study data. Results were plotted on a log10 parasites/mL
scale for the five participating laboratories; bars show the mean and
95% confidence interval. Nominal (expected) values for all samples are
plotted as follows: high (300,000 parasites/mL or 5.48 log10 parasites/
mL); mid (6,000 parasites/mL or 3.78 log10 parasites/mL); low (600 par-
asites/mL or 2.78 log10 parasites/mL); very low (60 parasites/mL or
1.78 log10 parasites/mL), trace (6 parasites/mL or 0.78 log10 parasites/
mL) and negative (no parasites). Samples with no parasites detected
were plotted as 0.1 log10 parasites/mL. Two-way ANOVA comparisons
across all high, mid and low parasite density samples with quantita-
tively positive results showed non-statistically significant differences
amongst all groups (p.0.05) except for RUMC vs. Oxford at high (p,
0.0001), mid (p,0.01) and low (p#0.05) parasite densities. *NIH
quantities were generated by regression of CT values to expected
EQA values and are provided to visualize variation and qualitative
agreement; quantitative statistical comparisons were not included. 60
of 120 representative NIH samples are displayed for consistency.
doi:10.1371/journal.pone.0097398.g001
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designations are used throughout the paper to refer to these

specific parasite densities.

Network laboratory results
Laboratories reported the results shown in the Figure 1. The

sensitivity and specificity of each laboratory’s assay was calculated

based on the negative control samples plus either all samples $

60 parasites/mL or those $600 parasites/mL; samples at 6 par-

asites/mL were not included in these analyses since this ultra-low

level of parasite density was below the stated LoD for all assays

(Table 2). All laboratories demonstrated 100% specificity. Most

laboratories detected all samples at $600 parasites/mL, although

the University of Maryland reported one false negative at this

level.

Analytical sensitivity was below 100% at the 60 parasites/mL

level: UW detected 6/10 samples, Oxford 4/10, NIH 6/20,

Maryland 4/10 and RUMC 2/10. One positive sample was

detected by the UW laboratory amongst the 6 parasites/mL

samples at a concentration consistent with the presence of a single

parasite in the sample and consistent with the overall frequency of

positives at the 60 parasites/mL level as well. The ‘trace’

(6 parasites/mL) specimens were not included in estimates of

sensitivity and specificity because they cannot be categorically

considered positive for the following assay-specific reasons. For the

low volume RT-PCR assay at UW, most of these samples are

negative because a density of 6 parasites/mL equates to less than

one parasite per sample on average. Nonetheless, when samples at

this level are positive by RT-PCR due to an intact parasite, the

parasite contains ,3500 copies of the targeted 18S rRNA. For

higher volume DNA assays, the lack of positive results at the

6 parasites/mL level reflects a combination of similar Poisson

distribution limitations (e.g., 6 parasites/mL is an average of

1.2 parasites/sample for 200 mL samples or 3 parasites/sample for

500 mL samples) as well as limitations on PCR performance at low

copy numbers (e.g., 2–10 DNA copies/sample). Thus, the virtual

absence of positive results in samples at 6 parasites/mL was

expected, indicates that positive results are due to intact parasites

and not free template and supports the high specificity shown by

all laboratories. False negative results at the 60 parasites/mL level

can be attributed to the presence of multiply-infected RBCs that

result in a more heterogeneous distribution of parasites upon

dilution to low parasitemia than would be expected if virtually no

multiply-infected cells were present. A related type of heteroge-

neity has also reported for malaria microscopy – in thick blood

smears, malaria parasites are sometimes unevenly distributed

(known as ‘grouping’) [60]. At low parasite densities, grouping

results in a few microscopic fields containing more parasites than

expected while most fields contain fewer or zero parasites, leading

to overdispersion of the Poisson distribution [61]. Much like

‘grouping’ in thick blood smears, multiply-infected cells contain a

larger-than-expected proportion of the NAT target(s), thereby

altering the frequency of parasite-containing samples at low

parasitemias. Nonetheless, the overall data indicate agreement

between laboratories across a wide range of parasite densities, with

gradual loss of positivity as predicted by assay LoDs.

