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Emerging diseases must make a transition from stuttering chains of trans-

mission to sustained chains of transmission, but this critical transition need

not coincide with the system becoming supercritical. That is, the introduction

of infection to a supercritical system results in a significant fraction of the popu-

lation becoming infected only with a certain probability. Understanding the

waiting time to the first major outbreak of an emerging disease is then more

complicated than determining when the system becomes supercritical. We

treat emergence as a dynamic bifurcation, and use the concept of bifurcation

delay to understand the time to emergence after a system becomes supercritical.

Specifically, we consider an SIR model with a time-varying transmission term

and random infections originating from outside the population. We derive an

analytic density function for the delay times and find it to be, in general, in

agreement with stochastic simulations. We find the key parameters to be the

rate of introduction of infection and the rate of change of the basic reproductive

ratio. These findings aid our understanding of real emergence events, and can

be incorporated into early-warning systems aimed at forecasting disease risk.
1. Introduction
The emergence and re-emergence of infectious diseases is an enormous concern

to global public health. Nearly 70% of emerging human diseases have zoonotic

origins [1–3], including SARS [4], MERS [5], AIDS [6,7] and Ebola [8]. Similarly,

the re-emergence of previously controlled or eradicated diseases, including vac-

cine-preventable diseases such as measles [9] and pertussis [10], continues to be

a health and economic burden [11]. Owing to factors including reductions in

vaccine uptake [12], pathogen evolution [13] or changes in host demography

[14], emerging and re-emerging diseases make a transition from self-limiting,

stuttering chains of infection (which inevitably go extinct), to sustained

chains of human-to-human transmission (major outbreaks or epidemics). This

critical transition becomes possible when the average number of infections

caused by a single infectious individual in an entirely susceptible population

(called R0) becomes greater than 1—at this point the population is often referred

to as supercritical [15,16]. Forecasting this critical transition is the goal of early-

warning systems [17–19] of disease emergence [12]. In addition to knowing

when a population will become supercritical [12], accurate forecasting also

requires estimating the time of the first major outbreak or epidemic of a

newly emerging or re-emerging disease. Crucially, major outbreaks do not

happen immediately after R0 ¼ 1. Rather, they occur with some non-zero

delay—for which we do not yet have an adequate theory.

Waiting times between criticality and emergence imply that host populations

may be at risk of a major outbreak for an extended period of time, despite experi-

encing only small clusters of cases (figure 1). In this way, a substantial waiting time

hides the true state of a system, inhibiting our ability to intervene in response to a
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Figure 1. Bifurcation delay is the time between the tipping point at R0 ¼ 1 (intersection of grey horizontal line and blue vertical line) and the beginning of an
actual disease epidemic (orange vertical line, definition in text). This simulated time series is a stochastic realization of the hinge SIR model, where the transmission
rate (b) begins to increase at a set time (here, t ¼ 5 years) at rate a. This example contains multiple ‘sparks’ after the transition to supercriticality that do not lead
to epidemics, demonstrating that bifurcation delay is not simply the waiting time for a spark to occur after R0 . 1. Other parameters for this simulation: rate of
increase in transmission, a ¼ 0.001 yr21, initial population size (N0) ¼ 1000, recovery rate, g ¼ 365/14 yr21 (corresponding to a 14 day infectious period),
spontaneous infection rate, j ¼ 0.00067 yr21, birth and death rate, m ¼ 1/60 yr21. (Online version in colour.)

Table 1. Events and rate laws in our stochastic model.

event (DX, DY, DZ ) rate

birth (1, 0, 0) m(X þ Y þ Z )

death of S (21, 0, 0) mX

death of I (0, 21, 0) mY

death of R (0, 0, 21) mZ

transmission (21, 1, 0) bXY

recovery (0, 21, 1) gY

sparking (21, 1, 0) jX
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large, but obscured, threat. Furthermore, long waiting times in

disease re-emergence could mean that reversing the driver of

a critical transition to its pre-outbreak levels might not push a

pathogen’s R0 below 1. For instance, if reductions in vaccine

uptake facilitate disease outbreaks (e.g. measles [20–22]),

increasing coverage to vaccination levels that existed immedi-

ately prior to an outbreak may not reduce R0 below 1, because

the transition to R0 . 1 could have occurred well before the

first major outbreak. An improved understanding of the factors

determining the waiting time to a major disease outbreak will

facilitate epidemic forecasting.

