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PSA is produced by prostate epithelium and is a reliable marker of 
prostate disease. PSA levels above 4.0 ng ml−1 during screening are 
widely considered to indicate the need for biopsy,9 and levels above 
10 ng ml−1 are present in approximately 50% of patients with prostate 
cancer.10 However, the specificity of PSA as a prostate cancer marker 
is only about 60% since it can also be elevated in patients with benign 
prostatic hypertrophy, prostatitis, and other nonmalignant conditions.11 
Its sensitivity is only around 56% based on a threshold of 4 ng ml−1.12 
Indeed, a small proportion of patients with prostate cancer have PSA 
levels below 4.0 ng ml−1.13

Thus, the available evidence indicates that transrectal ultrasound, 
age, and PSA strongly correlate with prostate cancer but do not show 
sufficiently strong diagnostic performance on their own. This prompts 
the question of whether the three markers can be combined into a 
model that predicts prostate cancer reliably. Building such a model 
requires analyzing a large number of possibly predictive variables 
that are interrelated in complex ways, for which the random forest 
machine‑learning algorithm appears to be superior to traditional 
statistical methods.14 The random forest procedure relies on a large 
number of classifiers, helping to reduce bias, tolerate outliers, and 
avoid overfitting. The procedure has already been used to generate 

INTRODUCTION
Prostate cancer accounts for 23%–26% of newly diagnosed cancers 
in men and 9%–10% of cancer‑related deaths in the US and Europe, 
making it the most frequently diagnosed malignant tumor in males.1,2 
In 2008, prostate cancer incidence in Chinese men was 11 per 100 000, 
and it increased by 12% from 1998 to 2008.3 Prostate cancer is closely 
related to age: more than 95% of all patients are older than 60 years.1

The standard method for diagnosing prostate cancer is pathology 
analysis of systematic, transrectal ultrasound‑guided prostate biopsy.4 
However, this approach is invasive and can lead to bleeding and 
infection. The procedure also has relatively low sensitivity, with the 
recommended 12‑core biopsy providing a sensitivity of 36%–58%5 and 
18‑core biopsy providing only slightly higher sensitivity of 53%–58%.6 
In addition, biopsy is invasive and associated with some risks, such as 
bleeding and infection.

Transrectal ultrasound has been widely used to detect patients 
at risk of prostate cancer. This technique can offer relatively high 
sensitivity (44%–90%) and specificity (30%–74%),7 but its performance 
is limited by variability in prostate cancer ultrasound signals.

To aid in early detection of prostate cancer, many clinicians also 
look for elevated serum levels of prostate‑specific antigen  (PSA).8 
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insights in many fields, but we are unaware of studies applying it to 
prostate cancer.

In the present study, we used the random forest algorithm to predict 
prostate cancer in patients with prostate diseases by combining age, PSA 
level, and such transrectal ultrasound findings as abnormal blood flow 
signals, prostate boundary, and the line dividing the prostate and rectum. 
Our goal was to examine whether we could achieve a technique sufficiently 
reliable to diagnose prostate cancer in the absence of prostate biopsy.

MATERIALS AND METHODS
Patients
The study was approved by the Independent Ethics Committee of West 
China Hospital, Sichuan University, Chengdu, Sichuan, China. Patients 
diagnosed and treated for prostate diseases at West China Hospital, 
Sichuan University, Chengdu, Sichuan, China between January 2008 
and September 2011 were consecutively enrolled in this study. Data on 
patient age, serum PSA levels, transrectal ultrasound, and pathology 
analysis of prostate biopsies were collected. For comparing the 
distribution between patients with and without prostate cancer, age 
and serum PSA levels were treated as categorical variables: age, <50, 
50–59, 60–69, and ≥70 years; PSA, <4, 4–10, 10–20, and ≥20 ng ml−1.

Transrectal ultrasound
All patients were examined in the left lateral decubitus position using 
a 5‑MHz or 7.5‑MHz, convex or linear array biplane rectal probe 
connected to a PHILIPS HDI color Doppler ultrasound system. Two 
well‑trained and experienced ultrasound practitioners performed the 
ultrasound evaluations. They followed standard operating procedures. 
The transducer probe was covered with a sterile condom and placed in 
the rectum. Gray‑scale ultrasound images were examined in transverse 
and sagittal planes to classify the patient in terms of the following nine 
categorical variables: prostate shape  (normal or abnormal), prostate 
boundary (clear or unclear), boundary between internal and external 
glands (clear or unclear), the line dividing prostate and rectum (clear or 
unclear), the line dividing prostate and seminal vesicle glands (clear or 
unclear), the presence of nodules (yes or no), enlargement of lymph nodes 
around the prostate (yes or no), uneven echo (yes or no), and presence of 
hypoechoic lesions (yes or no). In addition, color Doppler imaging was 
used to determine whether blood flow signal was normal or abnormal.

