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Revisiting Epidermal Growth Factor 
Receptor (EGFR) Amplification as 
a Target for Anti-EGFR Therapy: 
Analysis of Cell-Free Circulating 
Tumor DNA in Patients With 
Advanced Malignancies

INTRODUCTION

Epidermal growth factor receptor (EGFR), also 
known as human epidermal growth factor recep-
tor 1 (HER1) or ErbB1, is a receptor tyrosine 
kinase that belongs to the ErbB family proteins. 
Along with EGFR, the ErbB family includes 

HER2 (ErbB2), HER3 (ErbB3), and HER4 
(ErbB4). When receptor-specific ligands bind to 
the extracellular domain of the EGFR, it forms a 
homodimer (EGFR-EGFR) or heterodimer (eg, 
EGFR-HER2, EGFR-HER3) that leads to the 
activation of receptors through ATP-dependent 
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phosphorylation of tyrosine residues in the 
EGFR intracellular domain. Activation of EGFR 
leads to multiple downstream signals, including 
mitogen-activated protein kinase and phospho-
inositide 3-kinase pathways, which enhances cell 
proliferation and survival.1,2

Functional activation of EGFR via mutation or 
amplification/overexpression has been identi-
fied in many tumor types, including lung, head 
and neck, gastroesophageal, and colorectal 
cancers, and has been associated with prolifer-
ation, invasion, and metastasis.3,4 Alterations in 
EGFR have also been linked to primary resis-
tance and accelerated tumor growth (designated 
as hyperprogression) from immune checkpoint 
inhibitors.5-7 Because of its critical role in tumor 
aggressiveness, EGFR has been an attractive 
target for anticancer therapy.1 To date, there are 
various anti-EGFR therapies that are US Food 
and Drug Administration approved, including 
erlotinib, gefitinib, afatinib, and osimertinib 
for non–small-cell lung cancer (NSCLC) with 
specific activating EGFR mutations,8 cetuximab 
and panitumumab for colorectal cancer without 
KRAS or NRAS mutations,9 cetuximab for head 
and neck cancer,10 and necitumumab for squa-
mous cell carcinoma of lung.11

Biomarkers to predict response to anti-EGFR 
therapies have been studied extensively. EGFR 
and KRAS mutation status are widely used in 
lung and colorectal cancer, respectively.8,9,12,13 
In contrast, EGFR amplification and overex-
pression in tissue have not been well established 
as reliable biomarkers for anti-EGFR agents, 
(selected studies that investigated EGFR ampli-
fication/overexpression as a predictive marker 
for anti-EGFR therapies are summarized in the 
Data Supplement)11,14-19. Overall, a meta-analysis 
concluded that tissue EGFR amplification status 
could not be demonstrated to be a consistent 
biomarker to predict the outcome from anti-
EGFR therapies in colorectal cancer.20

Although it is somewhat surprising that tissue 
EGFR amplification/expression status has not 
been established as a reliable biomarker for 
anti-EGFR therapies, potential reasons include 
heterogeneity between primary and metastatic 
lesions, dynamic changes in genomic alterations 
that may emerge along with therapeutic pressure 
or progression, presence of genomic coalter-
ations associated with resistance, and potential 
differences in response to copy number gain 

due to aneuploidy versus focal EGFR ampli-
fication.21-23 Use of plasma-derived cell-free 
tumor DNA (cfDNA) to assess EGFR status by 
next-generation sequencing (NGS) could con-
ceivably overcome some of these limitations 
by detecting tumor-specific alterations that are 
shed into the bloodstream from multiple meta-
static sites as well as the primary cancer.23-29

Herein, we examined the genomic landscape 
of EGFR amplification by interrogating blood- 
derived cfDNA from 28,584 patients with diverse 
malignancies using clinical-grade NGS. Fur-
thermore, we investigated the clinical charac-
teristics, concordance between tissue NGS and 
cfDNA, and therapeutic outcome after anti-
EGFR therapies among a subset of 1,434 clin-
ically annotated patients at the University of 
California, San Diego (UCSD), Moores Cancer 
Center.