To better relate the transition to disease emergence and the

timing of major outbreaks and epidemics, we developed a

model incorporating a time-varying transmission term and the

acquisition of infections from outside the population. For this

model, we derive an approximate density function of waiting

times. For validation, this approximation is compared with sto-

chastic simulations across a wide range of notional life-history

parameters. Together, these results show that waiting times

can be described by a two-dimensional distribution encapsulat-

ing the rate of infections from outside the population and the

rate of change of R0. We discuss implications of our results for

early-warning systems of infectious disease emergence.
2. Material and methods
2.1 Main model and concepts
Let X denote the number of susceptible individuals in the popu-

lation; Y, the number of infective individuals; Z, the number

of recovered individuals; b, the transmission rate; g, the indivi-

dual recovery rate; m, the individual birth and death rate

(assumed here to be equal) and j, the rate at which infections

are spontaneously acquired from outside the population. The

transmission rate is 0 until time s, at which point it increases lin-

early at a small rate a. That is, for t . s, b ¼ at. Our main model
is the continuous-time Markov chain with the time-dependent

rates given in table 1.

For our model, we consider only the case that (1� j . 0).

This case is of interest because in most disease emergence scen-

arios, there is a small influx of infectious individuals from

outside the focal population—for example, due to zoonotic spil-

lover events [23] or periodic importations of a disease from an

endemic location [21]. Because of this influx, the expected

number infected is necessarily greater than zero. However, the

order of the expected number of cases changes qualitatively as

the basic reproductive ratio passes through 1. The basic repro-

ductive ratio is the expected number of new infections caused

by an infected individual in an otherwise susceptible popula-

tion, which for our model equals R0 ¼ b(N � 1)=(gþ m) , where

N ¼ X þ Y þ Z. For R0 , 1, the expected number infected is of

order jN, whereas for R0 . 1 the expected number is of order

N. In other words, the expected number infected is approxi-

mately 1/j times larger when R0 . 1 compared with when

R0 , 1. The transition from one order of magnitude to another

may be referred to as an imperfect bifurcation, and the delay

between this event and the time when R0 ¼ 1 is known as a

bifurcation delay. Our goal is to find the model parameters that

largely control this delay. As we shall see, they turn out to be



Table 2. Parameters used for stochastic SIR simulations.

parameter meaning set or range of values

m host lifespan21, birth

rate, death rate

1/60 yr21

g recovery rate [365/5 yr21, 365/41 yr21]

b transmission rate if t , s, 0; otherwise a(t – s)

individual21 yr21

N0 initial population size [100 individuals, 10 000

individuals]

j spontaneous infection

rate

f1/1500 yr21, 1/5000 yr21,

1/10 000 yr21g
a rate of increase in

transmission rate

[0.0005 yr21, 0.01 yr21]

Table 3. Key calculations for hinge SIR model.

value calculation

expected time for system

to become supercritical

tc ¼ (mþ g)=(N0a)þ s

time of bifurcation tbif ¼ last time before epidemic when

no infectives present

bifurcation delay tbif 2 tc

basic reproductive ratio R0(t) ¼ b(t)N(t)=(gþ m)

maximum infection

prevalence

max(Y(t)/N(t))
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the rate of infection from outside of the population, which we call

the sparking rate, and the rate of change of R0, which we call the

sweep rate.

The results of this work are based on stochastic models

for two reasons. First, an analysis of deterministic bifurcation

delay in a model similar to a deterministic SIR model is

already available [24]. Second, the number of infectious individ-

uals prior to disease emergence may be small, and thus it may

not be appropriate to neglect stochastic effects. We study our

stochastic model and extensions of it using both simulation

and analysis.