Differences from the expected values (quantitative bias) were

assessed using correlation and Bland-Altman (difference) plots,

which are summarized in Table 3. In general, all assays behaved

linearly (slope ,1.0 and r2.0.9), indicating comparable template

amplification efficiencies. The average quantitative bias across all

laboratories was ,60.18 log10 parasites/mL compared to ex-

pected values, with the exception of the Oxford qPCR. In

addition, most laboratories maintained a 95% confidence range

within 60.5 log10 parasites/mL compared to the expected values

with the exception of Maryland whose assay had lower limit of the

95% confidence interval extending to 20.66 log10 parasites/mL.

The Oxford qPCR showed an average difference of 20.54 log10

parasites/mL (95%CI 20.90 to 20.19 log10 parasites/mL),

thereby underestimating relative to expected values and other

laboratories. This difference was consistent across the range of

parasite densities for Oxford and the confidence interval for the

Oxford qPCR was within 60.5 log10 parasites/mL of the average

Oxford values.

Precision (%CV) was evaluated for each laboratory’s assay for

the high, mid and low parasite density samples (Table 4). As

expected, the highest parasite density samples showed the lowest

degree of variation and, with the exception of the Maryland

qPCR, the lowest parasite density samples had the highest

variation. Variation was generally ,10%CV at all levels. This

level of precision is considered acceptable by most validation

criteria and is likely to be more than adequate for purposes of

modeling parasite growth dynamics [42,43]. Very low parasite

density samples were not included in this analysis because of the

smaller number of positive samples.

Root cause analyses of differences
Two of the network groups further investigated apparently

aberrant results to determine if the root cause could be identified.

Table 3. Correlation and agreement between assay-derived data and expected values.

Correlationa Agreementb

Laboratory Slope r2 Quantitative bias (95% confidence interval) nc

UW 1.04 0.98 20.05 (20.39–0.29) 37

Oxford 1.00 0.98 20.54 (20.90–20.19) 34

NIHd 0.97 0.97 0.13 (20.30–0.55) 66

RUMC 0.90 0.99 0.1 (20.29–0.48) 32

Maryland 0.99 0.96 20.18 (20.66–0.31) 35

aEach laboratory’s assay-derived data were plotted against the expected values, and the slope (D assay-derived value/D expected value) and coefficient of
determination (r2) were calculated using Microsoft Excel. A slope of 1.0 and r2 value of 1.0 indicates perfect correlation.
bBland-Altman difference plots were used to calculate the mean quantitative bias as the mean of the differences between each reported value and its expected value.
Values are in log10 parasites/mL. An absolute value of #0.5 log10 parasites/mL indicates an absence of quantitative bias.
cAll calculations were based on all NAT-positive samples.
dNIH quantities were generated by regression of CT values to nominal values and should be viewed as a measure of variation only.
doi:10.1371/journal.pone.0097398.t003
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The single false negative 600 parasites/mL sample at the

University of Maryland was found to be qualitatively positive,

but at a concentration below the quantitative LoD established for

that assay. Root cause analysis showed that the DNA extraction

control used to monitor extraction efficiency was lower than the

expected value, indicating that poor sample extraction was at fault

- re-extraction of the specific sample was not possible since the

material was completely consumed in the initial testing.