METHODS

Patients

The genomic landscape of EGFR amplification 
among 28,584 diverse solid cancers that were 
referred to Guardant Health from March 2014 
to February 2017, were evaluated. Furthermore, 
we have curated the clinical characteristics of 
1,434 evaluable patients with diverse cancers 
at UCSD who had cfDNA testing at Guardant 
Health starting in March 2014. All investigations 
followed the guidelines of the UCSD Institu-
tional Review Board for data collection (Profile 
Related Evidence Determining Individualized 
Cancer Therapy; ClinicalTrials.gov identifier: 
NCT02478931) and for any investigational 
therapies for which the patients consented (Data 
Supplement).

NGS for cfDNA and Tissue

All cfDNA analyses were performed at Guar-
dant Health as previously described (Data 
Supplement).26 Tissue NGS was performed at 
Foundation Medicine, as previously described30 
(Data Supplement).

End Points and Statistical Methods

Patient characteristics, prevalence of EGFR 
amplification, and genomic coalterations were 
summarized by descriptive statistics. Fisher’s 
exact test was used for categorical variables. 
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Concordances between cfDNA and tissue DNA 
were described by percentage of concordance 
and κ value with standard error. Antitumor 
response was evaluated using Response Evalu-
ation Criteria in Solid Tumors (RECIST) 1.1. 
Progression-free survival was defined as the time 
from treatment initiation to disease progression. 
Patients who had not experienced disease pro-
gression at the time of last follow-up were cen-
sored at that time point. Statistical analysis was 
performed with the assistance of author R.O.

RESULTS

Prevalence of EGFR Amplification in cfDNA 
Testing in Diverse Cancers

Among 28,584 patients with diverse solid malig-
nancies whose cfDNA was evaluated at a central 

laboratory, 8.5% (n = 2,423) had EGFR ampli-
fication. The most common tumors harbor-
ing EGFR amplification were colorectal cancer 
(16.3% [458 of 2,807]), followed by NSCLC 
(9.0% [1,096 of 12,197]), genitourinary cancers 
(8.1% [170 of 2,104]), cutaneous tumors (7.4% 
[45 of 610]), and breast cancer (7.3% [328 of 
4,518]; Fig 1A).

Prevalence of EGFR Amplification in cfDNA 
Testing in Patients With Diverse Cancers 
From UCSD Cohort

Among the UCSD cohort of 1,434 patients 
(Data Supplement), overall, 6.8% of patients (98 
of 1,434) had EGFR amplification, including 86 
patients detected at their first cfDNA evaluation 
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Cancer Type

Gl, colorectal (n = 2,807)

Lung, non–small cell (n = 12,197)

Genitourinary (n = 2,104)

Skin/melanoma (n = 610)
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Gl, noncolorectal (n = 3,081)

Lung, small cell (n = 407)

Gynecologic (n = 1,080)

Brain (n = 170)

Other (n = 1,169)

Total (n = 28,584)
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27 (1.0)

165 (1.4)

5 (0.2)

1 (0.2)

25 (0.6)

4 (0.9)

45 (1.5)

1 (0.2)

1 (0.2)

0 (0.0)

6 (0.5)

280 (1.0)
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33 (2.8) 

1,315 (4.6)
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No. (%)
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No. (%)
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No. (%)
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No. (%)
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No. (%)
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18 (3.0) 
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56 (1.8) 

5 (1.2) 

13 (1.2) 

0 (0.0) 

36 (3.1) 

828 (2.9)

458 (16.3) 

1,096 (9.0) 

170 (8.1) 

45 (7.4) 

328 (7.3) 

26 (5.9) 

178 (5.8) 

21 (5.2)

26 (2.4) 

0 (0.0)

75 (6.4)

2,423 (8.5)
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1 (10.0)

9 (8.3)

6 (4.8)

2 (3.5)

12 (4.2)

3 (3.3)

6 (1.7)

1 (3.3)

2 (2.8)

0 (0.0)

1 (0.8)

43 (3.0)

2 (20.0)

6 (5.5)

10 (7.9)

4 (7.0)

13 (4.6)

2 (2.2)