2.2. Simulation
Our simulation model extends our main model by including

additional sources of demographic stochasticity. We make

three modelling decisions to allow demographic stochasticity

to have a substantial effect on delay times. First, the rate of

birth in our model is always equal to the rate of death. Thus,

the population size has no positive steady state, and the

variance of the population size across multiple realizations of

the model with the same initial population size increases over

time. Second, the timing (s) of the increase in the transmission

rate was set to year 100 to allow the variance to grow before the

approach to the critical point even began. Third, the trans-

mission rate is density dependent so that R0 varies with

fluctuations in population size (table 3). Although frequency-

dependent transmission is the better supported model for

many diseases of interest [25,26], the direct effect of demo-

graphic stochasticity on density-dependent transmission makes

it more likely to cause behaviour different from our analytic

model. As the purpose of the simulation was to investigate

such behaviour, and essentially ‘stress test’ the analytic results,

we present results based on density-dependent transmission

in the main text. A comparison of these results with those of

a frequency-dependent model is included in the electronic

supplementary material.

To calculate bifurcation delays in our simulation models,

we first simulated trajectories of the number infected using

Gillespie’s direct method [27]. These simulations are not exact

because the algorithm only updates the time-dependent rates at

the time when state-variables are updated, but for our par-

ameters updates should happen frequently enough that the

simulations remain highly accurate. We parametrized models

based roughly on the human lifespan, with a range of life-history

parameters that correspond to several disease systems of emer-

gence concern (table 2). To explore the range of possible

solutions to the stochastic model, we ran 1000 stochastic simu-

lations for each combination of parameter values. Each

simulation ended at the first major outbreak, which occurred

when three criteria were satisfied: (A) the size of the susceptible

population was reduced below N/R0 (after
ffiffiffiffi
N
p

(R0 � 1) . 1, as it

is difficult to distinguish epidemics from small outbreaks when

R0 is only just above 1), (B) at least 15% of the population was

in the recovered class, and (C) at least 2.5% of the population

was infected. These criteria ensured that the disease had sur-

passed the long-term, deterministic endemic equilibrium

number of susceptible individuals (N/R0) (i.e. a major outbreak

occurred, A), that a substantial portion of the population had

been exposed to the disease (B) and that the population was

experiencing an active outbreak (C). We quantified bifurcation

delay as the time between the deterministic tipping point of

the system (calculated as the expected time when R0 ¼ 1, based

on the initial population size N0 and time-varying transmission

rate b, table 3) and the last time point with 0 infectious individ-

uals before the actual bifurcation (e.g. figure 1). To determine

whether longer delays make outbreaks larger when they even-

tually occur, we also recorded the peak epidemic prevalence in

each simulation.
2.3. Analysis
Our analytic model explores the effect on delay of the degree of

heterogeneity in secondary cases. The degree of heterogeneity of

secondary cases summarizes the consequences of heterogeneities

in susceptibility, infectivity, infectious periods and contact rates.

For the sake of tractability, our analytic model does not allow for

demographic stochasticity in the same manner as our simu-

lations. Our main approach is to suppose that each imported

infection initiates a chain of infections which may be modelled

as a branching process. The delay time is considered to be the

time before the initiation of a branching process that does not

go extinct. This time is a random variable that may be modelled

like the time to death in a survival analysis. In the following, we

derive a survival function for this time that is the basis for

equations for the mean and median times given in Results.

A branching process model can be used to calculate a prob-

ability of a major outbreak that accounts for the level of

heterogeneity of a given disease system. The branching process

we use models the number of cases in each generation as the

sum of the random number of secondary cases that are caused

by each case in the previous generation. Following previous

authors [28], we suppose that the secondary cases are drawn

from a negative binomial distribution. The theory of branching

processes then tells us that when the expected number of second-

ary cases is greater than 1, the probability of extinction is the

smallest root of the equation

s ¼ 1þ R0 (1� s)

k

� ��k

, ð2:1Þ
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where R0 is the mean and k the overdispersion parameter of the

negative binomial distribution. The parameter k allows us to tune

the level of heterogeneity in the distribution of secondary cases.