Prostate biopsy and pathology
Prior to biopsy, patients were informed of the risks and benefits of 
the procedure, and they gave written consent. Under the guidance 
of transrectal ultrasound, 12‑core biopsy of suspicious lesions 
was conducted using a 16‑gauge automatic biopsy needle  (BARD, 
Covington, Georgia, USA). Prostate carcinoma tissue was identified 
based on cellular density, microvascularity, and loss of glandular 
architecture.15

Statistical analysis and random forest modeling
Statistical analysis was performed using the RStudio version 0.99 
(RStudio Inc., Boston, Massachusetts, United States) statistical software 
package for 32‑bit Windows, which runs R version 3.1.3 (R Core Team 
2015, https://www.r‑project.org). Differences in categorical ultrasound 
variables between patients with and without prostate cancer were 
assessed for significance using the Chi‑square test. Differences in age 
and serum PSA levels were also assessed using the Chi‑square test. The 
threshold of significance was defined as P < 0.05.

Age and PSA were entered into the random forest procedure 
as continuous variables and transrectal ultrasound findings as 
10 dichotomous variables. Data were sampled using random 

bootstrapping14,16 to generate various training data sets, which were 
then classified according to the characteristics of the numerous 
variables using classification and regression trees. To minimize 
classification error in the training data, the model randomly selected 
a subset of feature variables (mtry ) from the 12 input variables. Since 
the recommended number of feature variables was approximately 
3.46, the square root of 12,17 we tested values of 3, 4, and 5 to select the 
optimal results. Approximately one‑third of the total data set was not 
randomly sampled; this out‑of‑bag (OOB) data18 served as the testing 
set. Training data sets, and the corresponding trees, were repeatedly 
generated until the OOB error rate had stabilized. The random forest 
method then selected the model with the lowest OOB error rate and 
generated a confusion matrix, which included the predicted and 
actual classification data. Individual patients were then classified as 
having prostate cancer or not by a “polling procedure.” The input 
variables in the optimized model were ranked by relative importance 
in predicting prostate cancer based on the mean decrease in accuracy 
and the mean decrease in Gini coefficient.17 Every patient was displayed 
on a multidimensional scaling plot based on inter‑patient distances 
estimated by the random forest model.17

The use of random sampling during modeling means that the 
random forest approach should generate a family of classification 
and regression trees that are superior to any single tree. The use of 
internal OOB error, which provides an unbiased estimate of error and 
predictive ability, means that the random forest approach does not 
require cross‑validation for model optimization, in contrast to many 
other machine‑learning algorithms. We treated transrectal ultrasound 
findings as ten variables rather than a single variable to avoid loss of 
information, and the random forest approach is well suited to capture 
potential complex interactions among the individual variables.

RESULTS
Patient characteristics
A consecutive series of 941 patients was analyzed in this study (Table 1), 
358 of whom (38.04%) were diagnosed with prostate cancer. Median 
age of all patients was 71.00  years  (range, 24.00–88.00  years), with 
just over half  (530, 56.32%) older than 70. The age distribution 
differed significantly between those with prostate cancer and those 
with noncancerous prostate disease (P < 0.001). Across all patients, 
median level of PSA in serum was 15.63 ng ml−1 (interquartile range, 
9.50–47.30 ng ml−1), and patients fell into the following four subgroups: 
<4.0 ng ml−1, 49 patients; 4–10 ng ml−1, 212 patients; 10–20 ng ml−1, 
270 patients; and >20 ng ml−1, 410 patients. There were 74.58% cancer 
patients who had >20 ng ml−1 PSA. The largest proportion of patients 
with noncancerous prostate disease (36.02%) had 10–20 ng ml−1 PSA.

Comparison of transrectal ultrasound findings between patients 
with cancer and noncancerous disease (Table 1) revealed significant 
differences in all variables measured (P < 0.05), with the exception of 
uneven echo (P = 0.609).