7 (1.9)

0 (0.0)

0 (0.0)

0 (0.0)

4 (3.0)

48 (3.3)

0 (0.0)

1 (0.9)

0 (0.0)
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1 (1.1)

1 (0.3)

0 (0.0)

0 (0.0)

0 (0.0)

1 (0.8)
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2.52 (2.35–2.83)

2.66 (2.21–4.88)

2.61 (2.20–5.11)

2.55 (2.26–3.82)
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2.35 ( – )

2.24 and 2.29
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2.64 (2.25–52.44)
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Fig 1. (A) Prevalence of EGFR amplification by cell-free DNA (cfDNA) among diverse cancer from central laboratory (n = 28,584). Among 
28,584 patients with diverse cancer whose cfDNA was evaluated at central laboratory, overall 8.5% of patients (n = 2,423) had EGFR amplification 
(median copy number amplification [CNA], 2.55; range, 2.14 to 143.94). Overall, 1+, 2+, and 3+ EGFR CNAs were found in 2.9% (n = 828), 4.6% 
(n = 1,315), and 1.0% (n = 280) of patients, respectively. The most common cancer harboring EGFR amplification was colorectal cancer (16.3% 
[458 of 2,807]), followed by non–small-cell lung cancer (9.0% [1,096 of 12,197]) and genitourinary cancers (8.1% [170 of 2,104]). (B) Prevalence of 
EGFR amplification by cfDNA among diverse cancer from University of California, San Diego (UCSD), cohort (n = 1,434). Among UCSD cohort 
(n = 1,434), overall 6.8% of patients (98 of 1,434) had EGFR amplification (median CNA, 2.55; range, 2.18 to 143.94). CNAs of 1+, 2+, and 3+ were 
found in 3.0% (n = 43), 3.3% (n = 48), and 0.5% (n = 7) of patients, respectively. The most common cancer harboring EGFR amplification was 
small-cell lung cancer (30.0% [three of 10]), followed by breast cancer (14.7% [16 of 109]) and colorectal cancer (12.6% [16 of 127]). *Includes 25 
patients with lung, adenocarcinoma (+ [n = 10], ++ [n = 12], +++ [n = 3]) and three patients with lung, squamous cell carcinoma (+ [n = 2], ++ [n = 1]). 
†Includes four patients with carcinoma of unknown primary (+ [n = 1], ++ [n = 2], +++ [n = 1]) and two patients with adrenocortical carcinoma (++ [n = 2]).
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and 12 patients with emerging EGFR amplifi-
cation at the time of subsequent cfDNA eval-
uation. The most common cancers (with more 
than 10 samples) harboring EGFR amplification 
were breast (14.7% [16 of 109]) and colorectal 
cancer (12.7% [16 of 126]; Fig 1B).

Genomic Coalterations Associated With 
EGFR Amplification (analysis of cfDNA)

Among 98 patients with EGFR amplification 
at UCSD, the median number of character-
ized genomic alterations was 5.0 (range, 0 to 
17; excluding the EGFR amplification), and the 
median number of alterations among patients 
without EGFR amplification (n = 1,336) was 
significantly less (median, 1.0; range, 0 to 20;  
P < .001). The most common coalterations asso-
ciated with EGFR amplification were in the fol-
lowing genes: TP53 (65.3% [64 of 98]), followed 
by BRAF (42.9% [42 of 98]), MET (40.8% [40 
of 98]), CDK6 (32.7% [32 of 98]), and PIK3CA 
(32.7% [32 of 98]; Fig 2; Appendix Fig A1). On 
the other hand, coalterations in these genes 
were found significantly less frequently among 
patients without EGFR amplification: coalter-
ations in TP53 in 32.1% of patients, BRAF 
(4.9%), MET (2.5%), CDK6 (1.4%), and PIK3CA 
(8.8%; all P < .001; Fig 2). When the genes were 
categorized according to their oncogenic roles, 
72.4% (71 of 98) of patients with EGFR amplifi-
cation had at least one characterized coalteration 

in tyrosine kinase family genes, 56.1% (55 of 98) 
in genes involved in mitogen-activated protein 
kinase cascades, 52.0% (51 of 98) in cell-cycle–
associated genes, and 35.7% (35 of 98) in phos-
phoinositide 3-kinase signaling pathway genes 
(Appendix Fig A2).