As k! 1, the negative binomial distribution approaches a

Poisson distribution, and as k! 0 the distribution becomes

more overdispersed. For the case k ¼ 1, we recover the equation

that results from the assumption that cases occur at constant rate

over the duration of an exponentially distributed infectious

period [29]. Although equation (2.1) does not, in general, provide

a closed-form equation for the extinction probability, numeri-

cally finding the smallest root of equation (2.1) is trivial. The

probability of a major outbreak follows immediately as the

complement of the extinction probability.

To provide a more readily understandable equation for

the extinction probability, we introduce the approximation

Pr (extinction) � 1=Rp
0, where p is chosen based on k. Electronic

supplementary material, figure S1 shows the accuracy of this

approximation for range of k and p. We can see that for k , 1,

p � k often has a maximum error of less than 0.1. As expected

for k and p both equal to one, the calculated error is small and

reflects rounding error. For k . 4, p � 2 typically leads to a maxi-

mum error of less than 0.05. This approximation facilitates the

following analysis.

Given a model for the parameters of the branching process,

many equations describing the distribution of delay times

follow readily from standard survival analysis. We first consi-

der the model in which R0 ¼ 1 at time zero and then increases

linearly. For this model, the hazard function l for a major

outbreak is given by

lðtÞ ¼ a½1� ð1þ btÞ�p�, ð2:2Þ

where a is the rate at which infections occur due to contact with other

populations and b is the rate of change of R0 with respect to time. The

parameters a and b are the sparking and sweep rates mentioned ear-

lier. Our hazard function employs the previous approximation by

letting the probability of a major outbreak, given a spark, be equal

to 1� R0(t)�p. The cumulative hazard is given by

ðT

0

l(t) dt ¼
aT � a

b
(1þ bT)1�p � 1

1� p
, p = 1

aT � a
b

log (1þ bT), p ¼ 1:

8>><
>>:

ð2:3Þ

The survival function S computes the probability that a major

outbreak has not happened before a given time, and it follows

S(t) ¼ exp �
ðt

0

l(u) du
� �

: ð2:4Þ

The probability density function for the delay times is the

function –dS/dt. The mean delay time E(T ) is given by

E(T) ¼
Ð1

0 S(t) dt. The quantile function, which provides that

time at which the probability of emergence having occurred

equals F, may be found by solving 1 2 F ¼ S(q) for q. The

median delay time is equal to q when F ¼ 1/2.

2.4. Comparison of analytic and simulated delay
distributions

To assess the agreement between analytic and simulation results,

we calculated the Kullback–Leibler (KL) divergence [30]

between analytic and simulated distributions of bifurcation

delay for all parameter combinations (N ¼ 7200, with 1000 simu-

lations generating each simulated distribution). KL divergence

quantifies the amount of information lost (i.e. entropy) when

approximating one distribution with another [30,31]. The KL

divergence of the distribution with density p from that with

density q is defined as DKL ¼
Ð1

�1
p(x) log2( p(x)=q(x)) dx. We

calculated KL divergence using the entropy R package [32].

For the results presented, we used the analytic density function
for p and the density of simulated delays for q. Our results are

quantitatively very similar using the reverse formulation.

The KL divergence values are measured in bits. Higher values

indicate more information lost via the approximation, and thus

more dissimilarity between analytic and simulated distributions.

In our case, it quantifies the extent to which difference in the simu-

lation and analytic models lead to different distributions of delays.