Additional studies were conducted by Oxford University to

estimate the contribution of blood filtering and calibrator matrix

differences to the observed quantitative shift. To test the

hypothesis that parasites may be lost during blood filtration,

parasites diluted in pre-leukocyte-depleted blood were tested by

Oxford qPCR either with or without filtration. Filtration reduced

the measured parasite density by 13–57% (20.06 to 20.37 log10-

fold) (Figure S1). To determine if the matrix used to dilute the

plasmid DNA calibrators at Oxford also contributed to the

quantitative shift, DNA extracted from malaria-negative volun-

teers was used in lieu of water to dilute the plasmid DNA

calibrator in the qPCR reaction. One-hundred fifty copies of

plasmid DNA were added since this corresponds to the amount of

plasmid DNA equal to 1000 parasites/mL by the Oxford qPCR

assay. In the presence of the negative blood matrix, the Oxford

qPCR CT was delayed by a median of 1.1 cycles as compared to

the previously used water matrix – this difference was consistently

observed using blood from three different donors (range 1.1–1.4

cycles) (Figure S1). This CT shift corresponds to a 58–65%

reduction in the apparent parasite density (median 20.39 log10-

fold, range 20.37 to 20.46 log10-fold) relative to amplification

using a water-only diluent reduction (Figure S1).

Discussion

This study represents the first major malaria NAT EQA

exercise to our knowledge amongst CHMI centers providing

assay-to-assay comparisons that attempt to fully account for all

variables contributing to assay performance. The data indicate

that CHMI centers listed here are reporting comparable results.

CHMI studies seek to ensure the safety of the trial participants and

the integrity of the trial data. In this regard, all centers achieved

expected analytical sensitivities based on known LoDs. Based on

clinical trial data and supported by modeling studies [41–43], the

assays compared here are likely to become positive before patent

parasitemia develops following CHMI with five mosquito bites. No

false positive results were reported for any of the 10–20 blinded

malaria-negative samples sent to each laboratory. Quantitative

variation was ,10%CV amongst the high, mid and low parasite

density samples. The average quantitative bias across all labora-

tories was ,60.18 log10 parasites/mL compared to expected

values, and all laboratories except for Oxford showed a 95%

confidence range within 60.5 log10 parasites/mL compared to the

expected values.

The Oxford assay was highly sensitive, specific and precise, but

was quantitatively shifted compared to other assays and to

expected results. As described in the Results, additional studies

conducted by Oxford University determined that both parasite

losses due to Whatman VFE filtering of whole blood and

differences in the matrix used for plasmid DNA calibrators at

Oxford contributed to this shift. This is the first report to our

knowledge that demonstrates parasite losses due to the filtering

step. This step was added at Oxford to remove co-purified

leukocyte genomic DNA (gDNA), which may inhibit some PCR

assays [62]. Thus, while filtration removes inhibitors like gDNA, it

also removes parasites. In addition, the Oxford plasmid calibrators

are normally diluted in a water matrix, which lacks additional

PCR inhibitors common to whole blood extractions (e.g.,

immunoglobulin G, hemoglobin and lactoferrin [63,64]). Since

the water-diluted plasmid calibrator was detected earlier than

when diluted in a whole blood matrix, it appears that PCR

inhibitors present in the eluates obtained from blood delay PCR

target amplification and also contribute to the quantitative

reduction in parasites when a water-diluted standard curve was

used. This type of matrix effect has been reported in biological

samples [65]. Despite the shift in absolute quantitation, relative

quantitation between samples using the Oxford assay was

comparable to that of other centers. The Oxford qPCR is

reporting positive and negative results in complete agreement with

other laboratories, even at the low 60 parasites/mL level

suggesting that the combined effects of blood filtration and the

different calibrator matrix did not markedly change the overall

qualitative results. Nonetheless, re-calibration of the Oxford qPCR

method that will account for these differences is underway. This

EQA effort helped to identify an easily fixed methodological

difference in calibration that may account for differences in

absolute quantification, and work is underway at Oxford to rectify

this shift. Overall, the results of most laboratories were within the

expected quantitative range, and these findings should be

reassuring to vaccine and drug makers, sponsors and regulators

as NAT gradually replaces microscopy for safety and efficacy

endpoints.

With the plethora of malaria NAT methods reported in the

literature, quality indicators are needed to help select and maintain

methods suitable for use in CHMI studies. However, malaria NAT

EQA and consensus malaria NAT guidelines do not yet exist in

part because over 65 different assays have been reported for NAT-

based malaria diagnosis. The literature includes many variations

on extraction, amplification and detection, including single-step

Table 4. Precision statistics by laboratory.