Potential Targeted Therapies for 
Coalterations Associated With EGFR 
Amplification

In the UCSD cohort of 98 patients positive for 
EGFR amplification, 96.9% (95 of 98) of patient 
tumors had at least one characterized coalter-
ation. All these 95 malignancies harbored at least 
one characterized coalteration potentially targe-
table with US Food and Drug Administration–
approved agents as on- or off-label use.

Clinical Characteristics of Patients Who 
Had Emerging EGFR Amplification With 
Serial cfDNA Analyses

Six patients who initially tested negative for 
EGFR amplification in both tissue NGS and 
cfDNA were found to have emerging EGFR 
amplification with serial cfDNA analyses. (A 
total of 324 patients who initially tested neg-
ative had serial testing.) Patterns of genomic 
evolution differed from patient to patient. Emer-
gence of EGFR amplification was seen among 
patients in a variety of situations, including in 
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Fig 2. Comparison 
of genomic alterations in 
patients with and with-
out EGFR amplification 
(analysis of cell-free DNA 
[cfDNA]; n = 1,434). The 
most common cogenomic 
alterations associated with 
EGFR amplification was 
TP53 (65.3% [64 of 98]), 
followed by BRAF (42.9% 
[42 of 98]), MET (40.8% [40 
of 98]), CDK6 (32.7% [32 
of 98]), and PIK3CA (32.7% 
[32 of 98]). On the other 
hand, coalterations in these 
genes were significantly less 
associated among patients 
without EGFR amplification 
(alterations found: 32.1% in 
TP53, 4.9% in BRAF, 2.5% 
in MET, 1.4% in CDK6, 
and 8.8% in PIK3CA;  
all P < .001). *P < .001.  
**P = .027 by Fisher’s exact 
test. †EGFR alterations 
other than amplification. 
Variants of unknown signifi-
cance excluded.
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four patients who received checkpoint inhibitors, 
although two of the four patients also had other 
intervening therapies (Fig 3; Data Supplement).

Concordance of EGFR Amplification 
Between cfDNA and Tissue NGS

Among patients from the UCSD cohort whose 
cfDNA was evaluated, tissue NGS was available 
in 787 cases. The overall concordance rate for 
EGFR amplification between tissue and cfDNA 
NGS was 89.3% (Data Supplement). A shorter 
interval between the date of tissue biopsy (for 
tissue NGS) and blood draw (for cfDNA) was 
associated with statistically higher concordance 
rate (≤ 6 months: 92.1% v > 6 months: 85.8%; 
P = .005; Data Supplement).

Efficacy of Anti-EGFR Therapies Among 
Patients With EGFR Amplification Detected 
by cfDNA Analysis

Among 98 patients with EGFR amplification, 
patients harboring coactivating EGFR mutations 
were excluded from the analysis, because the 
response from anti-EGFR therapies could be 
confounded by these mutations (n = 26). Among 
72 patients with EGFR amplification (with-
out coexisting EGFR mutations), nine received 
treatment regimens that included anti-EGFR 
agents after cfDNA testing (Appendix Fig A3). 
Among these nine individuals, EGFR plasma 

copy numbers ranged from 2.37 to 143.94 (1+ 
[n = 1], 2+ [n = 4], and 3+ [n = 4]) across six dif-
ferent cancer diagnoses: tonsillar squamous cell 
carcinoma (n = 1), triple-negative breast cancer 
(n = 1), adenocarcinoma of unknown primary  
(n = 1), gastroesophageal junction adenocarcinoma  
(n = 1), adrenocortical carcinoma (n = 2), 
and colorectal cancer (n = 3). Types of anti- 
EGFR–based regimens were as follows: mono-
therapy with anti-EGFR antibody (n = 1), 
anti-EGFR antibody plus another targeted agent  
(n = 1), EGFR tyrosine kinase inhibitor plus 
another targeted agent (n = 1), anti-EGFR anti-
body plus cytotoxic agents (n = 2), and dual anti-
EGFR therapy–based regimens (combination of 
anti-EGFR antibody plus EGFR tyrosine kinase 
inhibitor; n = 4). Overall, tumor reduction was 
seen in six of nine patients (66.7%), including 
five (55.6%) who attained a partial response (PR) 
per RECIST 1.1 (Fig 4). Illustrative responders 
are depicted in Figure 5.28