The KL divergence of course depends on the parameters of

the models. We used recursive partitioning to create a decision

tree that split KL-divergence scores according to a least-squares

criterion, iteratively minimizing the remaining variance below

each node of the decision tree [33]. Thus, recursive partitioning

allowed us to identify and visualize the parameter combinations

that generated the largest discrepancies between analytic and

simulated delays.
3. Results
For our analytic model, we obtained explicit equations for the

mean and median delays for various levels of heterogeneity

as well as results for the sensitivity of the delays for all

levels of heterogeneity. Recall that the two parameters of

our derived density function for delays are the sparking

rate a, which is the rate at which infections are introduced

from outside of the population, and the sweep rate b, which

is the rate of change of R0. The parameter p indicates the

degree of heterogeneity in secondary cases. For the case

p ¼ 1, which corresponds to the heterogeneity caused by

the assumption of exponentially distributed infectious

period in our simulation model, the mean follows

E(t) ¼ ea=b a
b

� ��a=b
a�1G

a
b
þ 1,

a
b

� �
, ð3:1Þ

where G denotes the upper incomplete gamma function and

the median is equal to

�W(�1=(2b=ae))� 1

b
, ð3:2Þ

where W denotes the non-principal branch of the Lambert W
function. The median is equal to

b log 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab log 2

p
ab

, ð3:3Þ

when p ¼ 0.5 and

b log 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(b log 2)2 þ 4 ab log 2

q
2ab

, ð3:4Þ

when p ¼ 2. Recall that p ¼ 2 corresponds to a Poisson distri-

bution of secondary cases, whereas p ¼ 0.5 corresponds to a

highly overdispersed distribution of secondary cases. In the

electronic supplementary material, we show that for all p
the sensitivity of the mean and median to changes in either

the sparking rate or the sweep rate depends only on the quo-

tient of those two parameters. For relatively high sparking

rates, the mean and median have a similar level of sensitivity

to both parameters. As the sparking rate becomes relatively

lower, the sweep rate becomes less important because for a

broad range of rates the probability of an epidemic will be

close to one by the time the first spark occurs. The level of

heterogeneity in the distribution of secondary cases deter-

mines how quickly this transition happens by way of its

effect on the relationship between R0 and the probability of

an epidemic. Overall, the analytic results provide a rather

simple picture of the waiting times. However, in the
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electronic supplementary material, we also show that the pic-

ture can be rather different if R0 changes according to a step

function instead of increasing linearly. For example, the

median delay has the lowest proportional sensitivity to the

sparking rate when the median delay just exceeds the time

of the jump in R0. In the following, we explore the extent to

which the picture changes due to the elements included in

our more complicated simulation models.

With data from stochastic simulations, we found mean

bifurcation delay to decrease with increasing values of

(i) sparking rate, (ii) population size, (iii) rate of increase in

transmission, and (iv) infectious period (figure 2). These

qualitative effects were not surprising, although the results

highlight the importance of particular combinations of

life-history traits. For instance, at a given value for the trans-

mission rate’s rate of change (a), different mean infectious

periods (1/g) can lead to very different predicted and

observed distributions of bifurcation delay (figure 2b–d )

because short infectious periods (i.e. high recovery rates)

lead to lower sweep rates for a given value of a. The sparking

rate and the sweep rate parameters of the analytic model are

thus also important parameters of the simulated delay times.

This parametrization also leads to a strong correlation of the

delays of the frequency- and density-dependent models,

although the delays of the frequency-dependent model are

typically a little smaller (electronic supplementary material,
figure S2). Note that the sweep rate is independent of popu-

lation size in the frequency-dependent model, so the

relationship between life-history parameters and delay is

highly dependent on the type of transmission.

Closer examination of the sensitivity of the median simu-

lated delay to changes in the sweep rate revealed both

similarities and differences with our analytic model. This sen-

sitivity may be quantified as the slope of a least-squares line

in the plot of log(median delay) versus log(sweep rate). Such

a slope is an estimate of the elasticity of the median with

respect to the sweep rate. Consistent with the analytic results,

increasing the sparking rate a increases the slope of the nega-

tive relationship between median simulation delays and the

sweep rate (figure 3 and table 4). However, for large a the

elasticity for the simulated delays is much more negative

than 20.5, which is the minimum possible value for our

analytic model (electronic supplementary material). This dis-

crepancy is due to simulations tending to produce more delay

than expected, which is in large part a consequence of the

stringent conditions for an epidemic in our simulations.