Random forest prediction of prostate cancer
Using the random forest model, the combination of age, serum PSA 
levels, and transrectal ultrasound findings was tested for its ability 
to predict the presence of prostate cancer. Cancer was definitively 
diagnosed based on pathology analysis of prostate biopsies. Of the three 
runs using mtry values of 3, 4, or 5, we obtained optimal results with 3, 
which gave a low OOB error rate of 16.90% (Figure 1). In addition, 
this model had a cross‑validated error of 16.87%, similar to the OOB 
error rate. Accuracy was 83.10%; sensitivity, 65.64%; specificity, 93.83%; 
positive predictive value  (PPV), 86.72%; and negative predictive 
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forest model were age, serum PSA level, and the boundary between internal 
and external glands (Figure 2). A multidimensional scaling plot based on 
all input variables showed close clustering within and between groups of 
patients with prostate cancer or noncancerous disease (Figure 3).

DISCUSSION
Here, we show that the random forest algorithm trained with a 
relatively large data set of nearly 1000 patients can predict prostate 

Figure 1: Out‑of‑bag  (OOB) error rate to assess the quality of random forest 
prediction of prostate cancer, shown as a function of the number of decision 
trees generated during machine learning. The middle line depicts the OOB 
error rate of all data. The top line depicts the OOB error rate in the subgroup of 
patients with prostate cancer, and the bottom line shows the OOB error rate in the 
subgroup of patients with noncancerous prostate disease. For all data, mtry = 3.

Figure 3: Multidimensional scaling plot of patients with prostate disease. 
Black dots indicate individual patients with prostate cancer; gray dots, 
patients with noncancerous disease. Dim 1 refers to dimension 1 and Dim 
2 refers to dimension 2.

value (NPV), 81.64% (Table 2). The final random forest model was 
built from 500 trees (ntree = 500), and the OOB error rate decreased 
quickly with increasing tree number until approximately ntree = 50, 
after which it remained fairly constant (Figure 1).

Based on mean decreases in accuracy and Gini coefficient, the three 
most important variables for predicting prostate cancer with the random 

Table  1: Age, serum levels of prostate‑specific antigen  (PSA), and 
transrectal ultrasound findings of 941 Chinese patients with prostate 
disease

Characteristic n Prostate 
cancer, n (%)

No cancer, 
n (%)

χ2 P value

Age (year)

<50 18 5 (1.40) 13 (2.23) 53.32 <0.001

50‑59 86 14 (3.91) 72 (12.35)

60‑69 307 86 (24.02) 221 (37.91)

≥70 530 253 (70.67) 277 (47.51)

PSA (ng ml‑1)

<4 49 5 (1.40) 44 (7.55) 232.10 <0.001

4≤ PSA <10 212 26 (7.26) 186 (31.90)

10≤ PSA <20 270 60 (16.76) 210 (36.02)

≥20 410 267 (74.58) 143 (24.53)

Ultrasound (shape)

Normal 422 114 (31.84) 308 (52.83) 39.50 <0.001

Abnormal 519 244 (68.16) 275 (47.17)

Ultrasound (prostate 
boundary)

Clear 799 240 (67.04) 559 (95.88) 144.02 <0.001

Not clear 142 118 (32.96) 24 (4.12)

Ultrasound (boundary 
between internal and 
external glands)

Clear 717 178 (49.72) 539 (92.45) 223.30 <0.001

Not clear 224 180 (50.28) 44 (7.55)

Ultrasound (dividing line 
between prostate and 
rectum)

Clear 879 298 (83.24) 581 (99.66) 97.13 <0.001

Not clear 62 60 (16.76) 2 (0.34)

Ultrasound (dividing line 
between prostate and 
seminal vesicle glands)

Clear 890 308 (86.03) 582 (99.83) 82.34 <0.001

Not clear 51 50 (13.97) 1 (0.17)

Ultrasound (nodule)

No 455 155 (43.30) 300 (51.46) 5.92 0.015

Yes 486 203 (56.70) 283 (48.54)

Ultrasound (lymph node 
enlargement

No 930 348 (97.21) 582 (99.83) 11.03 0.001

Yes 11 10 (2.79) 1 (0.17)

Ultrasound (uneven echo)

No 71 25 (6.98) 46 (7.89) 0.26 0.609

Yes 870 333 (93.02) 537 (92.11)

Ultrasound (hypoecho)

No 538 151 (42.18) 387 (66.38) 53.06 <0.001

Yes 403 207 (57.82) 196 (33.62)