DISCUSSION

We describe the comprehensive landscape of 
EGFR amplification in cfDNA among 28,584 
patients with varied malignancies whose liquid 
biopsy was evaluated at a central, clinical-grade 
laboratory. Overall, 8.5% of patients harbored 
an EGFR amplification in their blood-derived  

ascopubs.org/journal/po JCO™ Precision Oncology 5

Age(y)/
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Diagnosis Timeline of emerging EGFR amplification detected by cfDNA analysis along with systemic therapy

13
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0 10 20–10–20
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EGFR TKI 
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Types of systemic therapies
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Breast cancer

Hepatocellular
carcinoma

Anal squamous
cell carcinoma

Rectal
adenocarcinoma

50/F

69/M

44/F

56/M

49/M

Patient

Fig 3. Overview of 
patients who had emerg-
ing EGFR amplification 
with serial cell-free DNA 
(cfDNA) analysis after 
anticancer therapies (Data 
Supplement). Six patients 
who initially tested negative 
for EGFR amplification  
on tissue next-generation  
sequencing as well as  
cfDNA were found to  
have EGFR amplification 
with serial cfDNA analyses 
after various treatments;  
in four patients, treatment 
regimens included immune 
checkpoint inhibitors  
(n = 4; patients 30, 33, 43, 
and 46). EGFR, epidermal 
growth factor receptor; 
FOLFIRI, fluorouracil, 
leucovorin, and irinotecan; 
NGS, next-generation 
sequencing; TKI, tyrosine 
kinase inhibitor.
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cfDNA, with EGFR amplifications being most  
common in colorectal cancer (16.3% of patients), 
NSCLC (9.0%), genitourinary cancers (8.1%), 
cutaneous tumors (7.4%), and breast malig-
nancies (7.3%). Having high copy number 
amplification with greater than 4.00-fold EGFR 
amplification was seen in 1.0% of patients; most 
patients had amplification levels between 2.41-
fold and 4.00-fold (4.6%; Fig 1).

EGFR amplification/overexpression is associated 
with cancer aggressiveness.3,4 Even so, previous 
studies failed to demonstrate tissue-based assess-
ment of EGFR overexpression to be a reliable 
biomarker to predict clinical outcomes after 
anti-EGFR therapies (Data Supplement).11,14-20 
These observations are consistent with data from 
meta-analyses and clinical experience suggest-
ing that, counterintuitively, genomic biomarkers 
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Fig 4. Efficacy of anti–epidermal growth factor receptor (EGFR)–based therapies among patients with EGFR amplification (amp). Nine patients 
with EGFR amplification were evaluable for response from anti-EGFR–based therapies. Overall, tumor reduction was seen in six of nine (66.7%), 
including five of nine (55.6%) patients with partial response per Response Evaluation Criteria in Solid Tumors 1.1. (*) Patient was experienc-
ing mixed response (mixture of disease stability and progressive disease) with pembrolizumab monotherapy after 15 months. Anti-EGFR agents 
were added for emerging EGFR amplification detected in cfDNA (see also Figure 5). cfDNA, cell-free DNA; CNA, copy number amplification; 
EGFR, epidermal growth factor receptor; FOLFIRI, fluorouracil, leucovorin, and irinotecan; GE, gastroesophageal; N/A, not applicable; NGS, 
next-generation sequencing; PFS, progression-free survival; SCC, squamous cell carcinoma; TKI, tyrosine kinase inhibitor.
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Fig 5. Representative cases of patients who achieved tumor reduction with anti–epidermal growth factor receptor (EGFR)–based therapies. (A) 
Patient 26: Dynamic change in serial cell-free DNA (cfDNA) along with anti-EGFR therapies. (B) Patient 26: Serial computed tomography (CT) 
images while receiving anti-EGFR therapies (correspond with A). A 55-year-old woman with metastatic triple-negative breast cancer to bone and 
lung was treated with pembrolizumab with initial disease stability for more than 1 year, but then progression in the bones and deteriorating per-
formance status requiring a wheelchair. cfDNA obtained before treatment did not detect genomic alterations. cfDNA at the time of bone progres-
sion revealed multiple emerging alterations, including EGFR amplification (3+; plasma copy number of 4.88; A). (continued on following page)  
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correlate better with response than protein 
expression, perhaps because of technical limita-
tions associated with assessment of immunohis-
tochemistry staining.31-34