In general, predictions based on theory derived assuming

large, fixed population sizes are representative of stochastic

simulations (figure 2; electronic supplementary material,

figure S3). Recursive partitioning shows that approximately

78% of the variation in KL divergence can be accounted for

by the sparking (a) and sweep (b) rates. Differences in
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predicted and observed delay distributions were greatest

with slow sweep rates, fast recovery rates, high sparking

rates and small population sizes (electronic supplementary

material, figure S3).

For a given combination of host and pathogen life-history

parameters, longer delays give rise to larger outbreaks,

because R0 continues to increase ever-higher above the critical

value of 1. Thus, a measles outbreak that occurs, by chance, 1

year after the population becomes supercritical will be larger,

on average, than a measles outbreak that occurs six months

after the population becomes supercritical (assuming the

same underlying parameters). The slope of this relationship

between delay and prevalence within a life-history parametri-

zation depends on how quickly R0 changes relative to the

sparking rate (i.e. b/a, figure 4). Note that the relationship

between delay and prevalence does not necessarily hold

across parameter combinations (i.e. when comparing different

diseases; figure 4). Systems with shorter delays can have

higher peak prevalence if they exhibit a longer infectious

period, for instance, and thus a faster change in R0 over

time (which itself contributes to differences in mean delay).
4. Discussion
Forecasting outbreaks of newly emerging and re-emerging

diseases is difficult. Adding to this difficulty is the fact

that major outbreaks of emerging diseases need not occur

immediately after they become a possibility. Rather, they

can exhibit bifurcation delay, the duration of which has

until now remained largely undescribed. We have shown

that even for models that include substantial demographic

stochasticity, this delay is well described by a simple survival

function with two parameters. One is the rate of transmission

from outside of the population, which we call the sparking

rate, and the other is the rate of change of R0, which we

call the sweep rate. Further, the sensitivity of the delay to

changes in these parameters depends only on their quotient.
We next explain the intuition that indicates the importance of

these parameters.

We found that the greater the sparking rate, the smaller

the waiting time for a major disease outbreak (figure 3).

This result follows Bartlett [34], who showed that very low

sparking rates could generate long time lags between recur-

rent outbreaks. In dynamic bifurcations more generally, the

addition of stochasticity or noise to slow passages through

bifurcation points reduces bifurcation delay [35,36] by hasten-

ing the departure from an unstable equilibrium. While our

results are in agreement, we also note that ‘noise’ in our

system is strictly required for the critical transition to disease

emergence. Without any infections from outside the popu-

lation, a supercritical host population will never experience

an outbreak or epidemic.

We also found that bifurcation delay depends on the

sweep rate. This result is comparable with the phenomenon

in Bartlett’s model [34] where the time to a recurrent outbreak

depends on both the rate of influx of susceptibles and R0. With

slow sweep rates, the addition of an infectious individual to a

population in the interval following the time when R0 ¼ 1 h as

a low probability of leading to a major outbreak [37]. Natu-

rally, the expected time to the major outbreak increases in

this case, and bifurcation delay in disease emergence is not

simply the interval of time preceding a sparking event.

Our theoretical and simulation results captured the

expected negative relationship between the duration of bifur-

cation delay and the sweep rate of a system [36,38]. However,

we also found that the slope and intercept describing the

relationship between the duration of bifurcation delay and the

sweep rate depended on the sparking rate. The duration of

bifurcation delay depends more on the sparking rate when

the sparking rate is low (i.e. outbreaks are spark-limited), and

more on the sweep rate when the sparking rate is high (i.e.

driver-limited) (figure 3, see also electronic supplementary

material). The degree of spark- or driver-limitation of a system

reflects the size of disease outbreaks (figure 4). It may also deter-

mine the ability of early-warning systems based on critical

slowing down to detect the tipping point at R0 ¼ 1 because a

driver-limited system would likely experience a series of

minor outbreaks before a major outbreak. The near-critical

dynamics of the minor outbreaks could trigger an early warning.

There are a number of practical consequences of bifurcation

delay in disease emergence. First, delayed emergence means

host populations can be supercritical for extended periods of

time without experiencing a major outbreak (e.g. figure 1).