High (300,000 parasites/mL) Mid (6,000 parasites/mL) Low (600 parasites/mL)

Laboratory %CV n %CV n %CV n

UW 1.5 10 1.6 10 5.3 10

Oxford 3.5 10 3.3 10 7.1 10

NIHa 1.7 20 2.6 20 10.0 20

RUMC 0.9 10 4.5 10 6.9 10

Maryland 3.4 10 11.1 10 5.1 9

aNIH quantities were generated by regression of CT values to nominal values and should be viewed as a measure of variation only.
doi:10.1371/journal.pone.0097398.t004
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and nested electrophoresis-based PCR, qPCR, qRT-PCR and

nucleic acid-based sequence amplification (NASBA) with an even

wider variety of reported primer and probe combinations (briefly

reviewed in [22]). Additional novel assays continue to be

developed, including potentially field-friendly approaches such as

loop-mediated isothermal amplification [66]. While numerous

other gene targets are reported, the most widely used Plasmodium

NAT targets are sequences within the developmentally-regulated

18S rRNAs (by RT-PCR or NASBA) or their coding genes (by

PCR) [67]. However, 18S rRNAs and their corresponding coding

genes are not uniformly captured by a single set of reagents

(primers and probe), and assay design can greatly alter sensitivity

and specificity as recently reviewed [22]. RT-PCR tests target A-

type (asexual stage) 18S rRNAs to take advantage of the fact that

A-type (but not sexual-stage S-type) 18S rRNAs are biologically

amplified to ,3500 copies per ring-stage parasite during the red

blood cell stage of infection [41]. PCR tests can target any of the

18S rRNA-coding genes, and some primers and/or probes are

designed to capture sequences shared by more than one of the

genes (up to five including one pseudogene) thereby incrementally

increasing assay sensitivity. Thus, RT-PCR assays become positive

earlier in the amplification process (lower cycle threshold)

compared to PCR, and this can improve RT-PCR sensitivity

particularly with small sample volumes and/or extremely low

parasite densities (S. Murphy, unpublished data). While rRNA

copies are more abundant than the parent genes, samples for RT-

PCR must be preserved by adding a stabilizing buffer or by

making dried blood spots at the time of collection [58], whereas

samples for PCR can be simply frozen. These aspects of malaria

NAT have mostly been studied using laboratory strains of P.

falciparum, and future work will need to address assays designed to

test for other human Plasmodium spp. since species and sub-species

diversity in field settings affects assay performance [68,69].

Thus, because of the diversity of pre-analytical processing,

extraction and amplification techniques, a single EQA sample type

cannot currently be used in all assays. EQA efforts must therefore

account for these methodological variations in pre-analytical

(collection, stabilization) and analytical (extraction, amplification)

steps.

To support clinical trials using malaria NAT, a formal EQA

program is needed. Some previous efforts have been made to

improve the quality of malaria NAT, although none provide

formal EQA. As mentioned above, the WHO previously

developed and distributed its single concentration standard to

many laboratories for characterization purposes [52], however,

this standard is unsuitable for RNA-based assays and does not

precisely mimic clinical samples. Another group compared PCR

primers and probes used by several centers but it was not possible

for the investigators to perform all the pre-analytical, analytical

(extraction, amplification and detection) and post-analytical steps

for each assay as originally described and therefore the study did

not assess overall assay performance [53]. Most recently, a study of

field samples in Brazil compared two conventional PCR methods

against microscopy and concluded that the PCR protocols showed

low reproducibility at sub-microscopic densities [70]. In contrast,

the groups tested in our EQA study generated reproducible data at

sub-microscopic densities (e.g., 600 parasites/mL), but our study

was performed using laboratory-generated samples so this may

change when field samples are used. True EQA comparisons, such

as the work described herein, are needed to fully account for all

factors that lead to assay variability and ensure that high quality

assays are in place to support clinical and field studies.