Prior studies looking at the relationship between 
EGFR amplification and therapeutic response 
to EGFR inhibitors showed inconsistent results 
(Data Supplement). However, one potential 
explanation is tumor heterogeneity, especially 
between primary and metastatic lesions and 
even between distinct foci at the same site. 
Indeed, Pectasides et al23 demonstrated that, 
among patients with treatment-naive metastatic 
gastroesophageal cancers, discordant gene alter-
ations between primary and metastatic tissue 
were common, being seen in 42% of patients. 
Interestingly, the discordance rate was higher 
for gene amplifications. However, among dis-
cordant cases, high concordance (87.5%) was 
seen between metastatic tissue and cfDNA pro-
filing. The concordance rate documented by 
Pectasides et al23 is similar to that in the current 
report that showed an 89.3% concordance rate 
for EGFR amplification between cfDNA and 
tissue NGS (Data Supplement). These results 
suggest that biopsy of a limited tumor focus 
can misrepresent the overall genomic condition 
of disease and, thus, may not be a completely 
accurate guide for targeted treatment. NGS 
of cfDNA derived from plasma may attenuate 
this challenge. Consistent with this concept, 
among our nine evaluable patients who har-
bored EGFR amplification by cfDNA analysis, 
anti-EGFR–based therapies led to tumor reduc-
tion in 66.7% (six of nine) including 55.6% (five 
of nine) who achieved a PR (Fig 4). Our data 
are comparable to those of Maron et al,35 who 
showed a 58% (four of seven) objective response 
rate among patients with EGFR-amplified gas-
tric cancer (all seven patients were positive for 

EGFR amplification by tissue NGS, and six were 
positive by cfDNA analysis). Similarly, ERBB2 
amplification detected by cfDNA analysis was 
highly predictive of anti-HER2 targeted therapy 
response.36

There were additional noteworthy obser-
vations from our patients treated with anti-
EGFR–based therapies: three of five patients 
whose EGFR amplification was only detected in 
cfDNA (negative on tissue NGS) still demon-
strated a PR (including one patient treated with 
cetuximab monotherapy [patient 57]), PRs were 
seen across different degrees of EGFR amplifi-
cation status (from copy number amplification 
of 2.37 to 143.94), and three of four patients 
who received dual anti-EGFR inhibitors (coad-
ministration of antibody and tyrosine kinase 
inhibitor for EGFR) achieved tumor reduction. 
Importantly, dual inhibition with both an anti-
body and a small molecule targeting the same 
receptor has been investigated among patients 
with HER2-positive breast cancer and reported 
to have significantly higher response rates when 
compared with either drug alone.37 Efficacy of 
dual-targeted therapy was also seen in patients 
with HER2-positive colon cancer that showed 
a 30% response rate with trastuzumab/lapatinib 
combination.38 Similarly, early-phase clinical 
trials with dual-EGFR inhibition (cetuximab/
afatinib- or cetuximab/erlotinib-based ther-
apy) showed favorable clinical outcomes among 
patients with refractory NSCLC and colorectal 
cancer.39-43 The mechanism by which dual inhi-
bition operates is not fully elucidated, but pre-
clinical studies suggest that kinase receptors may 
function via kinase-dependent and -independent 
mechanisms.44,45