Ultrasound (abnormal 
blood flow signals)

No 519 115 (32.12) 404 (69.30) 123.92 <0.001

Yes 422 243 (67.88) 179 (30.70)

PSA: prostate-specific antigen

Figure 2: Ranking of input variables in the random forest model to predict 
prostate cancer. (a) Mean decrease accuracy. (b) Mean decrease gini. Variables 
are listed from most important to least important based on the mean decrease 
in accuracy and mean decrease in the Gini coefficient. Blood: abnormal 
blood flow signal; BoundIE: boundary between internal and external glands; 
BoundPR: dividing line between prostate and rectum; BoundPS: dividing line 
between prostate and seminal vesicle glands; Boundary: prostate boundary; 
Lymph: lymph node enlargement; PSA: serum levels of prostate‑specific 
antigen; Shape: prostate shape.

ba
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cancer in patients with prostate disease using a combination of 
transrectal ultrasound results, age, and serum PSA level. The diagnostic 
performance is superior to that obtained using serum PSA levels 
or ultrasound findings on their own. These results demonstrate the 
possibility of reliably predicting prostate cancer in patients who cannot 
be, or refuse to be, diagnosed based on prostate biopsy.

Our random forest model predicted prostate cancer with a 
diagnostic accuracy of 83.10%, sensitivity of 65.64%, specificity of 
93.83%, and PPV of 86.72%, based on the gold standard of prostate 
biopsy pathology. This diagnostic performance is superior to that 
of PSA alone, which is associated with sensitivity of 46.44%12 and 
specificity of 60.00%,11 and of transrectal ultrasound on its own, 
which is associated with sensitivity of 14.98%–63.46%, specificity of 
75.82%–92.28%, and PPV of 60.00%.19,20 The sensitivity of our random 
forest model was much higher than the 20.50% and 32.20% specified by 
the American Cancer Society based on respective PSA cutoff values of 
4.0 or 3.0 ng ml−1, respectively.8 The OOB error rate of our model was 
16.90%, indicating good predictive ability. These findings suggest that 
random forest‑based prediction can provide a satisfactory alternative 
to biopsy in patients with prostate disease. In particular, the high 
specificity may make our approach useful for screening.

Random forest learning, unlike classical statistical models, can 
provide an unbiased ranking of the relative importance of input variables 
for predicting the outcome. The ranking in our model highlighted age, 
serum PSA levels, and the boundary between internal and external 
glands as the three most important predictors of prostate cancer. These 
findings are consistent with the widespread use of age and PSA levels as 
prostate cancer markers. In addition, our results argue that when using 
transrectal ultrasound to screen patients with prostate disease, clinicians 
should focus on the boundary between internal and external glands.

Transrectal ultrasound can detect several characteristic features of 
prostate cancer. Most carcinomas appear as diffuse, echo‑poor changes 
in the peripheral, and periurethral transition zones;21 an echo‑poor 
nodule in the periurethral zone; a hypervascular echo‑poor nodule in the 
periurethral zone; and/or as a nodule surrounded by altered echogenicity.22 

Another study suggests that the combination of a hypoechoic nodule 
in the peripheral zone, diffuse hypoechogenic prostate changes and 
loss of defined limits between the peripheral zone and internal gland is 
diagnostic of prostate carcinoma.20 Therefore, we included transrectal 
ultrasound in our random forest model to predict prostate cancer. In fact, 
we incorporated 10 dichotomous ultrasound variables to capture as much 
information as possible that might help predict disease. We found that all 
but one variable (uneven echo, P = 0.609) differed significantly between 
patients with cancer and noncancerous disease. This highlights the value 
of transrectal ultrasound for detecting prostate cancer.

At the same time, this technique shows limited accuracy, sensitivity, 
and/or PPV. While prostate carcinoma tissue usually presents as a 
hypoechoic lesion in gray‑scale images, it can sometimes present instead 
as hyperechoic or isoechoic.23 It is true that hypoechoic lesions were 

observed in 57.82% of our patients with cancer (207 of 358), but in only 
33.62% of patients with noncancerous disease (196 of 583) (P < 0.001). 
However, another study suggests that diagnosing prostate cancer 
based on hypoechoic lesions alone would miss as many as half of true 
cases (52.19%, 131 of 251).24