To continue our work and fulfill the need for an ongoing EQA

program, we propose creation of the Molecular Malaria Quality

Assessment (MolMalQA) Program as a multi-lateral effort

involving one or more core reference laboratories and a larger

network of partner laboratories at centers performing malaria

clinical trials, drug efficacy testing and surveillance activities. The

core laboratories would provide malaria EQA samples, produce

an international calibrator suitable for use in DNA and RNA

assays and pursue harmonization activities in consultation with

network partners. The malaria effort will be somewhat more

complicated than EQA programs for many viral pathogens

because of the complexity of the parasite lifecycle and the diversity

of available tests. At a minimum, it will be necessary to provide

EQA samples for DNA- and RNA-based assays alike and to

support both liquid and dried blood spot formats. For global EQA,

we propose to use synchronized, cultured ring-stage malaria

parasites diluted into whole blood since this mimics clinical

samples. The EQA program will need to develop whole blood

panels derived from a spectrum of healthy human subjects with

diverse blood types to ensure that results are not skewed by a single

blood source. In future, gametocytes, the sexual malaria stage

parasite found in humans, can be provided as EQA samples if

needed. The EQA program can also undertake stability studies to

assess the collection, transport and long-term storage stability of

samples intended for malaria DNA and RNA testing to determine

if the relatively greater stability of DNA outweighs the increased

abundance of RNA for use in large field studies.

Eventually, assays in use should also be harmonized around a

single or very few high-quality diagnostic protocols. Selection of

such assays could be made by reviewing EQA data and studying

protocols and instrument requirements in consultation with the

network of CHMI centers.

In addition to ensuring valid diagnostic data in clinical trials, an

EQA program would also aid in NAT surveillance for the malaria

elimination/eradication agenda. The relevance of malaria NAT

EQA for surveillance efforts should not be overlooked because

global success in reducing malaria incidence will reach a point at

which control and eradication decisions will require monitoring of

infection among individuals harboring parasites at densities

beneath the LoD of both microscopy and RDTs [71].

To more closely align quantitative results across centers and

eliminate lot-to-lot variation in cultured parasites, we further

advocate for development of synthetic nucleic acid sequences

diluted in whole blood for use as absolute calibrators. Such

reagents allow determination of exact target copy numbers, which

can be translated to parasite densities by testing parasite-

containing controls against a calibrator standard curve. However,

since the 18S rRNA targets vary between testing centers, no single

naturally-occurring target sequence is shared by all laboratories.

Some centers target the asexual-type 18S rRNAs or the coding

genes while others target the genes encoding the sexual-type 18S

rRNAs. Thus, cloning just one of these genes fails to capture other

laboratories’ targets. Novel synthetic sequences are therefore

needed to provide cross-network calibrators suitable for more than

one assay - such materials are in development (S. Murphy,

unpublished data).

In summary, malaria NAT EQA will help safeguard the

reliability and comparability of data produced in clinical trials by

CHMI centers and will support future extended use of malaria

NATs in other contexts. Through collaboration and with multi-

lateral funding, a formal EQA program can be developed and

implemented worldwide for the benefit of the malaria field and

those it serves.
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Supporting Information

Figure S1 Parasite loss due to filtering and calibrator
matrix differences contribute to the quantitative shift in
Oxford qPCR. A: Filtration using the Whatman VFE plate

results in loss of parasites. Cultured parasites were combined with

leukocyte-depleted blood and then filtered or not as indicated in

the figure. Results of Oxford qPCR are shown; each point

represents the mean of triplicate PCR wells. B-C: Oxford qPCR in

a whole blood matrix results in delayed CT and lower apparent

parasite density than when a water matrix is used. Eluates from

leukocyte-depleted blood or a water control were added to qPCR

reactions containing 150 copies of a plasmid DNA calibrator.

Panel B depicts CT values. Panel C shows the apparent parasite

density; the horizontal dashed line represents the result in the

presence of water-only diluent (150 plasmid copies/reaction

= 1000 parasites/mL in the Oxford assay by definition). Each

point in B-C represents the result in an individual PCR well.

(TIF)
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