Although responses were seen in more than 
half of the patients with EGFR amplification 
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Fig 5. (Continued). Pembrolizumab was continued and anti-EGFR therapies (erlotinib and cetuximab) were added. After starting anti-EGFR 
agents, the patient achieved 16% tumor shrinkage per Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 (B, left to right), with symptomatic 
improvement allowing the patient to ambulate without narcotics for pain control. Repeat cfDNA showed elimination of most alterations, including 
EGFR amplification (A). Therapy with anti-EGFR inhibitors is ongoing at 4+ months. (C) Patient 57: Serial CT images while receiving anti-EGFR 
therapy. A 53-year-old woman with metastatic rectal adenocarcinoma to the liver and lungs presented after experiencing disease progression while 
receiving two lines of therapies (infusional fluorouracil, leucovorin, and oxaliplatin with bevacizumab and fluorouracil, leucovorin, and irinotecan with 
bevacizumab). Tissue next-generation sequencing was negative for EGFR amplification; however, cfDNA revealed alterations including EGFR am-
plification (1+; plasma copy number of 2.37). Therapy was started with single-agent cetuximab, and a 44% reduction in tumor burden by RECIST 1.1 
was seen (progression-free survival, 6.0 months; C, left to right). (D) Patient 25: Serial CT images while receiving anti-EGFR therapies. A 68-year-
old woman was referred with metastatic gastroesophageal junction carcinoma to the liver and lymph nodes. Both cfDNA and primary tumor 
showed EGFR amplification by next-generation sequencing (EGFR amplification 3+ by cfDNA, plasma copy number of 143.94). Therapy with dual 
anti-EGFR therapy (cetuximab and erlotinib) was started (patient was also administered one dose of nivolumab on the basis of programmed death 
ligand 1 positive by immunohistochemistry; however, held because of severe rash). The patient achieved a durable partial response28 (70% tumor 
reduction; progression-free survival, 18 months; D, left to right). Serial cfDNA analyses were obtained at 4 months, 12 months, and 17 months after 
the initiation of therapy and were negative for EGFR amplification. Red arrows and circles indicate presence of tumor. cfDNA, cell-free DNA.
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treated with EGFR inhibitors, not all patients 
responded. Our study demonstrates that patients 
whose tumors harbor EGFR amplifications have 
considerably more cfDNA genomic alterations 
than those without EGFR amplification (median, 
5.0 v 1.0 genomic coalteration per patient; P < 
.001). Therefore, primary or secondary resis-
tance could be on the basis of the need to target 
coexisting activated pathways. Indeed, as seen 
in Figure 4, of the nine patients with cfDNA 
EGFR amplification treated with EGFR- 
targeting agents, the four nonresponders had six 
to nine genomic coalterations, whereas the five 
responders had only zero to five coalterations 
per patient. Furthermore, the patient with the 
greatest tumor regression and most durable 
response (Fig 4, patient 25; progression-free 
survival, 18 months) demonstrated no genomic 
coalterations on cfDNA. Of interest, patients 
who failed to achieve prolonged responses had 
coalterations in specific oncogenic pathways, 
including CDK4/6, MET, PDGFRA, ERBB2, 
FGFR1, PIK3CA, AKT1, KRAS, and BRAF, 
some of which are known to be associated with 
resistance to anti-EGFR therapies.46,47 Consid-
ering that patients with EGFR amplification had 
frequent potentially tractable coalterations (Fig 
2; Appendix Figs A1and A2), a customized com-
bination strategy may be required.48,49 Although 
current findings do not provide definitive proof  
of antitumor activity, these observations sug-
gest that studies of appropriate combinations of 
drugs that target both the EGFR amplification 
and the coalterations would be of interest. Inves-
tigation of such an approach is currently ongo-
ing (ClinicalTrial.gov identifier: NCT02534675; 
I-PREDICT [Study of Molecular Profile-Related 
Evidence to Determine Individualized Therapy 
for Advanced or Poor Prognosis Cancers]).