Stuttering chains of transmission do not necessarily indicate,

then, that R0 , 1. Without accounting for bifurcation delay,

we might underestimate the likelihood of a major epidemic

when transmission appears limited. This phenomenon is exhib-

ited in many of our simulations, and is likely to occur in

generic emergence time series with small clusters of cases fol-

lowed by large, unexpected outbreaks. A major difficulty for

disease risk assessment lies in determining whether a system

with apparent subcritical transmission is truly subcritical, or

actually supercritical and experiencing a delayed bifurcation.

Additionally, bifurcation delay in disease re-emergence can

obscure the timing of the system becoming supercritical, and

thus the level of a given driver that targeted control measures

might try to achieve to ‘roll-back’ disease risk. For instance,

slow reductions in vaccine uptake that contribute to a major

outbreak of a vaccine-preventable disease are also subject to

bifurcation delay [12]. Owing to the delay, control measures
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Figure 4. Bifurcation delay can lead to epidemics with greater peak preva-
lence, although this effect depends on the life-history parameters of the
system. Panels show peak epidemic prevalence by stochastic realizations of
bifurcation delay (x-axis on log-scale). Symbols and line types represent
three different infectious periods, approximating three important childhood
diseases (5 days for measles, 9 days for chickenpox, 22 days for pertussis).
Lines are loess smooths added for visual clarity. Colour represents the ratio
of b to a, which describes how quickly R0 changes relative to how frequently
imported infections occur in a system. Symbols are positioned at the median
of the x- and y-axes for each combination of life-history parameters.
Panels show four different initial population sizes (N0 ¼ 500, 1000, 5000
and 10 000). The relationship between delay and peak infection prevalence
depends on how quickly R0 increases, which is governed by the sweep
rate, mean infectious period and population size. (Online version in colour.)
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that increase vaccination coverage to what it was immediately

before an outbreak may not reduce R0 below 1 because R0

may have exceeded 1 substantially earlier than the beginning

of the outbreak. Further, separation in the timing of disease

(re)emergence and changes in factors permitting emergence

can compromise detection of statistical association between

epidemic occurrence and underlying causes.
While the effects of sparking (a) and the probability of

an epidemic given a spark (which is governed by the

sweep rate, b) on the duration of bifurcation delay are rela-

tively intuitive, it is worth reiterating the importance of the

terms that go into each. For instance, the absolute number

of infectious imports for a given system may depend on

population size (as in pre-vaccine era measles [39]), which

would have to be accounted for in any estimate of the

sparking rate. On the other hand, unless the populations

being modelled are very small (e.g. a school or village),

frequency-dependent transmission is probably a better

assumption for many diseases [25,26] and so the sweep rate

may be largely independent of population size. Neverthe-

less, the same rate of change in the transmission rate for

two different diseases could still be consistent with different

sweep rates and thus different expectations of delay, and

even different sizes of eventual disease outbreaks. For

example, differences in the infectious period of childhood dis-

eases such as measles and pertussis could mean that a

constant 1% reduction in vaccine uptake per year would

result in earlier, larger pertussis outbreaks, because a longer

infectious period (all else being equal) generally increases

R0 (figure 4).
5. Conclusion
Moving forward, efforts relying on the identification of

critical slowing down to forecast the emergence of infectious

diseases may incorporate our findings about bifurcation

delay [12]. The rate of critical slowing down and the sweep

rate of a system are closely related, and indicators of critical

slowing down may be informative of the sweep rate. With

this information and an estimate of the sparking rate from

observed case data, future early-warning systems may be

able to not only generate forecasts of when R0 exceeds 1,

but also produce distributions of likely waiting times to

major outbreaks or epidemics (e.g. figure 2b–d ). This

approach could also be used in hindsight, in order to better

assess the timing of when R0 exceeded 1 to set the stage for

previous epidemics. Our goal is that this combined framework

will produce model-independent forecasts that provide

actionable information about the state of an emerging disease,

particularly during the transition from subcritical dynamics to

sustained transmission among hosts.
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