Patients aged 70 and older accounted for 70.67% of those with 
prostate cancer in our study population, consistent with the observation 
that prostate cancer incidence increases with age. The overall incidence 
of prostate cancer in our population, 38.04% (358 of 941), is similar 
to the 39.43% (69 of 175) reported in a study of German patients with 
suspected prostate cancer19 and the 36.61% (41 of 112) reported in 
Chinese patients with elevated serum PSA or positive digital rectal 
exam.25 Among patients with PSA ≥4 ng ml−1, incidence of prostate 
cancer in our population  (39.57%) was slightly lower than the 
44.56% (487 of 1093 biopsies) in the large Prostate, Lung, Colorectal, 
and Ovarian  (PLCO) Cancer Screening  follow‑up trial involving 
patients with PSA ≥4 ng ml−1 from 10 North American centers.26 The 
PLCO trial contained 4801 men with PSA >4 ng ml−1 or positive digital 
rectal exam and 31.00% were biopsied in the initial round of screening; 
in the end, 549 (36.90%) were diagnosed with prostate cancer, giving 
a PPV of 11.40% (95% CI: 10.50–12.30).26

Nearly all our prostate cancer patients  (98.60%) had PSA 
values  ≥4  ng ml−1, in agreement with the screening cutoff value of 
4.0 ng ml−1 recommended by the American Cancer Society.8 However, 
most of our patients with noncancerous prostate disease  (92.45%) 
also had PSA  ≥4  ng ml−1. In contrast, 74.58% of our patients with 
prostate cancer had PSA ≥20 ng ml−1 while only 24.53% of those with 
noncancerous disease had PSA ≥20 ng ml−1. These results suggest that 
PSA >20 ng ml−1 is associated with high probability of prostate cancer, 
but that serum PSA levels, like transrectal ultrasound findings, on their 
own lack the sensitivity and specificity to reliably predict disease.27

Our study shows the potential of random forest learning for 
predicting prostate cancer, extending the handful of biomedical 
contexts to which it has been applied.16 Random forest learning does 
not require strict assumptions about data, and it can be less sensitive to 
outliers than classical methods. Random forest learning can be robust 
to missing data, for which it calculates proximities based on the data 
present.28,29 Random forest models can handle the large numbers of 
input variables common in clinical situations, and they are less prone 
to overfitting bias, which can result when the number of input variables 
is large relative to the sample size. During random forest learning, 
training data sets can be generated not only by random sampling but 
also by randomly selecting different input variables. This helps reduce 
cross‑correlation among the resulting decision trees, making the final 
voting classification less biased.

CONCLUSION
This study lays the foundation for applying random forest learning 
to prediction of prostate cancer. Random forest machine‑learning 

Table  2: Prediction of prostate cancer based on a random forest model incorporating age, serum PSA levels and transrectal ultrasound findings

Prediction Based on prostate biopsy Total (n) Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Cancer (n) No cancer (n)

Cancer 235 36 271 83.10 65.64 93.83 86.72 81.64

No cancer 123 547 670

Total 358 583 941

mtry=3, ntree=500. PSA: prostate‑specific antigen; Accuracy: the proportion of positive and negative results that are true positive and true negative results using the model; 
Sensitivity: the proportion of positives that are correctly identified as cancer using the model; Specificity: the proportion of negatives that are correctly identified as no cancer using the 
model; PPV: positive predictive value, the proportion of positive results that are true positive results using the model; NPV: negative predictive value, the proportion of negative results 
that are true negative results using the model
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algorithm can generate a model that combines transrectal ultrasound 
findings, age, and serum PSA levels to predict prostate cancer with 
good diagnostic performance compared to the gold standard of prostate 
biopsy pathology. This model may be a more accurate and reliable 
alternative to ultrasound or PSA on their own for deciding whether 
invasive biopsy is necessary. The random forest approach may prove 
useful for other clinical problems as well.

There are a few limitations in our study. First, only lymph nodes in 
regions around the prostate were examined, rather than all major lymph 
nodes. Second, interpreting ultrasound images can be subjective, which 
can limit the generalizability and reliability of our results. Third, we did 
not take into account all factors that may be useful for prostate cancer 
diagnosis, such as family history of prostate cancer, digital rectal exam 
results, and Gleason score. Future studies should examine whether 
adding these factors can improve our diagnostic model. It may also 
be possible to improve our model by classifying transrectal ultrasound 
images based on ordered category predictors and by incorporating 
more advanced ultrasound techniques.
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