Interestingly, Oxnard et al50 and Abbosh et al51 
have shown that more extensive disease burden 
corresponds to higher rates of cfDNA detec-
tion. The finding of higher numbers of comuta-
tions in patients harboring EGFR amplification 
events could therefore be a possible effect of 
increased aggressiveness and higher tumor bur-
den (with more extensive disease shedding more 
cfDNA and thus permitting detection of more 
alterations), or, alternatively, higher numbers 
of comutations could be a cause of increased 
aggressiveness. In this regard, we have recently 
found that higher percent cfDNA correlates 
with higher number of alterations. Furthermore, 

both higher percent cfDNA and higher number  
of alterations were independently associated with 
shorter survival after multivariate analysis. This 
observation suggests that the association between 
survival and number of alterations is independent 
of the percent cfDNA (with the latter correlating 
with disease burden; unpublished data).

In the current report, we also identified patients 
whose EGFR amplifications emerged in their 
liquid biopsy with serial testing after a variety of 
anticancer therapies (n = 6; Fig 3). For instance, 
one patient who was treated with the EGFR 
tyrosine kinase inhibitor erlotinib showed emer-
gence of blood-derived EGFR amplification after 
disease progression (Fig 4), consistent with a 
previous report demonstrating tumor evolution 
with EGFR amplification as a potential resistance 
mechanism to EGFR tyrosine kinase inhibitor 
administration.52 Perhaps relevant in this regard, 
all of our responders had an EGFR antibody 
included in their regimen. Four patients were 
found to have emerging EGFR amplification 
after disease progression while receiving check-
point inhibitors. Although EGFR alterations are 
reported to be associated with primary resistance 
and hyperprogression after immune checkpoint 
blockade,6,7 the current observation may suggest 
that EGFR amplification can also be a possible 
mechanism for acquired resistance after check-
point blockades. For those patients with clonal 
evolution that includes EGFR amplification after 
anti–PD-1 checkpoint blockade, addition of 
anti-EGFR therapy may overcome resistance. 
This is suggested by our representative patient 
who was treated with pembrolizumab, had a 
mixed response, and then received erlotinib and 
cetuximab (in addition to ongoing pembroli-
zumab) and showed reduction in EGFR cfDNA 
copy number as well as regression of tumor foci 
and improvement in pain and performance status 
(Fig 4, patient 26; Figs 5A and 5B).39,40 Additional 
investigation is required to understand the com-
plex interplay of response and resistance associ-
ated with EGFR amplifications, EGFR-targeting 
pharmaceuticals, and checkpoint blockade.

There were several limitations to the current 
study. First, the investigation of clinical cor-
relates in the UCSD cohort was performed ret-
rospectively. Second, for the large de-identified  
database of 28,584 patients, sample size bias 
cannot be excluded, because the number of 
each cancer type was based on the number of 
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samples sent for cfDNA testing by treating phy-
sicians. Moreover, the diagnosis was determined 
based on the submitting physician’s designation. 
Third, in the de-identified database, we were not 
able to evaluate the history of systemic therapy 
that may have affected the dynamics of cfDNA. 
It is possible that some of the EGFR amplifica-
tions emerged because of therapeutic pressure. 
Last, technological methods and definition of 
EGFR amplification differed between tissue 
NGS and cfDNA analyses; thus, direct compari-
son between those two tests may be challenging. 
Yet, despite these limitations, the study provides 
a comprehensive analysis of EGFR amplification 
detected from plasma-derived cfDNA in a wide 
range of malignancies.

In conclusion, among patients with diverse 
cancers (n = 28,584 from a central laboratory), 
cfDNA interrogated by clinical-grade NGS 

revealed that 8.5% of patients with solid can-
cers harbored EGFR amplification. Frequencies 
of EGFR amplification differed between cancer 
types. Most patients found to have EGFR ampli-
fication also had genomic coalterations that are, 
in theory, pharmacologically tractable (96.9% 
[95 of 98]) by available drugs. Anti-EGFR–
based therapies among patients found to have 
EGFR amplification by cfDNA analysis achieved 
responses in 55.6% of patients (five of nine), 
including in three individuals who failed to show 
EGFR amplification on tissue NGS. Incorpo-
rating EGFR inhibitors into regimens admin-
istered to patients with EGFR amplification in 
cfDNA warrants additional investigation.
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